晶体的对称性
- 格式:pdf
- 大小:664.73 KB
- 文档页数:21
晶体对称性
晶体性质
晶体具异向性,并不排斥在某些特定的方向上性质相同。
这是因为在晶体的格子构造中,这些方向质点的排列是一样的,这就是晶体的对称性,表现在晶体外形上,即相等的晶面、晶棱和角顶有规律地重复出现。
晶体的对称性是晶体极其重要的性质。
中文名称
晶体对称性
英文名称
symmetry of crystal
定义
根据晶体其对称元素进行对称操作,能使其等同部分产生规律性的重合特性。
应用学科
材料科学技术(一级学科),材料科学技术基础(二级学科),材料科学基础(三级学科),材料组织结构(四级学科)
晶体的格子构造是晶体实现最小内能的结果。
由于晶体具有最小的内能,所以处于相对稳定的状态,这就是晶体的稳定性。
晶体只有在得到外来能量时,才能破坏其稳定性,有使之向非晶质转化。
这一点可以从晶体的加热曲线得到证明。
物体(或图形)中,其相同部分之间的有规律的重复。
例:蝴蝶、花冠、建筑物、面容、服饰等。
二. 晶体对称的特点晶体的对称表现为晶面、晶棱、角顶作有规律的重复——宏观对称。
晶体的对称性是由晶体的格子构造所决定的,研究晶体的对称性对于认识晶体的各项性质和划分晶体具有重要意义。
1.完全性:所有晶体都具有对称性。
(质点在三维空间有规律的重复——格子构造所决定的);2.有限性:晶体的对称要素是有限的。
要受到晶体对称规律的控制:不出现5次或高于6次的对称轴;3.一致性(表里如一):晶体的对称不仅体现在外形上,也体现在物理性质上,即:不仅包含几何意义,还包含物理化学意义。
三。
对称操作(变换)和对称要素的概念对称操作——指能够使对称物体中的各个相同部分作有规律重复的变换动作。
如,旋转、反映、反伸、旋转反伸等。
对称要素——指在进行对称变换时所凭借的几何要素(点、线、面)。
四. 晶体宏观的对称要素1. 对称面(P)对称面为一假想的面,相对应的对称变换是反映,它使图形平分成两个镜像相等的部分。
对称面的寻找:1)垂直并平分晶面;2)垂直并平分晶棱;3)包含晶棱并穿过角顶。
注意:a. 晶体中可以没有对称面,也可以有对称面,但最多只能有9个对称面;b 必须通过晶体中心,其出现的位置多垂直并平分于晶面或晶棱;c 寻找对称面时要尽量避免转动模型,以免造成重复;d 对称面的数目写在前面:如,9P。
2. 对称轴(Ln)对称轴为一假想的直线,相对应的对称操作是围绕此直线的旋转。
旋转一定角度后可使相同(等)部分重复。
轴次(n)——旋转一周重复的次数;基转角(α)——重复时所旋转的最小角度。
二者之间的关系为n = 360°/ α。
晶体的对称定律(晶体对称的有限性所决定):晶体中只能出现轴次为1、2、3、4、6的对称轴,而不能出现5次或高于6次的对称轴(准晶体则可以出现)。
对称轴的寻找:1)通过晶棱中点且垂直该晶棱的直线——L2;2)通过晶面中心且垂直该晶面的直线——L2、L3、L4、L6;3)通过角顶的直线——L3、L4、L6。
晶体对称性晶体对称性是晶体学研究的一个重要组成部分,它是晶体结构的关键,可以解释晶体的外观、性质以及界面问题。
其中,最常见的是空间群,它用数学表示法确定变换的形式。
接下来,让我们来更多地了解晶体对称性:一、空间群1. 什么是空间群:空间群是一种变换群,也是对称性理论的基础,可以描述物体在特定坐标系中的集合子空间上的空间操作。
举个例子,如果一个物体只可以在空间系中做180°旋转,那么它就只具有一种(即旋转)拓扑群。
2. 空间群划分:空间群可以根据对称性来划分,主要包括有限对称群、无限对称群和单调对称群三类。
其中,有限对称群表示法子群的形状、大小或空间构造不变;无限对称群指的是无限种变换,其轴心、空间点或空间构造不变;而单调的对称群是单一的元素组成的,在该空间群中任何对称性都不变。
