江苏13大市2013年高三历次考试数学试题分类汇编11:概率
- 格式:doc
- 大小:391.00 KB
- 文档页数:8
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1、函数)42sin(3π+=x y 的最小正周期为 ▲2、设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲3、双曲线191622=-y x 的两条渐近线的方程为 ▲4、集合}1,0,1{-共有 ▲ 个子集5、右图是一个算法的流程图,则输出的n 的值是 ▲ (流程图暂缺)6、抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员 第一次 第二次 第三次 第四次 第五次甲 87 91 90 89 93乙 89 90 91 88 92则成绩较为稳定(方程较小)的那位运动员成绩的方差为 ▲7、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 ▲8、如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,, 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体 积为2V ,则=21:V V ▲ 9、抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ 10、设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 ▲ 11、已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲12、在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d , 若126d d =,则椭圆C 的离心率为 ▲13、在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数x y 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 ▲14、在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 ▲A BC1ADE F 1B 1C二、解答题:本大题共6小题,共计90分。
2013高考数学试卷参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
DE AB AC λλ=+(λ、11、已知()f x 是定义在R12n n a a a a ++>的最大正整数内作答,解答时应写出文字说明、证明或演.(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααββ==(1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值。
16、(本小题满分14分)如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。
过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。
求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。
如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA=2MO ,求圆心C 的横坐标a 的取值范围。
18、(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。
现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟。
在甲出发2分钟后,乙从A 乘坐缆车到B ,在B 处停留1分钟后,再从B 匀速步行到C 。
假设缆车速度为130米/分钟,山路AC 的长为1260米,经测量,123cos ,cos 135A C ==。
2013高考:概率统计基础【2013高考题组】(一)计数原理问题1、(2013北京,理12)将序号为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一个人两张参观券连号,那么不同的分法种数是 。
2、(2013全国大纲,文14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种。
(用数字作答)3、(2013全国大纲,理14)6个人排成一排,其中甲、乙两人不相邻的不同排法共有 种。
(用数字作答)4、(2013山东,理10)用0,1,…,9十个数字,可以组成没有重复数字的三位数的个数为( )A 、243B 、252C 、261D 、2795、(2013浙江,理14)将A 、B 、C 、D 、E 、F 六个字母排成一排,且A 、B 均在C 的同侧,则不同的排法共有 种。
(用数字作答)6、(2013福建,理5)满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A 、14B 、13C 、12D 、10答案:1、962、603、4804、B5、4806、B(二)概率问题1、(2013全国课标I ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值等于2的概率为( )A 、12B 、13C 、14D 、162、(2013全国课标II ,文13)从1,2,3,4,5中任意取出两个不同的数字,其和为5的概率是 。
3、(2013全国课标II ,理14)从n 个正整数1,2,…,n 中任意取出两个不同的数字,若取出的两数之和等于5的概率是114,则n = 。
4、(2013山东,理14)在区间[3,3]-上随机取一个数x ,使得不等式121x x +--≥成立的概率是。
5、(2013江苏,7)现有某类病毒记作m n X Y ,其中正整数m ,n (7m ≤,9n ≤)可以任意选取,则m ,n 都取到奇数的概率为 。
2013年高考题分类汇编——————概率解答题1.全国卷19. (本小题满分12分)(注意:在试题卷上作答无效.........) 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。
每次发球,胜方得1分,负方得0分。
设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。
甲、乙的一局比赛中,甲先发球。
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率; (Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望。
