晶体的微观对称性
- 格式:pdf
- 大小:1.07 MB
- 文档页数:68
第二章晶体学终极重点:1、晶体特征,晶体与非晶体区别 2、晶向与晶面指数确定步骤1.晶体的性能特征:均一性,各向异性,自限性,对称性,最小内能性;2.对称操作与对称要素:对称轴,对称面,对称中心,倒转轴;3.晶向指数与晶面指数:确定步骤;4.球体的堆积:六方,面心立方,体心立方5.鲍林规则;6.各种典型晶体构型;7.硅酸盐晶体结构与实例:岛状,链状,层状,架状;8.同质多晶现象:可逆转变,不可逆转变,重建型转变,位移型转变。
1.晶体的性能特征:均一性,各向异性,自限性,对称性,最小内能性(1)晶体的基本特征晶体的性能特征结晶均一性:在晶体内部任意部位上具有相同的性质;各向异性:在晶体不同方向上表现出的性质差异;自限性:能够自发形成封闭的凸几何多面体外形的特性;对称性:晶体中的相同部分(晶面,晶棱,等等)以及晶体的性质能够在不同方向或位置上有规律地重复;最小内能性:在相同的热力学条件下,晶体与同组成的气体、液体及非晶态固体相比具有最小内能,即最为稳定。
(2)对称操作与对称要素:对称操作:使晶体的点阵结构和性质经过一定程序后能够完全复原的几何操作;对称要素:实施对称操作所依赖的几何要素(点,线,面等);1.旋转操作与对称轴:一个晶体如能沿着某一轴线旋转360 / n(n = 1, 2, 3, 4, 6)后使晶体位置完全回复原状,则该晶体具有n 重对称轴;2.反映操作和对称面:一个晶体中如果存在某一个平面,使平面两边进行反映操作,而令晶体复原,则这个平面称为对称面;3.反演操作和对称中心:一个晶体中央在某一个几何点,使晶体外形所有晶面上各点通过该几何点延伸到相反方向相等距离时,能够使晶体复原的操作。
该几何点称为对称中心。
4.旋转反演操作和对称反轴:旋转之后进行反演使晶体复原的操作;只有4¯是新的独立对称要素。
(3)晶向指数与晶面指数:确定步骤晶向指数:以晶胞的某一阵点O为原点,过原点O的晶轴为坐标轴x,y,z,以晶胞点阵矢量的长度作为坐标轴的长度单位;过原点O作一直线OP,使其平行于待定晶向;在直线OP上选取距原点O最近的一个阵点P,确定P点的3个坐标值;将这3个坐标值化为最小整数u,v,w,加以方括号,[ u v w ]即为待定晶向的晶向指数。
晶体的对称性与晶系自然界不论是宏观物体还是微观粒子,普遍存在着对称性。
晶莹的雪花、美丽的花朵、艳丽的蝴蝶都具有对称性,人体也具有对称性。
地下的矿物,如水晶、钻石、闪锌矿……也都具有对称性。
微观粒子如水分子、苯分子以及所有分子都具有对称性。
对称性显示出物体的匀称和完美,为人们所喜爱和追求,因而设计师设计的宏伟建筑如天安门、人民大会堂、长江大桥……都呈现出对称性。
本文主要介绍晶体的宏观对称性,包括旋转轴、对称面和对称中心等,以及晶体宏观对称性与晶系的关系。
晶体的宏观对称性晶体宏观对称性有旋转轴(也称对称轴)、对称面(也称镜面)和对称中心,分别介绍如下。
旋转轴 旋转轴是对称元素,绕旋转轴可做旋转操作。
n 次旋转轴记为n ,απ2=n ,α称为基转角。
例如NaCl 晶体的外形是立方体,立方体对应面中心联线方向有4次旋转轴,绕此轴每旋转90°后,晶体形状不变;立方体对角线联线方向有3次旋转轴,绕此轴每旋转120°后,晶体形状不变;立方体对应棱边中心联线方向有2次旋转轴,绕此轴每旋转180°,晶体形状不变。
图6-4示出这3种旋转轴。
可以证明在晶体宏观外形中存在的旋转轴有1,2,3,4和6次旋转轴5种,不存在5次轴和大于6次的旋转轴。
对称面 对称面是对称元素,对称面也称镜面,常用m 表示。
