2016年清华大学领军计划物理试题
- 格式:pdf
- 大小:1.17 MB
- 文档页数:5
清华附高三G16级物理统练(电场、电流)2021.11.28一、此题共10小题,每题3分,共30分。
在每题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的。
全部选对的得3分,选不全的得2分,有选错或不答的得0分。
把正确的答案填涂在答题纸上。
1.关于静电场的电场线,以下说法正确的选项是〔〕A.电场强度较大的地方电场线一定较疏B.沿电场线方问,电场强度一定越来越小C.沿电场线方向,电势一定越来越低D.电场线一定是带电粒子在电场中运动的轨迹2.一个电子在电场中A点处具有80eV的电势能,当它由A运动到B时克制电场力做功30eV,那么〔〕A.电子在B点的电势能是-110eVB.B点的电势为-50VC.电子的电势能减小30eVD.AB的电势差为30V3.如下图,实线表示某电场的电场线(方向未标出),虚线是带负一电的粒子只在电场力作用下的运动轨迹,设M点和N点的电势分别为φM、φN,粒子在M和N时加速度大小分别为a M、a N,速度大小分别为v M、vN,电势能分别为Ep M、EpN。
以下判断正确的选项是〔〕A.v M<v N,a M<a NB.W M<W N,φM<φNC.φM<φN,Ep M<Ep ND.a M<a N,Ep M<Ep N4.如图,q1、q2为两个固定的点电荷,a、b、c为它们连线上的三点,其中b点的合场强为零。
将一个检验电荷从a点沿连线挪动到c点的过程中,捡验电荷的电势能变化情况可能是〔〕A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大5.如图7所示,把枕形导体AB放在带正电的金属小球C附近将发生静电感应。
那么A.导体两端的电势φM <φNB.导体两端的电势φM =φNC.导体AB 上的感应电荷在导体中O 点产生的场强为零D.导体中O 点的场强为零6.一直流电源的电动势为E ,内阻为r ,用它给线圈电阻为R 的直流电动机供电,工作时通过电动机的电流为I,电动机两端电压为U ,经t 秒钟后A.电源释放电能IEt ,电动机消料比能I 2RtB.电源给内外电路做总功为(Ir+U)ItC.电动机输出的机械能为IEt -I 2(R+r)tD.电源的效率为(UI-I 2r)/EI7.如下图,其中电流表A 的量程为0.6A ,表盘均匀划分为30个小格,每一小格表示0.02A ;R 1的阻值等于电流表内阻的21;R 2的阻值等于电流表内阻的2倍。
2016年清华大学领军计划机考试试题分析2016年清华大学领军计划/自主招生笔试举行,今年仍然采用了去年的机考模式,在开考前开通了机考模拟系统,让学生提前熟悉考试形式及操作方法。
2016年通过清华大学自主招生、领军计划及自强计划初审的6000余名考生在全国36个考点参加初试。
物理探究科目中涉及了人类首次探测到引力波。
清华招办主任刘震表示,该题通过介绍相关实验背景和结果,考查学生提取信息、加工信息并利用关键信息进行推理判断的能力。
在考试中其中数学40道题目、语文30道题目、物理35道题目。
阅读与表达:《红楼梦》二次入选、文言文考《左传》阅读与表达主要从语文基础知识、阅读角度进行考试,阅读与表达考查了《红楼梦》文本解读以及宋词的格律炼字等。
这也是清华连续第二年将《红楼梦》中的内容放入考题当中。
在选择题目中试题涉及到:字音、字形、词语、句子衔接、错别字、文言文等内容外,还考查了汉字书写的笔顺问题、书体知识、传统文化知识等。
文言文则是考查的《左传》的内容。
语文还有一道创新题,大意是让考生翻译民族语言。
物理探究考察内容:引力波、小船说翻就翻、台球等物理知识实际应用2016年清华大学自主招生的物理与探究对物理学科的基础知识和物理学科的应用进行了科学的地考察,既涉及到物理学科的核心知识,也考察到了物理前沿科学的知识,注重物理学科的社会实际应用:例如大家最熟悉的引力波材料分析、相对论、友谊的小船等,物理学科35道题目中其中有1/3的题目大部分学生是可以做的,剩下的部分相对灵活,涉及面广,试题与大学物理的衔接和部分竞赛内容相似,但是与竞赛不同的是自主招生试题考查学生的知识的应用性和灵活处理,部分题目可以根据知识和推理等得出答案。
例如高空粒子衰变周期考察,像友谊的小船这个题目考察了浮力问题不需要太深的物理知识就可以选择,还有物理学科基础常识向光学仪器分辨率问题、还有科学普及科学史类关于世界诺贝尔奖关于物理学科的内容及人物。
2015年清华大学领军计划测试 物理答案1 4α粒子散射是一个有心力场的运动,与天体运动不同的是其受到的斥力的作用。
由轨迹我们可知在距离中心原子最近的地方散射粒子的速度不为零,即其角动量不为零。
由角动量守恒知中心粒子只能处于3,4,5三个区域中。
又由对称性可知,中心粒子必处于4区域中。
2 A当速度达到稳定时,必然存在受力平衡。
同时功能平衡也是受力平衡的必然要求。
因此两种方案都是正确的。