答案: (Ⅰ)0.352 (Ⅱ)=1.40E ξ2.北京卷 16.( 本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望。
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)21);13P =解:( (2)分布列:(3) 5,6,7三天。
3.福建卷16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为32,中奖可以获得2分;方案乙的中奖率为52,中奖可以获得3分;未中奖则不得分。
每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求3≤X 的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?1 7 92 0 1 53 0第17题图111);15P =解:((2)1124812(),(2),(3).535E x E x E x ===所以甲得分的期望较大。
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2 |=π.2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线191622=-y x 的两条渐近线的方程为 . 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 4.集合}1,0,1{-共有 个子集.【答案】8【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 . 【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯. 8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 . 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z2 . 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 . 【答案】12【解析】)(32213221++=+=+= AC AB AC AB 213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12 . 11.已知)(x f 是定义在R 上的奇函数。
江苏省2013届高三最新数学(精选试题26套)分类汇编11:统计一、填空题1 .(江苏省2013届高三高考模拟卷(二)(数学))如图是一次考试结果的频率分布直方图,若规定60分以上(含60)为考试合格,则这次考试的合格率为________.频率组距0.0240.0120.0080.0040.002O 20 40 60 80 100 分数/分【答案】72%2 .(江苏省常州市横山桥中学2013年高考数学冲刺模拟试卷doc)某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:g)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[96,106],样本中净重在区间[96,100)的产品个数是24,则样本中净重在区间[98,104)的产品个数是_____.【答案】603 .(江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷)某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如下图所示,现规定不低于70分为合格,则合格人数是________.【答案】 600 ;4 .(2013年江苏省高考数学押题试卷)小李拟将1,2,3,, n 这n 个数输入电脑, 求平均数, 当他认为输入完毕时, 电脑显示只输入n -1个数, 平均数为3557, 假设这n -1个数输入无误,则漏输的一个数是_______. 【答案】设删去的一个数是x ,则1≤x ≤n , 则删去的一个数是1,则平均数不减, 平均数为n (n +1)2-1n -1=n +22,删去的一个数是n ,则平均数不增, 平均数为n (n +1)2-n n -1=n 2, 所以n 2≤3557≤n +22, 69<n ≤71.当n =71时, n (n +1)2-x n -1=3557,解得x =56,当n =70时无解,所以x =56.5 .(江苏省南通市海门中学2013届高三下学期5月月考数学试卷)已知12321,21,21,,21n x x x x ++++的方差是3,则123,,,,n x x x x 的标准差为____. 【答案】 32. 6 .(江苏省常州高级中学2013年高考数学模拟试卷)根据国家质量监督检验检疫局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验》(GB19522—2004)中规定车辆驾驶人员血液酒精含量:“饮酒驾车非醉酒驾车”的临界值为20mg/100ml;“醉酒驾车”的临界值为80mg/100ml.某地区交通执法部门统计了5月份的执法记录数据:根据此数据,可估计该地区5月份“饮酒驾车” 发生的频率等于________. 【答案】 0.09;7 .(江苏省南通市通州区姜灶中学2013届高三5月高考模拟数学试题 )采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,血液酒精含量(单位:mg/100ml ) 0~20 20~40 40~60 60~80 80~100 人数 180 11 5 2 2做问卷B 的人数为____.【答案】108 .(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)某个车间生产了一批零件,其中规格为10cm 的有5件,规格为15cm 的有6件,规格为20cm 的有5件,则该组数据的方差为__________. 【答案】8125 9 .(江苏省常州市华罗庚高级中学2013年高考数学冲刺模拟试卷)某单位有职工52人,现将所有职工按l 、2、3、、52随机编号,若采用系统抽样的方法抽取一个容量为4的样本,已知6号、32号、45号职工在样本中,则样本中还有一个职工的编号是_________.【答案】1910.(江苏省大港中学2013届高三教学情况调研测试)某射击运动员在四次射击中分别打出了10,x ,10,8环的成绩,已知这组数据的平均数为9,则这组数据的方差是__________.【答案】111.(江苏省启东中学2013届高三综合训练(1))在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600, 则中间一组(即第五组)的频数为__.【答案】360;12.(江苏省徐州市2013届高三考前模拟数学试题)已知样本7,8,9,,x y 的平均数是8,且60xy ,则此样本的标准差是________.【答案】213.(江苏省2013届高三高考压轴数学试题)样本中共有5个个体,其中四个值分别为0,1,2, 3,第五个值丢失,但该样本的平均值为1,则样本方差为=_________.【答案】2 .14.(南京师大附中2013届高三模拟考试5月卷)为了解某地区高三学生的身体发育情况,抽查了该地区100名高三男生的体重. 根据抽样测量后的男生体重(单位:kg)数据绘制的频率分布直方图如图所示,则这100名学生中体重值在区间[56.5,64.5)的人数是_____.样本数据频率组距10第题图(第5题)【答案】40。