凭借对称面可以做反映操作,如同物体与镜子中的像是反映关系。
人的双手手心相对,平行放置,左右手就互为镜象。
许多晶体中存在对称面,NaCl 晶体有9个对称面。
对称中心 对称中心也是对称元素,常用i 表示。
通过对称中心可以做倒反操作。
例如人的双手手心相对,逆平行放置,此时左右手构成倒反关系。
NaCl 晶胞中,在体心位置存在对称中心。
因此晶胞中任意一个原子与对称中心相连,在反方向等距离处必存在同样的原子。
晶体有无对称中心对晶体的性质有较大的影响。
凭借上述三种对称元素所做的对称操作都是简单操作,如果连续做两个简单操作就成为复合操作。
结晶化学第一章几何晶体学二、晶体的宏观对称和微观对称对称是我们常见的一种现象,比如在自然界中的花瓣,昆虫下面给出几个对称性的基本概念。
同图形,它包括能完全迭合的相等图形(或称全等图形)(例如花瓣)和互成镜象的等同而不相等的图形(例如左右手)。
对称图形:由二个或二个以上等同图形构成,并且很有规律地重复。
换句话说, 对称图形中的等同部分通过一定的动作后与原图形重合对称动作:对称图形中的等同部分通过一定的动作后与原图形重合;这样将对称图形某一部分中的任意点带到一个等同部分中的相应点上去使新图形与原图形重合的动作叫做对称动作。
对称动作有旋转、反映、倒反、平移等。
对称性:物体中各等同部分在空间排列的特殊规律性叫做对称性。
对称图形中所包括的等同部分的数目称为对称性的阶次(或称序级).阶次的大小代表 对称程度的高低。
对称要素:进行对称动作时所依据的几何要素(点、线、面)称为对称要素。
对称要素有下面几类:(1)旋转轴;(2)反映面;(3)对称中心;(4)反轴(5)点阵;(6)螺旋轴;(7)滑移面(1)旋转轴与旋转轴相应的对称动作是旋转;进行旋转动作时有一直线不动,将对称图形(或晶体)围绕旋转轴旋转某些角度后能使原图形重合,设n 为旋转轴的轴次,即转一周重复的次数,α为基转角,即能使图形复原的最小旋转角度,则这里的n 实际上就是与该旋转轴相应的对称性的阶次。
例如八面体中具有四次旋转轴、三次旋转轴、二次旋转轴等,符号为4,3,2等。
旋转只能使完全相等的图形(例如都是左手)彼此重合,不可能使左右手重合。
对称性定律:在晶体中只能出现1、2、3、4、6次轴,不可能出现5次和更高次的对称轴。
(在这里请注意点阵的无限性)对称性定律证明如下:如下左图,A 和A’是相距为单位平移矢量t 的两个阵点,过A 和A’的两个旋转轴进行旋转角度为α的操作,得到新的阵点B 和B’,阵点间的距离应是单位平移矢量t 的整数倍m ,即t’=mt ,t’=-2tcos α +t, 得到 cos α=(1-m)/2解出cos α =-1,-1/2,0,1/2,1α=π,2π/3,π/2,π/3,2π(或0)注意:单个原子团(或分子)本身不是晶体,所以其对称性并不受上述对称轴次的限制。
晶体的对称性-空间群符号的解释1. 晶体的宏观和微观对称性晶体的对称性最直观地表现在其几何外形上,由于晶体外形为有限的几何图形,故晶体外形上所体现的对称性与分子一样为点对称性,称为宏观对称性。
有四种类型的对称操作和对称元素旋转旋转轴反映反映面(镜面)反演对称中心旋转反演反轴由于晶体内部结构为点阵结构,点阵结构是一种无限的几何对称图形。
故晶体结构具有这种基本的空间对称性(通过平移对称操作能使点阵结构复原),常称为晶体的微观对称性。
有三种类型的对称操作和对称元素平移点阵螺旋螺旋轴滑移滑移面2. 晶体和晶体结构对称性的有关定理晶体和晶体结构的对称元素及相应的对称操作有上述七种。