3 dTdQC =dW dU dQ += kVdV pdV dW ==由理想气体状态方程RT pV = 取微分RdT kVdV =2 即2RC C v += 4设导轨宽度为L ,t 时刻速度v ,则BLv =ε,RBLvR I ==ε金属棒受力大小为RvL B BIL F 22-=-=负号表示F 方向与v 方向相反由牛顿第二定律,可得dtdv mma F == 即R v L B dt dv m 22-=,m RvL B dt dv 22-=积分⎰⎰-=10022001v v t mRdt L B v dv ⎰⎰-=100002202v v t mRdt L B v dv (其中s t 11=,2t 即为要求的时间) 即101101110101220n n v nv m R t L B v===-10311000110001110102220n n n v nv m R t L B v====-所以s t t 3312== 5平抛运动中H gt =221,斜抛中达到最大高度所用时间为2t ,故有h t g =⎪⎭⎫⎝⎛2221.则4H h = 6(1)(方法一:光程)设某种色光的折射率为n ,要使光线能够成功射出,应当考虑光线不在介质的界面上发生全反射。
由折射定律有n n 2360sin sin =︒⋅=α,⎪⎪⎭⎫ ⎝⎛<332n , 在介质当中光走过的距离αcos Dl =, 光程αδcos nDl n =⋅=, 则光行走的时间ααδ2sin 1cos 1-⋅=⋅==n c D c nD ct , 带入数据有,43112-⋅=n cDt ⎪⎪⎭⎫ ⎝⎛<332n ,这是一个关于n 的单增的函数,故43112minmin-⋅=n cD t (方法二)光在介质中的速度ncv =, 则光在介质中运动的时间431112-⋅==n c D n c t ,⎪⎪⎭⎫ ⎝⎛<332n ,下同方法一。
2016年清华大学全国优秀中学生物理体验营笔试题题一水平地面上有一门固定大炮,可向任意方向发射初速度大小为v的炮弹,求炮弹可能打到的区域的边界(可以建立坐标系后用函数表达)。
已知重力加速度g。
题二水平地面上放有一高为h、半顶角为α、密度为ρ的均匀刚性圆锥体。
其顶点静止不动(无外力限制),整体做定点转动,锥体与地面间无相对滑动。
底面圆心绕过圆锥顶点的竖直轴(假想)做匀速圆周运动的速度大小为v。
1.求此锥体的角速度;2.求此锥体的角动量;3.求支持力的力矩。
题三无限长一维弹簧链,所有弹簧均为原长时相邻质点间距为a,弹簧劲度系数均为k,质点质量均为m,所有质点的振动频率相同,激发纵波的波长记为λ。
?时该纵波为介质中的普通纵波并求出波速与波长的关系;1.证明当a2.求该纵波的最小波长。
题四竖直平面内有一半径为r=1 cm、带电量为Q=10-8 C的无限长导体圆柱放置在盐水上方,球心到盐水表面的高度为h=2 cm。
会发现盐水会隆起一小坨,求导体圆柱正下方水面隆起的高度。
设盐水密度近似为纯水密度。
题五平面直角坐标架下,有一圆心位于坐标原点、半径为r的固定绝缘大圆环。
圆心处有一固定的电偶极子,电偶极矩的方向沿y轴正方向、大小为p。
大圆环上穿有一个带电量为Q的小环,在坐标(r,0)处由静止释放小环,求之后大圆环对小环的弹力与小环位置(用坐标原点到小环的连线矢量与x轴正方向的夹角θ表达)的关系。
题六真空中有两个非常大的平行平面电极相距d,电势分别为0和+U0。
低电势的电极上有一薄层电子源,在外电场作用下,电子源中的电子从中逸出,以垂直于极板方向的几乎为0的初速度持续地朝两电极之间发射电子。
若忽略电子之间的库仑排斥力,则电子应在两极板间匀加速直线运动,直至撞上另一极板而进入极板内部。
极板、电源和导线形成一个闭合直流电路,两极板与之间的真空可一同视为一个非欧姆元件:真空管。
当真空管中的电流随着外电场的增强而逐渐增加时,两电极间电子自身产生的电场不可忽略。
清华大学领军计划测试物理学科注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考点名称填写在答题卡上,并在规定位置粘贴考试用条形码。
2.客观题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
主观题用黑色墨水的钢笔或签字笔将答案写在答题卡相应位置上。
答在试卷上的无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.本试题为考生回忆版,有部分缺题【1】质量m 的小球从距轻质弹簧上端h 处自由下落,弹簧的弹性系数为k ,求小球在运动过程中的最大动能max k E 。
已知重力加速度为g 。
【2】一卫星在距赤道20000km 上空运行,求在赤道上的人能观察到此卫星的时间间隙。
已知地球半径6400e R km 。
【3】在粗糙地面上,某时刻乒乓球的运动状态如图所示,判断一段时间后乒乓球的可能运动状况:A 、静止B 、可能向前无滑滚动C 、原地向左滚动D 、原地向右滚动【4】距O 点10m 处有一堵2m 高的墙,同方向11m 处有一堵3m 高的墙,今将一小球(可看作质点)从O 点斜抛,正好落在两墙之间,求斜抛速度可能值。
【5】有一半径为2r 的线圈。
内部磁场分布如图,磁感应强度均为B 。
有一长为4r 的金属杆(横在中间),其电阻为R 。
金属杆的右半边线圈电阻为R ,左半边线圈电阻为2R 。
当两个磁场磁感应强度从B 缓慢变化至0时,求通过右半边的电荷量q 。
【9】有一辆汽车以恒定功率由静止开始沿直线行驶,一定时间t 内走过的路程为s ,求s 与t 的几次方成正比。
【10】有一封闭绝热气室,有一导热薄板将其分为左右体积比1:3的两部分,各自充满同种理想气体,左侧气体压强为3atm ,右侧气体压强为1atm 。