2013年普通高等学校夏季招生全国统一考试数学 (江苏卷)数学I 试题、填空题:本大题共 14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.n1 • (2013江苏,1)函数y 3sin 2x —的最小正周期为 _______________ •42. (2013江苏,2)设z = (2 — i ) 2(i 为虚数单位),则复数z 的模为 _________ •2 23. (2013江苏,3)双曲线 — 乞=1的两条渐近线的方程为16 94. _________________________________________ (2013江苏,4)集合{ — 1,0,1}共有 ___________________________________________ 个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的 n 的值是 ___________ .6. (2013江苏,6)抽样统计甲、乙两位射击运动员的 5次训练成绩(单位:环), 结果如下:7. (2013江苏,7)现有某类病毒记作 ,其中正整数 m , n (mc 乙n w 9)可以任意选取,则 m , n 都 取到奇数的概率为 ____________ .8. __________________________________________________________ (2013江苏,8)如图,在三棱柱 ABC — ABC 中, D, E, F 分别是AB, AQ AA 的中点,设三棱锥F —ADE 的体积为 V ,三棱柱 ABC — ABC 勺体积为 V 2,贝U V : \2= __________________ .9. (2013江苏,9)抛物线y = x 2在x = 1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x , y )是区域D 内的任意一点,贝U x + 2y 的取值范围是 __________ .运动员 第1次 第2次 第3次 第4次 第5次 甲87 91 90 8993 乙8990918892工N-1a-2则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ____________x 的解集用区间表示为 _____________ . ■^2 =1 (a > 0, b > 0),右 b焦点为F,右准线为I ,短轴的一个端点为 B 设原点到直线BF 的距离为d 1,F 到I 的距离为d 2.若d 2 . 6d 1 ,则椭圆C 的离心率为 ____________ .一 113. (2013江苏,13)在平面直角坐标系 xOy 中,设定点A (a , a ), P 是函数y (x >0)图象上一动x10. (2013江苏,10)设D, E 分别是△ ABC 的边 AB BC 上的点,ujur uuu DE 1AB 11. (2013 江苏,11)已知 f (x )UULT 2AC (入1,入2为实数),则 是定义在AD 」AB , BE=-BC .若2 3入 1 +入2的值为 __________ .R 上的奇函数,当x >0时,f (x ) = x 2 — 4x ,则不等式f (x ) > 2x xOy 中,椭圆C 的标准方程为 —a12. (2013江苏,12)在平面直角坐标系点•若点P, A之间的最短距离为2罷,则满足条件的实数a的所有值为 __________ .114. (2013江苏,14)在正项等比数列{a n}中,a5, a6 + a?= 3.则满足a i + a? +•••+a n>a©…a n的2最大正整数n的值为____________ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.内作答,解答时应写出文字说明、证明过程或演算步骤.15. (2013 江苏,15)(本小题满分14 分)已知a= (cos a, sin a ), b= (cos 卩,sin 卩),0 v 卩V a Vn.(1)若| a-b| =72,求证:a±b;(2)设c= (0,1),若a-b= c,求 a ,卩的值.16. (2013江苏,16)(本小题满分14分)如图,在三棱锥S- ABC中,平面SABL平面SBC AB± BC AS= AB过A作AF丄SB,垂足为F,点E, G分别是棱SA SC的中点. 求证:(1)平面EFG/平面ABC (2)BCL SAC17. (2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3)设圆C的半径为1,圆心在I上.(1) 若圆心C也在直线y= x-1上,过点A作圆C的切线,求切线的方程;(2) 若圆C上存在点M使MA F 2MO求圆心C的横坐标a的取值范围.18. (2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径•一种是从A沿直线步行到C另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C假设缆车匀速直线运动的速度为130 m/min,山路AC12 3长为 1 260 m,经测量,cos A= , cos C=-.13 5(1) 求索道AB的长;(2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过19. (2013江苏,19)(本小题满分16分)设{刘是首项为a,公差为d的等差数列(d^0) ,S是其前n项和.记b n,n€ N*,其中c为实数.n c(1)若c= 0,且b1, b, b4成等比数列,证明:$k= n2$(k, n€N*);⑵若{b n}是等差数列,证明:c= 0.20. (2013江苏,20)(本小题满分16分)设函数f(x) = ln x—ax, g(x) = e x-ax,其中a为实数.(1)若f (x)在(1 ,+s)上是单调减函数,且g(x)在(1 ,+^)上有最小值,求a的取值范围;⑵若g(x)在(—1 ,+8)上是单调增函数,试求 f (x)的零点个数,并证明你的结论.数学n (附加题)【选做题】本题包括 A 、 B 、 C 、D 四小题,请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答.. 