弹性力学 第8章_空间问题的基本理论与解答
- 格式:ppt
- 大小:2.96 MB
- 文档页数:33
第八章 空间问题的解答§8-1 按位移求解空间问题将几何方程代入物理方程,得出用位移分量表示应力分量的弹性方程如下:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫∂∂+∂∂+=∂∂+∂∂+=∂∂+∂∂+=∂∂-+=∂∂+-+=∂∂+-+=),()1(2)()1(2),()1(2),21(1),21(1),21(1y u x E x z u E z y E z E y E x u E xy zx yz z y x υμτωμτυωμτωθμμμσυθμμμσθμμμσ (8-1) 其中zy x u ∂∂+∂∂+∂∂=ωυθ。
再将上面的弹性方程(8-1)代入平衡微分方程(7-1),并采用记号2222222z y x ∂∂+∂∂+∂∂=∇,得到⎪⎪⎪⎭⎪⎪⎪⎬⎫=+∇+∂∂-++=+∇+∂∂-+=+∇+∂∂-+.0)211()1(2,0)211()1(2,0)211()1(2222z y x f z E f y E f u x E ωθμμυθμμθμμ (8-2) 这是用位移分量表示的平衡微分方程,也就是按位移求解空间问题时所需用的基本微分方程。
如果将工(8-1)代入式(7-5),就能把应力边界条件用位移分量来表示,但由于这样得出的方程太长,我们宁愿把应力边界条件保留为式(7-5)的形式,而理解其中的应力分量系通过式(8-1)用位移分量表示。
位移边界条件则仍然如式(7-9)所示。
§8-2 半空间体受重力及均布压力设有半空间体,密度为ρ,在水平边界上受均布压力q ,图8-1,以边界面为xy 面,z 轴铅直向下。
这样,体力分量就是g f f f z y x ρ===,0,0。
采用按位移求解。
由于对称(任一铅直平面都是对称面),试假设)(,0,0z u ωωυ===。
(a )这样就得到可见基本微分方程(8-2)中的前二式自然满足,而第三式成为 简化以后得,)1()21)(1(22μρμμω--+-=E g dz d (b ) 积分以后得 ),()1()21)(1(A z E g dz d +--+-==μρμμωθ (c ).)()1(2)21)(1(2B A z E g ++--+=μρμμω (d) 其中A 和B 是待定常数。
第二章平面问题的基本理(1) 两类平面问题的特点?(几何、受力、应力、应变等)。
(2) 试列出两类平面问题的基本方程,并比较它们的异同。
(3) 在建立平面问题基本方程(平衡方程、几何方程)时,作了哪些近似简化处理?其作用是什么?(4) 位移分量与应变分量的关系如何?是否有位移就有应变?(5) 已知位移分量可唯一确定其形变分量,反过来是否也能唯一确定?需要什么条件?(6) 已知一点的应力分量,如何求任意斜截面的应力、主应力、主方向?(7) 什么是线应变(正应变)、剪应变(切应变、角应变)?如何由一点应变分量求任意方向的线应变、主应变、主应变方向?(8) 平面应力与平面应变问题的物理方程有何关系?(9) 边界条件有哪两类?如何列写?第四章平面问题的极坐标解(1 )极坐标解答适用的问题结构的几何形状(?圆环、圆筒、圆弧形曲杆、楔形体、半无限平面体等)(2) 极坐标下弹性力学平面问题的基本方程?平衡微分方程、几何方程、物理方程、边界条件方程)(3) 极坐标下弹性力学平面问题的相容方程?用应变表示的、用应力函数表示的相容方程等)(4) 极坐标下应力分量与应力函数间关(5) 极坐标下弹性力学平面问题边界条件的列写?(6) 极坐标下轴对称问题应力函数、应力分量、位移分量的特点?(7) 圆弧形曲梁问题应力函数、应力分量、位移分量的确定?(如何利用材料力学中曲梁横截面应力推出应力函数的形式?)(8) 楔形体在力偶、集中力、边界分布力作用下,应力函数、应力分量、位移分量的确定?(10) 何为圣维南原理?其要点是什么?圣维南原理的作用是什么?如何利用圣维南原理列写边界条件?(11) 弹性力学问题为超静定问题,试说明之。
(12) 弹性力学问题按位移求解的基本方程有哪些?(13) 弹性力学平面问题的变形协调方程有哪些形式?各自的使用条件是什么?(14) 按应力求解弹性力学问题,为什么除了满足平衡方程、边界条件外,还必须满足变形协调方程(相容方程)?而按位移求解为什么不需要满足变形协调方程?(15 )应力分量满足平衡方程、相容方程、边界条件,是否就是问题的正确解?为什么?(16) 常体力情况下,如何将体力转化为面力?其意义如何?(17) 何为逆解法?何为半逆解法?(18) Airy应力函数在边界上值的物理意义是什么?应力函数的导数:_________ 在边界上值的物理意义是什么?x ' y (9 )半无限平面体在边界上作用力偶、集中力、分布力下,应力函数、应力分量、位移分量的确定?(10) 圆孔附近应力集中问题应力函数、应力分量、位移分量的确(11) 定加法的应用。