现将薄板抽走,试求平衡以后气体压强【11】如图有一电容,由三块金属板构成,中间填充相对介电常数为ε的介质,中间两块极板面积为S ,真空介电常量为0ε,求此电容的大小。
清华大学2019年自主招生和领军计划笔试真题物理科目物理部分总计20题,均为选择题,物理部分总分60。
第1题:考察的是牛顿运动定律和刚体的动力学。
有的同学考虑使用动量定理,然后得到2个木块上升的高度相同;有的同学考虑的是能量守恒,所以左边的上升会更高一些,甚至很多物理专业工作者对此都产生了疑义。
我们在之前的一道模拟题中对这件事进行了定量分析,有意思的是,上述两种情况中,木块和子弹直接作用时间其实是有微小区别的,最终会导致结果的不同。
这道题对竞赛比较熟悉的同学,可以做一些定性和半定量的计算,从而得到结果。
第2题:考察的是磁矩的定义。
磁矩是竞赛里的一个专有概念,是指电流和面积的乘积得到的矢量。
这个问题可以通过直接计算得到,也可以通过一些技巧方法,把这个物体等效成均匀磁化的球来做。
第3题:看起来考察的是原子物理,实际上,它在建了一个模型之后,考察的是静电和简谐振动。
在这个问题中,我们可以把它视为一个两体的振动,就是电子和原子核形成一个两体问题,中间的相互作用可以使用高斯定理得到。
最终结果取有效质量来做会更方便一些。
第4题:考察的是非惯性系的运用和简谐振动。
我们取到小车向下滑动的加速参照系当中,就可以得到非常简单的等效加速度。
这题运用的是非常典型的一个竞赛基础处理手法。
第5题:考察的是平衡的稳定性。
注意当物体旋转的角速度足够大的时候,最低的那个点不一定再是稳定的平衡点,而变成一个向左或向右,偏离一定角度,使稳定的平衡。
平衡的稳定性的定量分析也是竞赛里面专有的考点。
第6题:考察的是静电屏蔽。
这是一个高考和竞赛当中都有的考点。
但是,在高考中因为缺乏对唯一性定理的了解,所以同学们经常对这个结论是一知半解的。
利用唯一性定理我们很容易得到,圈内和圈外之间的关联,是主要由它们的电量决定的。
把握好这一点,就可以很容易得到答案。
第7题:考察的也是非惯性系的问题。
这同样是竞赛里一个常规的处理手法。
它的做法是在非惯性系里面获得一个作用于车的质心惯性力,以及把握驱动轮在启动的时候摩擦力向前,另外一个轮子在启动的饿时候摩擦力向后,合外力是向车前进的方向。
清华大学2016年自招、领军试题选择题:本卷共40小题,共100分。
在每小题给出的四个选项中,有一个或多个选项是正确的。
(1)若函数()y f x =具有下列两个性质:①在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增;②其图像关于3x π=对称.则()f x =( )(A )5sin 26x π⎛⎫-⎪⎝⎭ (B )cos 23x π⎛⎫+ ⎪⎝⎭ (C )sin 26x π⎛⎫- ⎪⎝⎭ (D )2cos 23x π⎛⎫-⎪⎝⎭ 【答案】CD解析:由②可知13f π⎛⎫=± ⎪⎝⎭,再结合①可知13f π⎛⎫= ⎪⎝⎭,由①还可知22T π≥,即T π≥,而选项中所有函数的周期都是π,可知此题最好的方法是代入法. 因此只需要检验四个选项中哪个符合这个条件即可. (A )132f π⎛⎫= ⎪⎝⎭;(B )13f π⎛⎫=- ⎪⎝⎭;(C )13f π⎛⎫= ⎪⎝⎭;(D )13f π⎛⎫= ⎪⎝⎭. 因此答案为CD.(2)曲线21y x =-与ln y x =( )ACD(A )在点(1,0)处相交 (B )在点(1,0)处相切 (C )存在相互平行的切线 (D )有两个交点 【答案】ACD解析:令2()1f x x =-,()ln g x x =,2()ln 1h x x x =--,()2f x x '=,1()g x x '=,1()2h x x x'=-. 其中()g x 和()h x 的定义域都是(0,)+∞.对于(A )(B ),(1)(1)0f g ==,(1)2f '=,(1)1g '=,可知两条曲线在点(1,0)处相交. (A )正确.令()()f x g x ''=,可得2x =;122f ⎛=- ⎝⎭,1ln ln 2g ==->-=-⎝⎭,所以f g ≠⎝⎭⎝⎭,因此两条曲线在2x =处存在相互平行的切线.令()0h x '=,可得x =()h x '和()h x 的变化如下表:由上述分析可知()h x 在0,2⎛ ⎝⎭上单调递减,且02h ⎛< ⎝⎭,2110h e e ⎛⎫=> ⎪⎝⎭,并且12e <,可知()h x 在⎛ ⎝⎭上只有有一个零点,因此两条曲线在⎛ ⎝⎭上只有一个交点.而()h x 在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,并且(1)0h =,()h x 在2⎛⎫+∞ ⎪ ⎪⎝⎭上只有一个零点1,可知两条曲线在2⎛⎫+∞ ⎪ ⎪⎝⎭上只有一个交点.因此答案为ACD.(3)“ABC 为锐角三角形”是“sin sin sin cos cos cos A B C A B C ++>++”的( )(A )充分不要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A解析:若ABC ∆为锐角三角形,则222A B A C B C πππ⎧+>⎪⎪⎪+>⎨⎪⎪+>⎪⎩, 且0,,2A B C π<<,可得022022022A B C A B C ππππππ⎧>>->⎪⎪⎪>>->⎨⎪⎪>>->⎪⎩,又()sin f x x =在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以sin cos sin cos sin cos A B C A B C >⎧⎪>⎨⎪>⎩, 因此可得sin sin sin cos cos cos A B C A B C ++>++,所以“ABC 为锐角三角形”是“sin sin sin cos cos cos A B C A B C ++>++”的充分条件.