若多做,则 按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21. (2013江苏,21)A .[选修4 — 1:几何证明选讲](本小题满分10分) 如图,AB 和 BC 分别与圆O 相切于点D, C, AC 经过圆心 Q 且BC= 2OC3 3 2 2B.[选修4— 2 :矩阵与变换](本小题满分10分)已知矩阵A =1 0,B =0 2,求矩阵 A —1B .C . [ 选修 4— 4:坐标系与参数方程 ]( 本小题满分x t 1, x'(t 为参数),曲线C 的参数方程为y 2ty10分)在平面直角坐标系 xQy 中,直线I 的参数方程为2tan 22tan(e 为参数).试求直线I 和曲线C 的普通方程,D.[选修4—5:不等式选讲](本小题满分10分)已知a>b>0,求证:2a—b >2ab —a b.【必做题】第22题、第23题,每题10分,共计20分•请在答题卡指定区 说明、证明过程或演算步骤.22. (2013江苏,22)(本小题满分10分)如图,在直三棱柱 点D 是BC 的中点.(1) 求异面直线 AB 与CD 所成角的余弦值;(2) 求平面ADC 与平面ABA 所成二面角的正弦值.23. (2013 江苏,23)(本小题满分 10 分)设数列{a n } : 1,— 2, — 2,3,3,3 , — 4,— 4, — 4, — 4,…,6 4 4 4 7个 4 4 48 k k (1)k 1k,L ,( 1)k 1k ,…,即当 ------------ n -------------- (k € N *)时,a n = ( — 1)k — 1k .记 S= a 1+ a 2+-+ a n ( n2 2 € N).对于I € N ,定义集合 R = {n |S 是a n 的整数倍,n €N *,且1< n w l }.(1) 求集合P 11中元素的个数; (2) 求集合P 2 000中元素的个数.域内作答,解答时应写出文字ABC — ABC 中,2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学I试题、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.解析:|z| =1(2 —i) 2| = |4 —4i + i2| = |3 —4i| = , 32 4 2 5 = 5.33.答案:y —x4解析:由题意可知所求双曲线的渐近线方程为4.答案:8解析:由于集合{—1,0,1}有3个兀素,故其子集个数为23= 8.5.答案:3解析:第一次循环后:a—8, n^2;第二次循环后:a—26, n—3;由于26> 20,跳出循环, 输出n= 3.6.答案:2解析:由题中数据可得x甲=90 , x乙=90 .2 1 2 2 2 2 2 2 1 2于是S甲= — [(87 —90) + (91 —90) + (90 —90) + (89 —90) + (93 —90) ] = 4, s乙=—[(89 —90) + (90 552 2 2 2—90) + (91 —90) + (88 —90) + (92 —90) ] = 2,2 2由S甲>S z,可知乙运动员成绩稳定.故应填 2.解析:由题意知m的可能取值为1,2,3,…,7;n的可能取值为1,2,3,…,9.由于是任取m n:若m= 1时,n可取1,2,3,…,9,共9种情况;同理m取2,3,…,7时,n也各有9种情况,故m n的取值情况共有7X 9= 63种.若m, n都取奇数,则m的取值为1,3,5,7 , n的取值为1,3,5,7,9&答案:1 : 24解由题意可知点F到面ABC勺距离与点A到面ABC勺距离之比为1 : 2 , S MDE:S MBC= 1 : 4.2AF SABC1 9.答案:2,丄2解析:由题意可知抛物线y= x2在x= 1处的切线方程为y= 2x— 1.该切线与两坐标轴围成的区域如图中阴解析:函数y 3sin 2x 2.答案:5n的最小正周期T42 n—— n.7.答案: 2063,因此满足条件的情形有4X 5= 20种.故所求概率为20 63因此V : V2= £A F S AED3=1 : 24.影部分所示:1 1当直线x + 2y = 0平移到过点 A —,o 时,x + 2y 取得最大值—.2 2当直线x + 2y = 0平移到过点B (0,- 1)时,x + 2y 取得最小值—2.1因此所求的x + 2y 的取值范围为2寸1 uuu2 uuur uuu ABAC 1 AB 6 31 故入1 +入2=.2uuur122AC— e ,入2=11.答案:(—5,0) U (5 ,+^)2x 4x,x 0,解析:•函数f (x )为奇函数,且 x > 0时,f (x ) = x — 4x ,贝U f (x )=0,x 0, •••原不等式等价于2x4x, x 0,110.答案:一 2 解析:由题意作图如图. uuur uuur •••在△ ABC 中, DE DB uuu 1 uuu 2 uuuBE - AB BC 2 31 uuu2 UULT 2AB严uuuAB)x 0, 或 x 0,2或 2x 4x x, x 4x x, 由此可解得x > 5或一5v x v 0. 故应填(—5,0) U (5 ,+s ).12.答案:3解析:设椭圆C 的半焦距为 c ,由题意可设直线 BF 的方程为- 结合题意可知 (1)当 a w 2, t = 2 时,I PA 2取得最小值.此时(2 — a )2 + a 2— 2 = 8,解得a =— 1, a = 3(舍去).⑵ 当a > 2, t = a 时,|PA 2取得最小值.此时 a 2— 2= 8,解得a =、、10 , a = .10(舍去).故满足条件 的实数a 的所有值为,10 , — 1. 14. 答案:12解析:设正项等比数列{a n }的公比为q ,则由 ,a 6 + a= a 5(q + q 2) = 3可得q = 2,于是a n = 2n —6,—(1 2n ) 1则 a ’+ a 2+・・・+ a n = 322n 5 —.1 2321门'a5— , q = 2 , 2.A2--a 6= 1, a 1a 11 =a 6 = 1.11.7I611.•- aa 2…an = 1.当 n 取 12 时,a 1 + a 2+ …+ a 12= 2 —> aa 2…a 11a 12= a 12= 2 成立;当 n 取 13 时,a 1+ a 232A8I6713+ …+ a 13= 2 —v a 1a 2…a 11a 12a 13= a 12a 13= 2 ・2 = 2 .当 n > 13 时,随着 n 增大 a 1+ a 2+・・・+ &将恒小于32…a n .因此所求n 的最大值为12.二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字说明、证明 过程或演算步骤.、. 2 2 2 215. (1)证明:由题意得 |a — b | = 2,即(a — b ) = a — 2a ・b + b = 2.y=1,即bx + cy — bc = 0.