晶体中点阵与对称元素的制约关系为:对称面和对称轴的取向定理在晶体结构的空间点阵图形中,对称轴必与一组直线点阵平行,并与一组平面点阵垂直;对称面则必与一组直线点阵垂直,并与一组平面点阵平行。
(对称轴包括旋转轴、反轴和螺旋轴;对称面包括反映面、滑移面)对称轴的轴次定理在晶体结构中存在的对称轴,其轴次只能为1、2、3、4、6这五种。
3. 7个晶系和32个晶体点群根据晶体的对称性,可将晶体分为7个晶系,每个晶系有它自己的特征对称元素。
由于晶体的对称性定理,限制了对称轴的轴次只能为1、2、3、4、6;又由于反轴中只有4重反轴是独立的对称元素,所以在晶体的宏观对称性中,只能找到8个独立的对称元素:1、2、3、4、6、m、i、。
与分子所含的对称元素相比,晶体中所含的对称元素有限,这八个对称元素按一定的组合规则组合后只能产生32个对称类型(对称元素系),每个对称类型所具有的对称元素所对应的对称操作构成一个群。
由于晶体的宏观外形为有限图形,故各种对称元素至少要相交于一点,故称为32个晶体点群。
对于晶体点群,除了用和分子点群一样的符号(Schönflies)表示外,还用晶体点群的国际上通用的符号——国际符号表示。
国际符号是按晶系不同,依次在三个不同方向上将晶体所具有的对称元素表示出来。
晶体的微观对称操作首先,晶体的微观对称操作可以分为平移、旋转、镜面反射和反演等几种基本操作。
平移操作是指将晶体中的每个原子或离子沿着某个方向移动相同的距离。
旋转操作是指将晶体中的每个原子或离子绕着某个轴旋转一定的角度。
镜面反射操作是指将晶体中的每个原子或离子关于一个平面进行镜面对称。
反演操作是指将晶体中的每个原子或离子关于一个点进行对称。
其次,晶体的微观对称操作可以用对称元素来描述。
对称元素包括平移矢量、旋转轴和镜面反射面等。
平移矢量描述了晶体中的平移操作,它可以用一个矢量来表示。
旋转轴描述了晶体中的旋转操作,它可以用一个轴线和一个旋转角度来表示。
镜面反射面描述了晶体中的镜面反射操作,它可以用一个平面来表示。
这些对称元素可以组合形成晶体的对称群。
此外,晶体的微观对称操作还可以用空间群来描述。
空间群是指晶体中所有微观对称操作的集合。
空间群包括平移操作和点群操作。
平移操作是指晶体中的平移矢量,它描述了晶体中的周期性重复。
点群操作是指晶体中的旋转操作、镜面反射操作和反演操作,它们描述了晶体中的局部对称性质。
最后,晶体的微观对称操作对晶体的物理性质和化学性质都有重要影响。
对称操作可以决定晶体的晶体系统、晶胞参数和晶体结构。
晶体的对称性决定了晶体的光学性质、电学性质和磁学性质等。
晶体的微观对称操作也对晶体的生长、相变和缺陷行为等有重要影响。
综上所述,晶体的微观对称操作是描述晶体内部对称性质和晶体结构变化的重要概念。
它可以通过对称元素、空间群和物理性质等多个角度来理解和描述。
晶体的微观对称操作对于理解晶体的性质和应用具有重要意义。
《结晶学与矿物学》课程笔记第一章:晶体及结晶学一、引言1. 晶体的定义- 晶体是一种固体物质,其内部原子、离子或分子在三维空间内按照一定的规律周期性重复排列,形成具有长程有序结构的物质。
- 晶体的特点是在宏观上表现出明确的几何外形和物理性质的各向异性。
2. 结晶学的定义- 结晶学是研究晶体的形态、结构、性质、生长和应用的科学。
- 它是固体物理学、化学和材料科学的一个重要分支。
3. 晶体与非晶体的区别- 晶体:具有规则的内部结构和外部几何形态,物理性质各向异性。
- 非晶体(如玻璃):内部结构无规则,没有长程有序,物理性质各向同性。
二、晶体的基本特征1. 几何外形- 晶体通常具有规则的几何外形,如立方体、六方柱、四方锥等。