考虑直角ABC ∆,其中,,236A B C πππ===,则1sin sin sin 122A B C ++=++,1cos cos cos 2A B C ++=+,则sin sin sin cos cos cos A B C A B C ++>++,而显然ABC ∆是不是锐角三角形,因此“ABC ∆为锐角三角形”不是“sin sin sin cos cos cos A B C A B C ++>++”的必要条件.(4)设函数()f x 在区间(1,1)-内有定义,则( )(A )当导数(0)f '存在时,曲线()y f x =在点(0,(0))f 处存在切线 (B )当曲线()y f x =在点(0,(0))f 处存在切线时,导数(0)f '存在 (C )当导数(0)f '存在时,函数2()f x 在0x =时的导数等于零 (D )当函数2()f x 在0x =时的导数等于零时,导数(0)f '存在 【答案】ABC解析:(A )显然正确;(B )函数13()f x x =,在在点(0,(0))f 处的切线为y 轴,但是231()3f x x -'=-, (0)f '不存在;(C )()22()2()f x xf x ''=,因为(0)f '存在,所以()20()20(0)0x f x f =''=⨯⨯=,所以(C)正确;(D )令 ()f x x =,则222()f x x x ==,所以函数2()f x 在0x =时的导数等于零,但是()f x x =在0x =处的导数(0)f '不存在,因此(D )错误. (5)设22cos sin 33z i ππ=+,则2322z z z z +=++( ) (A)122-+ (B)122i -(C)122- (D)122i -+【答案】C解析:易得31z =,2z z =,210z z ++=,23211111212222z z z z i z z +=+=+=--=-++,因此答案选C.(6)甲、乙、丙、丁四人进行网球比赛,首先是甲与乙比,丙与丁比,这两场比赛的胜者再争夺冠军. 他们之间相互获胜的概率如下:则甲获得冠军的概率为( )(A )0.165 (B )0.245(C )0.275 (D )0.315 【答案】A解析:甲与乙比甲获胜为事件A ,则()0.3P A =, 丙与丁比,丙获胜为事件B ,则()0.5,P B =()0.5,P B = 甲与丙比甲获胜为事件C ,则()0.3,P C = 甲与丁比甲获胜为事件D ,则()0.8,P D = 甲获胜的概率为()()()P ABC ABD P ABC P ABD +=+ ()()()()()()P A P B P C P A P B P D =+0.30.50.30.30.50.80.165=⨯⨯+⨯⨯=. 因此答案选A.(7)设函数2()()x f x x a e =+在R 上存在最小值,则函数2()g x x x a =++的零点个数为( ) (A )0 (B )1 (C )2 (D )无法确定 【答案】C解析:2()(2)x f x x x a e '=++①当1a ≥时,220x x a ++≥在R 上恒成立,所以()0f x '≥在R 上恒成立,所以函数()f x 在R 上单调递增,因此()f x 在R 上无最小值;②当1a <时,令()0f x '=,则11x =,21x =,且21x x <,()f x '和()f x 的变化情况如下表:x →-∞时,()0f x →,因为()f x 在2(,)x -∞上单调递增,在21(,)x x 上单调递减,在1(,)x +∞上单调递增,所以若()f x 有最小值,只需要1()0f x ≤.11()(2)0x f x e =-≤2⇔≤11a ⇔≤-0a ⇔≤. 20x x a ++=的判别式为141a ∆=-≥,所以()g x 有两个零点. 因此选C.(8)设随机变量ξ的分布列如下:则 ( )(A )当{}n a 为等差数列时,5615a a += (B )数列{}n a 的通项公式可能为1110(1)n a n n =+(C )当数列{}n a 满足12n n a =(1,2,,9)n =时,10912a =(D )当数列{}n a 满足2()k P k k a ξ≤=(1,2,,10)k =时,1110(1)n a n n =+【答案】ABCD解析:由题目可知12101a a a +++=;(A )若{}n a 为等差数列,1210565()1a a a a a +++=+=,所以5615a a +=; (B )11111110(1)101n a n n n n ⎛⎫==- ⎪++⎝⎭,则0n a ≥,且121011111111111111022310111011a a a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,符合分布列的定义,因此B 正确; (C )129991111222a a a +++=++=-,又由分布列的定义可知12101a a a +++=,所以10912a =,C 正确; (D )2()k P k k a ξ≤=,则10(10)1001P a ξ≤==,所以10111100101011a ==⨯⨯,满足题意, 当2k ≥时,221()(1)(1)k k k a P k P k k a k a ξξ-=≤-≤-=--,则221(1)(1)(1)(1)k k k k a k a k k a --=-=-+,因为2k ≥,所以1(1)(1)k k k a k a --=+,即111k k k a a k -+=-. 