三垂线定理的逆定理
- 格式:pdf
- 大小:609.42 KB
- 文档页数:10
三垂线定理及其逆定理知识点:1.三垂线定理;;2.三垂线定理的逆定理;3.综合应用; 教学过程:1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直;已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α⊂a AO ⊥。
求证:a PO ⊥; 证明: 说明:(1)线射垂直(平面问题)⇒线斜垂直(空间问题);(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理;(3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。
(4)直线a 与PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。
求证:PC BC ⊥。
例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。
求证:,PO BD PC BD ⊥⊥。
PBB例4.在正方体1AC 中,求证:11111,AC B D AC BC ⊥⊥;2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明: 说明:例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。
求证:(1)AD BC ⊥;(2)点A 在底面BCD 上的射影是BCD ∆的垂心;PDAB C1A C例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上已知: 求证:说明:可以作为定理来用。
例5.已知:Rt ABC ∆中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3PAB PAc π∠=∠=。
(1)求PA 与面ABC 所成的角的大小;(2)当PA 的长度等于多少的时候,点P 在平面ABC 内的射影恰好落在边BC 上;B作业:1.正方体1111D C B A ABCD -,,E F 分别是1,A A AB 上的点,1EC EF ⊥. 求证: 1EF EB ⊥。
三垂线定理及其逆定理知识点:1.三垂线定理;;2.三垂线定理的逆定理;3.综合应用; 教学过程:1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直;已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α⊂a AO ⊥。
求证:a PO ⊥; 证明: 说明:(1)线射垂直(平面问题)⇒线斜垂直(空间问题);(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理;(3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。
(4)直线a 与PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。
求证:PC BC ⊥。
例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。
求证:,PO BD PC BD ⊥⊥。
PBB例4.在正方体1AC 中,求证:11111,AC B D AC BC ⊥⊥;2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明: 说明:例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。
求证:(1)AD BC ⊥;(2)点A 在底面BCD 上的射影是BCD ∆的垂心;PDAB C1A C例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 已知: 求证:说明:可以作为定理来用。
例5.已知:Rt ABC ∆中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3PAB PAc π∠=∠=。
(1)求PA 与面ABC 所成的角的大小;(2)当PA 的长度等于多少的时候,点P 在平面ABC 内的射影恰好落在边BC 上;B作业:1.正方体1111D C B A ABCD -,,E F 分别是1,A A AB 上的点,1EC EF ⊥. 求证: 1EF EB ⊥。
三垂线定理及其逆定理【学习内容分析】“三垂线定理”是安排在“直线与平面的垂直的判定与性质”后进行学习的。
它是线面垂直性质的延伸。
利用三垂线定理及其逆定理,可将空间两直线垂直与平面两直线垂直进行互相转化,具体应用表现例如辅助我们做二面角平面角等。
所以在立体几何中有核心定理的作用。
【课程目标】一.知识与技能目标理解和掌握三垂线定理及其逆定理的内容、证明和应用。
二.过程与方法目标1通过对定理的学习,培养学生观察、猜想和论证数学问题的能力。
三.情感、态度和价值观目标3、培养学生逻辑推理证明的能力和相互转化的思想。
【教学重点和难点】一.教学重点定理的理解和运用二.教学难点如何在具体图形中找出适合三垂线定理(或逆定理)的直线和平面。
【教学方法】以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,运用小组学习合作探究。
【教学过程】一复习引入:1.复习提问1、回顾直线与平面垂直的相关性质以及射影、斜线等概念;设计意图(因为平面的垂线、平面的斜线及射影是三垂线定理的基础,直线与平面垂直的判定与性质又是证明三垂线定理的基本方法,因此我用提问的形式让学生温故知新,作好新课的铺垫。
)2.有意设疑,引入新课。
平面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。
那么平面的斜线与平面内的直线在什么情况下是垂直的呢?学生思考后,我再引导学生利用三角板和直尺在桌面上搭建模型(如图),使直尺与三角板的斜边垂直,引导学生猜想发现规律。
经过实验,发现直尺与三角板在平面内的直角边垂直时便与斜边垂直。
启发学生把猜想、实验后得到的结论总结出来,表达成数学命题:平面内的一条直线如果和平面的斜线的射影垂直,那么就和平面的这条斜线垂直(板书)设计意图(为了唤起学生学习的兴趣,把学生的注意力集中起来,调动学生的思维积极性,我通过提出问题,创设情景,引导学生观察、猜想,发现新的知识,培养学生的探索能力)二、新课讲授:由以上的分析,我们可以抽象出如下的一个图。
NO.*垂线定理三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
1, 三垂线定理描述的是PO(斜线),A0(射影),a(直线)之间的垂直关系.2, a与P0可以相交,也可以异面.3, 三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理关于三垂线定理的应用,关键是找出平面(基准面)的垂线. 至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a丄b的一个程序:一垂,二射,三证.即第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1°定理中四条线均针对同一平面而言2°应用定理关键是找”基准面"这个参照系用向量证明三垂线定理已知:PO, PA分别是平面a的垂线,斜线,0A是PA在a内的射影,b属于a,且b 垂直0A,求证:b垂直PA证明:因为P0垂直a,所以P0垂直b,又因为0A垂直b向量PA=(向量P0+向量0A)所以向量PA乘以b=(向量P0+向量0A)乘以b=(向量P0乘以b)力口(向量0A 乘以b )=0,所以PA垂直b。
2)已知:P0, PA分别是平面a的垂线,斜线,0A是PA在a内的射影,b属于a,且b垂直PA,求证:b垂直0A证明:因为P0垂直a,所以P0垂直b,又因为PA垂直b,向量0A=(向量PA-向量P0)所以向量0A乘以b==(向量PA-向量P0)乘以b=(向量PA乘以b )减(向量P0 乘以b )=0,所以0A垂直b o 求交线0A于平面0BC所成的角。
2。
已知三个平面0AB , 0BC, 0AC相交于一点0,角A0B=角B0C=角C0A=6O 度,向量0A=(向量0B+向量AB) , 0是内心,又因为AB=BC=CA ,所以0A于平面0BC所成的角是30 度o.面角的求法有六种:1•定义法2•垂面法3•射影定理NO.*4•三垂线定理5•向量法6•转化法二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。
三垂线定理三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内
的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:如果平面内一条直线和平面的一条斜线垂
直,那么这条直线也垂直于这条斜线在平面内的射影。
1,三垂线定理描述的是PO(斜线),AO(射
影),a(直线)之间的垂直关系.
2,a与PO可以相交,也可以异面.
3,三垂线定理的实质是平面的一条斜线和
平面内的一条直线垂直的判定定理.
关于三垂线定理的应用,关键是找出平面(基准面)的垂线.
2。
已知三个平面OAB,OBC,OAC相交于一点O,角AOB=角BOC=角COA=60度,求交线OA于平面OBC所成的角。
向量OA=(向量OB+向量AB),O是内心,又因为AB=BC=CA,所以OA于平面OBC 所成的角是30度。
二面角的求法
有六种:
1.定义法
2.垂面法
3.射影定理
4.三垂线定理
5.向量法
6.转化法
二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。
过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。
有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。
由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。
运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。
然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。
这里需要注意的是如果两个法向量都。