- 几何外形是由晶体的内部结构决定的。
2. 晶面、晶棱和晶角- 晶面:晶体上平滑的平面,由晶体内部的原子平面构成。
- 晶棱:晶面的交线,由晶体内部的原子线构成。
- 晶角:晶棱之间的夹角,由晶体内部的原子角构成。
3. 晶面指数、晶棱指数和晶角指数- 晶面指数:用来表示晶面在晶体中的位置和方向的符号。
- 晶棱指数:用来表示晶棱在晶体中的位置和方向的符号。
- 晶角指数:用来表示晶角的大小和方向的符号。
4. 物理性质各向异性- 晶体的物理性质(如电导率、热导率、折射率等)随方向的不同而变化。
- 这是因为晶体内部原子的排列在不同方向上有所不同。
三、晶体的分类1. 天然晶体与人工晶体- 天然晶体:在自然界中形成的晶体,如矿物、岩石等。
- 人工晶体:通过人工方法在实验室或工业生产中制备的晶体。
2. 单晶体与多晶体- 单晶体:整个晶体内部原子排列规则一致,具有单一的晶格结构。
- 多晶体:由许多小晶体(晶粒)组成的晶体,晶粒之间排列无序。
3. 完整晶体与缺陷晶体- 完整晶体:内部结构完美,没有缺陷的晶体。
- 缺陷晶体:内部存在点缺陷、线缺陷、面缺陷等结构缺陷的晶体。
四、晶体的生长1. 晶体生长的基本过程- 成核:晶体生长的起始阶段,形成晶体的核。
第章第四章晶体的微观对称性原子或原子团位置的对称性叫做微观对称性宏观对称性微观对称性晶体3微观对称性和宏观对称性的主要区别微观对称性和宏观对称性的主要区别:1、宏观对称性对称元素必须相交一点,微观对称性中宏观对称性对称元素必须相交一点微观对称性中对称元素不须交于一点,可以在三维空间无限分布。
2、宏观对称性中对称元素只考虑方向,微观对称性中需要考虑对称元素的相互位置关系。
性中需要考虑对称元素的相互位置关系4点阵反映了晶体结构的周期性,这种周期性也就是点阵的平移复原的特性。
对于点阵,连接任意两个阵点的位置矢量:个阵点的位置矢量R= ma+ nb+ pc,进行平移可以使点阵复原,表现在晶体结构上就是使在三维空间无限伸展的相同部分得以重复。
R可使在三维空间无限伸展的相同部分得以重复以定义为晶体微观结构平移的方向矢量以定义为晶体微观结构平移的方向矢量。
微观对称元素= 宏观对称元素+ )平移(平移轴、螺旋轴、滑移面)5平移对称性;平移轴;平移群;I P6F C (A, B)14个布喇菲点阵→ 14个平移群三斜晶系: 简单布喇菲点阵:单斜晶系:简单布喇菲点阵,底心布喇菲点阵7a'=a b'=a'=a b'=bb c'=a +c bb c'=(a +c )/2正交晶系简单体心面心和底心点阵正交晶系:简单、体心、面心和底心点阵四方晶系:体心和简单四方点阵三角晶系:简单三角点阵8六角晶系:简单六角点阵立方晶系:简单、面心和体心立方点阵2、螺旋对称轴A: 4; B: 4金刚石0,10,10.50751;30.50.250.75B0.50.250.75A 0,10,10,10.59n=3s=0,τ=0,3次旋转轴s=0=0s=1, τ=T/3, 3,次螺旋轴,右螺旋;,,1s=2, τ=T/3, 3次螺旋轴,左螺旋。
,,次螺旋轴螺旋215n 4次旋转轴n=4s=0,4次旋转轴;11/4T s=1, τ=1/4T ,右螺旋轴41;22/4T 双螺旋轴s=2, τ=2/4T ,中性螺旋轴42,双螺旋轴;s=3左螺旋轴s=3, τ=3/4T ,左螺旋轴43。
第二章晶体结构一、教学要求(1)内容提要:物质通常有三种聚集状态:气态、液态和固态。
而按照原子(或分子)排列的规律性又可将固态物质分为两大类,晶体和非晶体。
晶体中的原子在空间呈有规则的周期性重复排列;而非晶体的原子则是无规则排列的。