91011111119910010910a a ==⋅=⨯⨯,满足题意. 当29n ≤≤时,1110112121110111111119(1)10010(1)n n n n n n n n a a a a n n n n nn n n n-++++++⨯==⋅=⋅⋅=⋅=-----则当18n ≤≤时,1110(1)n a n n =+. 因此D 正确.(9)棱长为1的正方体1111ABCD A B C D -中,O 为正方体的中心,E 在11B C 上,11113B E BC =,F 在1AA 上,1114A F AA =,则四面体B EFO -的体积为( )(A )11144 (B )17144(C )1138 (D )1738【答案】A解析:以A 为原点建立空间直角坐标系,则(0,0,0)A ,111(,,)222O ,(1,0,0)B ,1(1,0,1)B ,1(1,1,1)C ,1(1,,1)3E ,3(0,0,)4F ,则111(,,)222BO =-,1(1,0,)4BF =-,1(0,,1)3BF =,四面体B EFO -的体积为111222131110641441013--=(10)设定义在R 上的函数()f x ,()g x 满足:①(0)1g =;②对任意实数12,x x ,121212()()()()()g x x f x f x g x g x -=+;③存在大于零的常数λ,使得()1f λ=,且当(0,)x λ∈时,()0f x >,()0g x > 则(A )()(0)0g f λ== (B )当(0,)x λ∈时,()()1f x g x +> (C )函数()f x ()g x 在R 上无界 (D )任取x R ∈,()()f x g x λ-= 【答案】ABD解析:令120x x ==,代入②得22(0)(0)(0)g f g =+,因为(0)1g =,所以(0)0f =;令12x x λ==,代入②得22(0)()()g f g λλ=+,因为()1f λ=,所以()0g λ=,因此()(0)0g f λ==;A 正确对于任意实数x ,令12x x x ==代入②得22(0)()()1g f x g x =+=,可得2()1f x ≤,2()1g x ≤,进而()1f x ≤,()1g x ≤,因此C 错误;当(0,)x λ∈时,()0f x >,()0g x >,所以20()1f x <<,20()1g x <<,进而0()1f x <<,0()1g x <<,故22()(),()()f x f x g x g x <<,因此22()()()()f x g x f x g x +<+,又22()()1f x g x +=,故()()1f x g x +>,所以B 正确;令1x λ=,2x x λ=-,代入②得()()()()()g x f f x g g x λλλλ=-+-,又()(0)0g f λ==,()1f λ=,所以()()g x f x λ=-,故D 正确.(11)设,,A B C 是随机事件,A 与C 互不相容,1()2P AB =,1()3P C =,则()P AB C = ( ) (A )16 (B )12(C )13 (D )34【答案】D解析:因为A 与C 互不相容,所以A C ⊂,则AB C ⊂,因此ABC AB =,可得1()()32()2()()43P ABC P AB P AB C P C P C ====,所以该题选D.(12)甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖; 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的.成绩公布后表明,四人的猜测中有两人的预测与结果相符. 另外两人的预测与结果不相符,已知有两人获奖,则获奖的是( )(A )甲和丁 (B )乙和丁 (C )乙和丙 (D )甲和丙 【答案】B解析:因为乙和丁的预测一样,则根据题干可知四人的猜测有两种情况:①乙和丁的预测与结果相符,甲和丙的预测与结果不相符,那么丙获奖,因为丙的预测与结果不相符,所以丙和乙获奖,与甲的预测相符了,矛盾;②乙和丁的预测与结果不相符,甲和丙的预测与结果相符,那么乙获奖,丙不获奖,结合甲预测可知丁获奖,与丙的预测相符,因此获奖者是乙和丁.