于是可知 bd ibc一 b2c 2竺,d 2a2 2 2 ,2a a cb ccc cd 2一 6d i ,-业,即ab 飞c 2. c a3•- e3 .13. 答案:—1, 0解析1 :设P 点的坐标为 x,-,贝UxI PA22 21 2 1 =(x a)a = x2xx1 2a x -x1=2a 2.令 t x 2,则 |PA 2= t 2— 2at + 2a 2— 2 x22 2 4 4 2 21••• a (a — c ) = 6c . /• 6e + e — 1= 0. /• e =.2 2=(t — a ) + a — 2 (t >2).又因为a2= b2= |a| 2= |b| 2= 1, 所以 2 —2a -b = 2,即a -b = 0.故a丄b.⑵解: 因为3) = (0,1),所以cos cos 0, a + b = (cosa + cos (3 , sina + sinsinsin1,由此得 cos a = cos( n — 卩).由0<3Vn :,得 0V n — 3Vn,又 0 V a Vn , 故a=n — 3 .代入 sina + sin=1,得 sina = sin 3 =1 而a >3 ,所以5 n,n26616•证明:⑴因为AS= AB AF 丄SB 垂足为F ,所以F 是SB 的中点•又因为 E 是SA 的中点,所以EF//AB因为EF]平面ABC AB 平面ABC 所以EF /平面ABC同理EG/平面ABC 又EF A EG= E , 所以平面EF(/平面ABC⑵因为平面 SABL 平面SBC 且交线为 SB 又AF 平面SAB AF 丄SB 所以AF 丄平面SBC 因为BC 平面SBC 所以AF 丄BC又因为 ABL BC , AF n AB= A, AF, AB 平面 SAB 所以 BCL 平面 SAB 因为SA 平面SAB 所以BC L SA17.解:(1)由题设,圆心C 是直线y = 2x — 4和y = x — 1的交点,解得点C (3,2),于是切线的斜率必存在. 设过A (0,3)的圆C 的切线方程为y = kx + 3 , 由题意,1 3^11= 1,解得k = 0或3, 賦14故所求切线方程为 y = 3或3x + 4y — 12= 0.⑵ 因为圆心在直线 y = 2x — 4上,所以圆C 的方程为(x —a )2+ [y — 2(a — 2)] 2= 1. 设点Mx , y ),因为MA= 2MO 所以x 2 y 3 2 =2 x 2 y 2 ,化简得x 2+ y 2+ 2y — 3= 0,即 x 2+ (y + 1)2= 4,所以点 M 在以 Q0 , — 1)为圆心,2为半径的圆上.由题意,点 Mx , y )在圆C 上,所以圆C 与圆D 有公共点,贝U |2 —1| w CDc 2+ 1, 即 1, a 2 2a 3 2 3.由 5a — 12a + 8>0,得 a € R ; , 2 / 冃 12 由 5a — 12a w 0,得 0w a w .5所以点C 的横坐标a 的取值范围为 18 .解:⑴在厶ABC 中 ,因为cosc 120,. 5 12A =二,13cos从而 sin B= sin[ n — (A + C )] = sin( A + C = sin35C =-,所以 sin A = 一 , 5 13 5 A DOS C + cos A sin C =—13sinC =仝512 4 13 563 65AR 由正弦定理倍- sin C匹,得ABsin BAC. c 1260 4 sinC= 1 040(m).sin B 6- 565所以索道AB 的长为 ⑵假设乙出发t min 后,甲、乙两游客距离为 d ,此时,甲行走了 (100 + 50t ) m ,乙距离12所以由余弦定理得 d 2= (100 + 50t )2+ (130t )2-2X 130t X (100 + 50t ) X = 200(37 t 2- 70t + 50),131 040 m.A 处 130t m ,104035 因0W t w,即0W t w 8,故当t(min)时,甲、乙两游客距离最短.13037⑶由正弦定理-BC 竺,得BC=竺 sin A 譬 -=500(m).si nA sin B sinB 631365乙从B 出发时,甲已走了 50X (2 + 8 + 1) = 550(m),还需走 710 m 才能到达 C.1 20 .解:⑴令 f '(x )=-x—1,即f (x )在(a —1, +8)上是单调减函数.上是单调减函数, 故(1 , +8) x v ln a 时,g '(x ) v 0;当 x > In a 时,g '(x ) >0.又 g (x )在(1 , +m )上有最小值,所以 In a > 1,即 a > e.综上,有 a € (e , +8).⑵ 当a <0时,g (x )必为单调增函数;当 a >0时,令g '(x ) = e x — a >0,解得a v e x ,即卩x >In a . 因为g (x )在(—1, +8)上是单调增函数,类似 ⑴有In a w — 1,即0v a <e — 1. 结合上述两种情况,有 a we 1.1① 当a = 0时,由f ⑴=0以及f '(x ) =>0,得f (x )存在唯一的零点;x② 当a v 0时,由于f (e a ) = a — a e a = a (1 — e a ) v 0, f (1) =— a > 0,且函数f (x )在[e a,1]上的图象不间断, 所以f19. 证明:由题设,S nn(n na - 21)d . (1) 由c = 0,得b nS nn J a d .又因为b, b 2, b 4成等比数列,所以2n 2即d a - =a a 3d ,化简得d 2 __—2ad = 0.因为0,所以 d = 2a .22C 处互相等待的时间不超过 3 min ,乙步行的速度应控制在 因此,对于所有的 肚N ,有S m = ma ._ * 2 2 2 2 从而对于所有的 k , n € N ,有 &= (n k ) a = nka = n S.,2b = bb .设乙步行的速度为 v m/min ,由题意得3 500710 503,解得125043625,所以为使两位游客在14竺,625(单位: 43 14 m/min)范围内.(2)设数列{b n }的公差是d 1,则b n = b 1+ ( n — 1)d 1,即即2 n nS n理得,对于所有的 * 1 n € N ,有 d 1 -d 2 1 B = b 1 — d 1 — a + d ,2 t h d 1 a —=b + (n — 1)d 1, n € N ,代入S n 的表达式,整c1 2d n cd 1n = c (d 1 — b ).2D = c (d 1— b",则对于所有的 n € N ,有 An 3 + Bn 2+ cdn = D.