原子排列在决定固态材料的组织和性能中起着极重要的作用。
金属、陶瓷和高分子的一系列特性都和其原子的排列密切相关。
一种物质是否以晶体或以非晶体形式出现,还需视外部环境条件和加工制备方法而定,晶态与非晶态往往是可以互相转化的。
本章主要内容包括::晶体学基础;金属的晶体结构;合金相结构;离子晶体结构;共价晶体结构;聚合物的晶态结构;非晶态结构。
(2)基本要求掌握晶体的空间点阵、晶胞、晶向和晶面指数、晶体的对称性等结晶学基础知识,了解32种点群和230种空间群等;掌握三种典型的金属晶体结构、合金相结构、离子晶体结构和硅酸盐晶体结构,了解共价晶体结构和分子与高分子晶体结构。
(3)重点难点重点:结晶学基本原理及典型的金属晶体、合金相、离子晶体结构。
难点:空间点阵、非化学计量化合物和鲍林规则。
(4)主讲内容①晶体学基础;②金属的晶体结构;③合金相结构;④离子晶体结构;⑤共价晶体结构;⑥聚合物晶体结构。
《第二章晶体结构》目录——引言——晶体的结构特征与基本性质(1.0h)2.1晶体结构的周期性(4.0-6.0h)2.2.1点阵与平移群一、点阵结构与点阵(1)一维点阵结构与直线点阵;(2)二维点阵结构与平面点阵(3)三维点阵结构与空间点阵二、点阵的条件与性质(1)定义;(2)条件;(3)点阵与点阵结构的对应关系。
2.2.2点阵单位与点阵参量一、点阵单位与点阵常数(1)直线点阵单位与线段参数(2)平面点阵单位与网格参数(3)空间点阵单位与晶胞参数二、其他晶体结构参数(1)(原子)阵点坐标与原子间距;(2)晶向(直线点阵)指数(3)晶面(平面点阵)指数;(4)晶面间距与晶面夹角(5)晶带与晶带定律三、极射投影*2.2.3 倒易点阵与晶体衍射*2.2晶体结构的对称性(4.0h)2.3.1对称性的基本概念——对称及其对称元素与对称操作2.3.2宏观对称性—晶体外形(有限)表现的对称性—点对称性一、点对称操作与宏观对称元素;二、点群及其表示方法——32个点群(晶类);三、晶系与空间点阵型式——7种晶系与14种布拉菲点阵2.3.3微观称对性—晶格基元(无限)排列的对称性—体对称性一、空间对称操作与微观对称元素;二、空间群及其表示方法;三、等效点系——2.3.4点群与空间群的关系2.3.4 晶体结构符号2.3典型晶体结构分析(8.0h)2.3.1金属晶体结构2.3.2共价晶体结构2.3.3离子晶体结构2.3.4分子晶体结构2.3.5高分子(晶体)结构2.4 合金相结构2.2晶体结构的对称性——强调:对称操作与矩阵变换(点阵与矩阵)2.2.1对称性的基本概念——对称的概念(定义与划分)擅长形象思维的中国人在西汉〈韩诗外传〉就有:“凡草木花(注:有生命)多五出,雪花(注:无生命)独六出。
晶体的对称分类体系及特点
晶体的对称是由晶体的空间格子构造规律所决定,尽管自然界各种晶体的形态、物理化学性质等差别很大,但其晶体结构内部可具有相同的对称特点,导致晶体形态的对称型仅有32种。
科学上将32晶类按照各晶类的对称特点划分为7个晶系,根据各晶系中有、无高次轴,有一个高次轴和多个高次轴,进一步将7个晶系分成3个晶族,它们的对称特点分别是:
①低级晶族:无高次轴,包括三斜、单斜、斜方三个晶系。
②中级晶族:一个高次轴,包括三方、四方、六方三个晶系。
③高级晶族:多个高次轴,包括等轴一个晶系
晶体的对称性的特点:
①微观对称。
所有的晶体都具有晶体内部结构的对称,即微观的对称。
②晶体的对称受格子构造性质的限制。
晶体的对称是有限的,它遵循“晶体对称定律”。
③晶体的对称不仅体现内部结构和几何外形上,同时也体现在物理性质上,比如光学、力学、热血、电学性质等。