该题选B. (13)设24πα=,则sin sin sin sin cos 4cos3cos3cos 2cos 2cos cos ααααααααααα+++=(A)6 (B)3 (C)2 (D )12【答案】B 解析:sin sin((1))cos cos(1)cos cos(1)n n n n n n ααααααα--=--sin cos(1)cos sin(1)tan tan(1)cos cos(1)n n n n n n n n αααααααα---==---所以sin sin sin sin cos 4cos3cos3cos 2cos 2cos cos ααααααααααα+++tan 4tan3tan3tan 2tan 2tan tan ααααααα=-+-+-+tan 4tan63πα===. 因此该题选B(14)设正三棱锥P ABC -的高为h ,底面三角形的边长为1. 设异面直线AB 与PC 的距离为()d h ,则lim ()h d h →∞=(A )1 (B )12(C (D )【答案】C解析:在APC ∆内,过A 向PC 做垂线,垂足为Q ,即AQ PC ⊥,连结BQ ,根据对称性,显然BQ PC ⊥,且BQ AQ =,取AB 中点D ,连结DQ ,DQ ⊂平面AQBAQ PC BQ PC ⊥⎫⇒⎬⊥⎭PC ⊥平面AQB ,又DQ ⊂平面AQB DQ PC ⇒⊥,在AQB 中,BQ AQ =,D 为AB 中点,所以DQ AB ⊥, 因此DQ 为AB 与PC 的公垂线;设点P 在平面ABC 的投影为O ,则AO BO CO ===,AP BP CP ===在APC 中,112APCS=⋅=又12APCSPC AQ AQ =⋅⋅=,所以AQ =,在等腰三角形AQB ∆中,DQ ===()d h =lim ()h h h d h →∞====(15)设,,αβγ分别为1,61,121︒︒︒,则(A )tan tan tan 3tan tan tan αβγαβγ++=- (B )tan tan tan tan tan tan 3αββγγα++=-(C )tan tan tan 3tan tan tan αβγαβγ++=- (D )tan tan tan tan tan tan 3αββγγα++=【答案】AB解析:22tan (tan 3)tan(60)tan tan(60)tan (13tan )βββββββ--︒+︒==-tan(60)tan tan(60)tan ββββ-︒+++︒=+3228tan 9tan 3tan tan tan 13tan 13tan βββββββ-=+=+=-- 223tan (3tan )13tan βββ-=- 所以tan tan tan tan(60)tan tan(60)3tan tan tan tan(60)tan tan(60)αβγβββαβγβββ++-︒+++︒==--︒+︒,A 正确.tan tan tan tan tan tan αββγγα++tan(60)tan tan tan(60)tan(60)tan(60)ββββββ=-︒++︒++︒-︒tan (tan(60)tan(60))tan(60)tan(60)βββββ=+︒+-︒++︒-︒ tan (tan(60)tan(60))tan(60)tan(60)βββββ=+︒+-︒++︒-︒22228tan tan 313tan 13tan ββββ-=+-- 229tan 313tan ββ-=- 3=-. 所以B 正确.(16)设函数7(,)6()22f x y xy x y =-++-,则[0,1][0,1]max{min{(,)}}y x f x y ∈∈=(A )0 (B )124(C )124- (D )[0,1][0,1]min{max{(,)}}y x f x y ∈∈【答案】BD解析:77(,)6222f x y x y x ⎛⎫=-+- ⎪⎝⎭求[0,1]min{(,)y f x y ∈把(,)f x y 看成y 的一次函数,[0,1]77(,0) 2 212min (,)357(,1) 2212y f x x x f x y f x x x ∈⎧⎛⎫=-≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-> ⎪⎪⎝⎭⎩则[0,1]min (,)y f x y ∈在[0,1]x ∈上的最大值在712x =处取得, 所以[0,1][0,1]771max{min{(,)}}221224y x f x y ∈∈=⨯-=. 选项B 正确.[0,1]357(1,) 2212max{(,)}77(0,) 2 212x f y y y f x y f y y y ∈⎧⎛⎫=-≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-> ⎪⎪⎝⎭⎩, 则[0,1]max{(,)}x f x y ∈在[0,1]y ∈的最小值在712y =处取得, 所以[0,1][0,1]771min{max{(,)}}221224y x f x y ∈∈=⨯-=,故[0,1][0,1][0,1][0,1]max{min{(,)}}min{max{(,)}}y y x x f x y f x y ∈∈∈∈=.所以D 正确.(17)椭圆2222:1x y C a b+=的左、右焦点分别为1F 和2F ,P 为C 上的动点,则(A)当a =时,满足1290F PF ∠=︒的点P 有两个 (B)当a <时,满足1290F PF ∠=︒的点P 有四个(C )12F PF 面积的最大值为22a(D )12F PF 的周长小于4a 【答案】AD解析:求满足1290F PF ∠=︒的点的个数只需要求22222221x y a b x y c ⎧+=⎪⎨⎪+=⎩的交点的个数,将222y c x =-代入椭圆可得222221x c x a b -+=,化简得22222222221c c b a x a b b b --=-=,即222222a b x a c-=.