(*)n = 1,2,3,4,得 A + B + cd 1 = 8A + 4B + 2cd 1 = 27A + 9B + 3cd 1 = 64A + 16B + 4cd 1,7A 3B cd 1 0,①从而有19A 5B cd 1 0,②21A 5B cd 1 0,③由②,③得A =0, cd 1 = —5B,代入方程①, 得 即d 11d = 0, b 1 —d 1 — 1 -a + d = 0, cd ==0 22d = 0,与题设矛盾,所以d& 0.1 ax v 0,考虑到f (x )的定义域为(0,+s ),故a > 0,进而解得 x 同理,f (x )在(0 , a —1)上是单调增函数.由于f (x )在(1 , (a — 1, +m ),从而 a —1w 1,即 a > 1.令 g '( x ) = e x — a = 0, 得 x = In + ^) a .当 得 B = 0,从而 cd 1 = 0. 令 A = d 1〔d ,2 在(*)式中分别取 1 若 d 1= 0,则由 d 1 d = 0, 2又因为cd 1 = 0,所以c = 0.1(x)在(e a,1)上存在零点.另外,当x> 0时,f'(x) = - —a> 0,故f(x)在(0,+^)上是单调增函数,所以f(x)只有一个零点.x③当0v a we —1时,令f'( x) = ——a= 0,解得x= a—-当0< x v a—1时,f '(x) > 0,当x>a—1时,f'(x)x—1 ——1< 0,所以,x = a是f (x)的最大值点,且最大值为f (a ) = —In a— 1. 当一In a— 1 = 0,即a= e—1时,f (x)有一个零点x = e.一1当一In a— 1 > 0,即0< a< e时,f (x)有两个零点.实际上,对于0 < a< e—1,由于f(e —1) =—1 —a e—1< 0, f (a—1) > 0,且函数f(x)在[e 一1, a—1]上的图象不—1 — 1 间断,所以f(x)在(e , a )上存在零点.另外,当x€ (0 , a—1)时,f ' (x) = 一—a> 0,故f(x)在(0 , a一1)上是单调增函数,所以 f (x)在(0 , a—1)x上只有一个零点.下面考虑f(x)在(a一1,+^)上的情况.先证f(e a—1) = a(a—2—e a—1) < 0.为此,我们要证明:当x>e 时,e x>x2.设h(x) = e x—x2,则h' (x) = e x—2x,再设I (x) = h ' (x) = e x—2x, 则I ' (x) = e— 2.当x> 1 时,1' (x) = e x—2>e—2>0,所以I (x) = h' ( x)在(1 , +^)上是单调增函数.故当x>2 时,h ' ( x) x . , 2=e —2x > h (2) = e —4> 0,从而h(x)在(2 ,+s)上是单调增函数,进而当x>e时,h( x) = e x—x2> h(e) = e e—e2> 0.即当x > e 时,e x> x2.当0< a< e—1,即卩a—1> e 时,f (e a—1) = a—1—a e a—1= a(a—2—e a—1) < 0,又f ( a—1) > 0,且函数f( x)在[a一1,一一一一1e a一1]上的图象不间断,所以f (x)在(a一1, e a—1)上存在零点.又当x > a—1时,f' (x)= —a< 0,故f (x)x在(a—1,+g)上是单调减函数,所以f (x)在(a—1,+g)上只有一个零点. 综合①,②,③,当a<0或a=訂时,f (x)的零点个数为1, 当0 <a<e—1时,f(x)的零点个数为2.数学n (附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答. 若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.证明:连结OD因为AB和BC分别与圆O相切于点D, C,所以/ AD(=Z ACB= 90°.又因为/ A=Z A,所以Rt △ AD® Rt△ ACB 所以BC JAC1 OD AD又BC= 2OC= 2OD 故AC= 2ADB.[选修4— 2:矩阵与变换]解:设矩阵A 的逆矩阵为 a bc d所以A —1B=线I 的普通方程为 同理得到曲线 C 的普通方程为y 2 = 2x .y 2x11联立方程组 %解得公共点的坐标为(2,2),丄,1 .y 2x,23322222222D.证明:2a — b — (2 ab — a b ) = 2a (a — b ) + b ( a — b ) = (a — b )(2 a + b ) = (a — b )( a + b )(2 a + b ). 因为a >b > 0,所以 a — b >0, a + b > 0,2 a + b >0,从而(a — b )( a + b )(2 a + b )》0,即卩 2a — b 》2ab — a b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区 域内作答,解答时应写出文字 说明、证明过程或演算步骤. 22.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A — xyz ,则 A (0,0,0) , 02,0,0) , C (0,2,0), D (1,1,0) , A(0,0,4) , C (0,2,4),unr uuuu所以 A ] B = (2,0 , — 4) , G D = (1 , — 1 , — 4).uuir uuuuuur uuuD A I B C I D因为 cos 〈 AB , C 1D 〉= uuur||uuuu 「A B ||GD=18 3怖1 0 ab 1°,即 a b 0 1 2c 2d故 a =— 1, b = 0, c = 0,1,从而A 的逆矩阵为A 1 =2C.解:因为直线l 的参数方程为x = t +1, y = 2t(t 为参数),由 x =t + 1得t = x — 1,代入y = 2t ,得到直2x — y — 2 = 0.20 18 10 '所以异面直线AB与CD所成角的余弦值为璧0.10uuir umu uuir uuun⑵设平面ADC的法向量为n i= (x,y,z),因为AD = (1,1,0) , AC1= (0,2,4),所以n i • AD = 0,n i • AC1=0,即卩x+ y= 0 且y+ 2z = 0,取z= 1,得x= 2, y=- 2,所以,m = (2 , - 2,1)是平面ADC的一个法向量.取平面AAB的一个法向量为n2= (0,1,0),设平面ADC与平面ABA所成二面角的大小为0 .由|cos 0 | = 门1门 2 2—,得sin 0 = 2^.|门1 ||门2 | s/9 V1 3 3因此,平面ADC与平面ABA所成二面角的正弦值为.323.解:(1)由数列{a n}的定义得a1 = 1, a2=- 2, a3=- 2, a4= 3, a s = 3, a6 = 3, a?