当a =时,0x =,因此满足1290F PF ∠=︒的点P 有两个,为短轴两个端点,A 正确;当a <时,20x <,因此满足1290F PF ∠=︒的点P 不存在,B 错误; 显然,当点P 位于短轴端点时,12F PF 面积最大,此时12122F PF Sc b bc =⋅⋅=,C 错误; 12F PF 的周长为224a c a +<,D 正确.(18)设复数z 使得10z 及10z的实部和虚部都是小于1的正数. 记z 在复平面上对应的点的集合是图形C ,则C 的面积是(A )25752π- (B )25702π- (C )15752π- (D )15702π-【答案】A解析:令z x iy =+,则101010z x y i =+,22101010()x iy z x iy x y ==+-+由题意可知22220,1101010100,1x y x y x y x y ⎧<<⎪⎪⎨⎪<<++⎪⎩,则22220,101010x y x y x x y y <<⎧⎪+>⎨⎪+>⎩,图中的阴影部分就是所求的图形C ,两圆相交部分的面积为252542π-,所以 C 的面积是25252510025275422S πππ⎡⎤⎛⎫=---⨯=-⎪⎢⎥⎝⎭⎣⎦. 选A. (19)设n 是正整数,则定积分22120()(1sin )d n n x x x ππ--+⎰的值(A )等于0 (B )等于1 (C )等于π (D )与n 的取值有关 【答案】A解析:令x y π-=,则22122120()(1s i n )d (1s i n )d n nn nx x x y yyππππ----+=+⎰⎰,因为212(1sin )n n y y -+是奇函数,则积分的上下限关于原点对称,所以212(1sin )d 0n n y y y ππ--+=⎰.(20)过点(1,0)F 的直线交抛物线24y x =于,A B 两点,则(A )以AB 为直径的圆与直线32x =-没有公共点(B )以FB 为直径的圆与y 轴只有一个公共点(C )AB 的最小值为4(D )AF 的最小值为2【答案】ABC解析:AB 时抛物线的焦点弦,焦点弦与准线1x =-相切,与32x =-相离,A 项正确;由抛物线定义知B 项也正确;当AB 垂直x 轴时,其长度最短为2p=4(此时称为通径),C 正确;||||1AF AO >=,即AF 可无限接近于1,最小值不存在,D 错误。
2016年清华大学自主招生暨领军计划试题1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( ) A .0 B .1 C .2 D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x=,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+=C .060,0sin cos )cos(cos sin cos ==++C C B C B C B A D .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离 B .||AB 的最小值为4 C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=aa AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( ) A .b a 2=时,满足02190=∠PF F 的点P 有两个 B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为ac a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅. 6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测: 甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC . 8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π,类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++. 不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( ) A .8B .10C .11D .12【答案】B 【解析】由于xz y x 311121≤++=,故63≤≤x . 若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ; 若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ; 若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B .10.