=—4, a8=- 4, a o =—4, a10=- 4 , an = 5,所以S= 1 , S2 =- 1, S3=-3 , S= 0 , S5= 3 , S6 = 6 , S= 2 , S3=- 2 , S o=- 6 , S o = - 10 , S11 = - 5 ,从而S= a1 , S= 0x a4 , S s= a s , S e= 2a6 , S1 = - an ,所以集合P1 中元素的个数为5.*(2)先证:S(2i+1)= - i (2i + 1)( i € N).事实上,①当i = 1时,S(2i +1) = S B=- 3, —i (2 i + 1) = - 3,故原等式成立;②假设i = m时成立,即Si(2m+1)= —m(2 m+ 1),贝V i = m+ 1 时,S(m+1)(2 m+3)= Sn<2m+1)+ (2 m+ 1) —(2 m+ 2)=—2n(2 1) -4m- 3=- (2 m+ 5m+ 3) =- (m+ 1)(2 m+ 3).综合①②可得S(2i +1) = —i (2 i + 1).于是S i +1)(2 i +1) = S(2i +1) + (2 i + 1) = —i (2 i + 1) + (2 i + 1) = (2 i + 1)( i + 1).由上可知S(2i +1)是2i + 1 的倍数,而a (2i +1)+j = 2i + 1( j = 1,2 ,…,2i + 1),所以S ⑵ +1)+j = S ⑵ +1)+ j (2 i + 1)是a i(2i+1)+j (j = 1,2 ,…,2i + 1)的倍数.又S(i+1)(2i+1) = (i + 1)(2 i + 1)不是2i + 2 的倍数,而a(i+1)(2i +1) + j = - (2i + 2)( j = 1,2 ,…,2i + 2),所以S(i+1)(2i +1) +j = S i+1)(2 i +1) - j (2 i + 2) = (2 i + 1)( i + 1) - j (2 i + 2)不是a(i +1)(2 i+1)+j(j = 1,2 ,…,2i + 2)的倍数,故当l = i (2i + 1)时,集合P中元素的个数为1+ 3 +… + (2i - 1) = i2,于是,当I = i(2i + 1) + j (1 < j W2i + 1)时,集合P 中元素的个数为i2+ j.又 2 000 = 31 X (2 X 31 + 1) + 47 ,故集合F2 000 中元素的个数为31 + 47= 1 008.。
江苏省13大市2013届高三上学期期末数学试题分类汇编
统计
1、(连云港市2013届高三期末)某单位有职工52人,现将所有职工按l 、
2、
3、…、52随机编号,若采用系统抽样的方法抽取一个容量为4的样本,已知6号、32号、45号职工在样本中,则样本中还有一个职工的编号是 ▲ .
答案:19
2、(南京市、盐城市2013届高三期末)已知某人连续5次投掷飞镖的环数分别是8, 9, 10, 10, 8, 则该组数据的方差为▲ .
答案:4
5
3、(徐州、淮安、宿迁市2013届高三期末)一个社会调查机构就某地居民的月收入调查了
10000人,并根据所得数据画出了
如图所示的频率分布直方图,现要
从这10000人中再用分层抽样的方
法抽出100人作进一步调查,则月
收入在)3000,2500[(元)内应抽出
▲ 人.
答案:25
4、(泰州市2013届高三期末)若数据12345,,,,x x x x x ,3的平均数是3,则数据12345,,,,x x x x x 的平均数是
答案:3
5、(无锡市2013届高三期末)某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为 。
答案:64。
(第5题) 2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.右图是一个算法的流程图,则输出的n 的值是 .6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .ABC1A DEF1B1C11.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 14.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l . 设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;ABCS GFE(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围. 18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
【推荐】江苏省13大市2013年高三历次考试数学试题分类汇编11:概率
一、填空题
1 .(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)如图,ABCD是4 5的
方格纸,向此四边形ABCD内抛撒一粒豆子,则豆子恰好落在阴影部分内的概率为_______________
【答案】0.2
2 .(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)已知数字发生器每次等可能地
输出数字1或2中的一个数字,则连续输出的4个数字之和能被3整除的概率是___.
【答案】3 8 ;
3 .(南京市、盐城市2013届高三第三次模拟考试数学试卷)在一个盒子中有分别标有数字
1,2,3,4,5的5张卡片,现从中一次取出2张卡片,则取到的卡片上的数字之积为偶数的概率是________.
【答案】
7 10
4 .(常州市2013届高三教学期末调研测试数学试题)已知某拍卖行组织拍卖的10幅名画中,
有2幅是膺品.某人在这次拍卖中随机买入了一幅画,则此人买入的这幅画是膺品的事件的概率为______.
【答案】
8 15
5 .(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)正四面体的四个面上分别
写有数字0,1,2,3,把两个这样的四面体抛在桌面上,
则露在外面的6个数字恰好是2,0,1,3,0,3的概率为________.
【答案】1 8
6 .(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)从0,1,2,3这四
个数字中一次随机取两个数字,若用这两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是_____.
【答案】5 9
7 .(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)现有在外观上没有区别的5件
产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,另一件不合格的概率为________.
【答案】3 5
8 .(苏州市2012-2013学年度第一学期高三期末考试数学试卷)有5个数成公差不为零的等
差数列,这5个数的和为15,若从这5个数中随机抽取一个数,则它小于3的概率是_______.