集合},,,{21n a a a A =,任取A a a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( ) A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC .3tan tan tan tan tan tan =++γβαγβαD .3tan tan tan tan tan tan -=++γβαγβα【答案】BD 【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zxzx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zxx z yz z y xy y x ,以上三式相加,即有3111-=++=++xyzzy x zx yz xy .答案BD . 12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0 B .xyz 的最大值为274- C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( )A .n n n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数D .781-+n n a a 为完全平方数 【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a nn n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误.说明:若数列}{n a 满足n n n a pa a -=++12,则n n n a a a 221++-为定值.15.若复数z 满足11=+zz ,则z 可以取到的值有( ) A .21B .21-C .215-D .215+ 【答案】CD 【解析】因为11||1||=+≤-zz z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( ) A .6552 B .4536 C .3528 D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=ba( ) A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b a b a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则kb a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程y x 21652=+的正整数解的组数为( ) A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有n I 种,则( )A .22=IB .123=IC .964=ID .1205=I 【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n nn n n C n n C nA C I .答案:AB . 关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯.21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23 【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23. 22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有0)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 . 【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322- 【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ .【答案】23【解析】根据奔驰定理,有329492=+=+μλ. 27.已知复数32sin32cos ππi z +=,则=+++2223z z z z . 【答案】1322i - 【解析】根据题意,有i i z z z z z z 232135sin 35cos 122223-=+=-=+=+++ππ. 28.已知z 为非零复数,zz 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 . 【答案】20010033003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ. 29.若334tan =x ,则=+++xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin . 【答案】3【解析】根据题意,有xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++ 38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{ A ,满足题意. 综上所述,A 中元素个数的最大值为8.。