【答案】
2
5
9 .(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)从集
合{}1 2 3 4 5 6 7 8 9,,,,,,,,中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为______.
【答案】112
10.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)在数字1、2、3、4四个数
中,任取两个不同的数,其和大于积的概率是___.
【答案】1
2
;
11.(南京市、淮安市2013届高三第二次模拟考试数学试卷)盒子中有大小相同的3只白球、
2只黑球,若从中随机地摸出两只球,则两只球颜色相同的概率是______.
【答案】
2
5
12.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)袋中装有2个红球, 2个白
球, 除颜色外其余均相同, 现从中任意
摸出2个小球, 则摸出的两球颜色不同的概率为 .
【答案】2
3
13.(扬州市2012-2013学年度第一学期期末检测高三数学试题)先后抛掷两枚均匀的正方体
骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x ,y ,则x y 2=的概率为_____.
【答案】
12
1
; 14.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)在不等式组03
1y x x y x ⎧
⎪≤⎪
<≤⎨⎪⎪>
⎩
所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则
该3点恰能成为一个三角形的三个顶点的概率为______.
【答案】9
10
二、解答题
15.(常州市2013届高三教学期末调研测试数学试题)袋中装有大小相同的黑球和白球共9个,
从中任取2个都是白球的概率为
5
12
.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然
后甲再取,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数.
(1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望()E X .
【答案】解:(1)设袋中原有个白球,则从9个球中任取2个球都是白球的概率为2
29n C C ,
由题意知2
2
9n C C =512,即(1)52
9812
2
n n -=⨯,化简得2300n n --=. 解得6n =或5n =-(舍去) 故袋中原有白球的个数为6. (2)由题意,X 的可能取值为1,2,3,4.
62(1)93P X ===; 361(2)984
P X ⨯===⨯; 3261(3)98714P X ⨯⨯==
=⨯⨯;32161(4)987684
P X ⨯⨯⨯===
⨯⨯⨯.
所以取球次数X 的概率分布列为:
X
1
2
3
4
P
23
1
4 114
184
所求数学期望为E(X)=123
+214
+3114
+4184
=10.7
16.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)
【答案】解:(1)一次从袋中随机抽取3个球,抽到编号为3的小球的概率2
5361
2
C p C ==.
所以,3次抽取中,恰有2次抽到3号球的概率为
22
23113(1)3()()228
C p p -=⨯=
(2)随机变量X 所有可能的取值为1,2,3.
3
3361
(1)20
C P X C ===
,
122123233
69
(2)20C C C C P X C +===, 2
53610
(3)20
C P X C ===
, 所以,随机变量X 的分布列为:
X 1 2 3
P
120
920
12
故随机变量X 的数学期望E (X )=19149
1232020220
⨯
+⨯+⨯=
17.(江苏省无锡市2013届高三上学期期末考试数学试卷)某银行的一个营业窗口可办理四类
业务,假设顾客办理业务所需的时间互相独立,且都是整数分钟,经统计以往100位顾客办理业务所需的时间(t),结果如下:
注:银行工作人员在办理两项业务时的间隔时间忽略不计,并将频率视为概率. (Ⅰ)求银行工作人员恰好在第6分钟开始办理第三位顾客的业务的概率;
(Ⅱ)用X 表示至第4分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.
【答案】
类别 A 类 B 类 C 类 D 类 顾客数(人) 20 30 40 10 时间t(分钟/人) 2 3 4 6
18.(苏州市2012-2013学年度第一学期高三期末考试数学试卷)设10件同类型的零件中有2件不合格品,从所有零件中依次不放回地取出3件,以X表示取出的3件中不合格品的件数.
(1)求“第一次取得正品且第二次取得次品”的概率;
E X.
(2)求X的概率分布和数学期望()
【答案】
19.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)某射击小组有甲、乙两名射
手, 甲的命中率为1
P 32
=
, 乙的命中率为2P , 在射击比武活动中每人射击两发子弹则
完成一次检测, 在一次检测中, 若两人命中次数相等且都不少于一发, 则称该射击小组为“先进和谐组”. 若2
P 21
=
, 求该小组在一次检测中荣获“先进和谐组”的概率;
计划在2013年每月进行1次检测, 设这12次检测中该小组获得“先进和谐组”的次数为ξ, 如果5≥ξE , 求2P 的取值范围.
【答案】解: (1)可得
=
⋅⋅+⋅⋅⋅⋅=)2121)(3232()2121)(3132(1212C C P 31 (2)该小组在一次检测中荣获“先进和谐组”的概率为
22
222221
2129498)3232()]1()[3132(P P P P P C C P -=⋅+-⋅⋅⋅⋅=,而ξ~),12(P B ,所以P E 12=ξ,
由5≥ξE ,知512)9498(222≥⋅-P P ,解得1
432≤≤P
20.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)(1)山水城市镇江有“三山”——金山、焦山、北固山,一位游客游览这三个景点的概率都是0.5,且该游客是否
游览这三个景点相互独立,用ξ表示这位游客游览的景点数和没有游览的景点数差的绝对值,求ξ的分布列和数学期望;
n≥)个景点,一位游客游览每个景点的概率都是0.5,且该
(2)某城市有n(n为奇数,3
游客是否游览这n个景点相互独立,用ξ表示这位游客游览的景点数和没有游览的景点数差的绝对值,求ξ的分布列和数学期望.
【答案】。