二、对称性1. 什么是对称性:对称性是空间群的基础,一般来说,它表示物体在某种坐标下有特定形状和空间操作的属性,也可以用数学表示法来表达这种特征。
2. 对称性的类型:对称性的类型可以分为四大类,分别是正交对称性、立体对称性、平面对称性和点对称性。
其中,正交对称性主要涉及空间中的空间坐标变换,立体对称性是指物体在立体坐标系下的操作,而平面对称性是指物体在平面坐标系下的操作,而点对称性则是指物体在特定空间构造下的操作。
三、晶体对称性1. 晶体对称性是什么:晶体对称性是晶体学研究的一个重要组成部分,它涉及到晶体结构的外观、性质以及界面问题的解释。
2. 晶体对称性的应用:晶体对称性可以用来研究和设计多种材料,如金属、半导体、有机分子晶体、生物晶体等,它们是将材料化学性质同物理性质关联起来,从而更好地理解材料的特性。
此外,晶体对称性也可用于分类、指导结构分析以及材料的设计和合成等。
四、总结从上文可以看出,晶体对称性是一个非常重要的概念,它不仅仅可以用来描述物体的形状、大小和空间结构,而且可以应用于许多不同的领域,如材料的研究与设计等。
晶体的对称性晶体因为有了对称,所以才有了他的美丽、永恒,下面重点说下他的对称性一. 对称的概念物体(或图形)中,其相同部分之间的有规律的重复。
例:蝴蝶、花冠、建筑物、面容、服饰等。
二. 晶体对称的特点晶体的对称表现为晶面、晶棱、角顶作有规律的重复——宏观对称。
晶体的对称性是由晶体的格子构造所决定的,研究晶体的对称性对于认识晶体的各项性质和划分晶体具有重要意义。
1.完全性:所有晶体都具有对称性。
(质点在三维空间有规律的重复——格子构造所决定的);2.有限性:晶体的对称要素是有限的。
要受到晶体对称规律的控制:不出现5次或高于6次的对称轴;3.一致性(表里如一):晶体的对称不仅体现在外形上,也体现在物理性质上,即:不仅包含几何意义,还包含物理化学意义。
三。
对称操作(变换)和对称要素的概念对称操作——指能够使对称物体中的各个相同部分作有规律重复的变换动作。
如,旋转、反映、反伸、旋转反伸等。
对称要素——指在进行对称变换时所凭借的几何要素(点、线、面)。
四. 晶体宏观的对称要素1. 对称面(P)对称面为一假想的面,相对应的对称变换是反映,它使图形平分成两个镜像相等的部分。
对称面的寻找:1)垂直并平分晶面;2)垂直并平分晶棱;3)包含晶棱并穿过角顶。
注意:a. 晶体中可以没有对称面,也可以有对称面,但最多只能有9个对称面;b 必须通过晶体中心,其出现的位置多垂直并平分于晶面或晶棱;c 寻找对称面时要尽量避免转动模型,以免造成重复;d 对称面的数目写在前面:如,9P。
2. 对称轴(Ln)对称轴为一假想的直线,相对应的对称操作是围绕此直线的旋转。
旋转一定角度后可使相同(等)部分重复。
轴次(n)——旋转一周重复的次数;基转角(α)——重复时所旋转的最小角度。
二者之间的关系为n = 360°/ α 。
晶体的对称定律(晶体对称的有限性所决定):晶体中只能出现轴次为1、2、3、4、6的对称轴,而不能出现5次或高于6次的对称轴(准晶体则可以出现)。
浅谈晶体物理性质的对称性
晶体是由规则排列的离子、原子或分子构成的大规模分子结构,具有明显的晶体物理性质的对称性。
这种对称性可分为三种:空间对称性、光学对称性和门梁对称性。
一、空间对称性:
晶体的对称性决定了其外形,因此可以称之为“空间对称性”。
晶体的空间对称性可分为几何对称、点对称和面对称。
几何对称就是晶体位形,由多个元素平面和角组合而成,每一个元都可折叠到一个点。
点对称是指晶体的外形,在任意一整面可看做有规律的点状外形,由来自同一点的元素折叠而成,因此,其空间对称性也可以说是点对称。
面对称是由两个对面的元素折叠而成,因此,其空间对称性也可以说是面对称。
二、光学对称性:
大部分物质都具有双折射特性,即晶格结构中的离子、原子或分子可以阻挡透过去的光线,从而诞生出某种对称的折射现象,这种特性被称为“光学对称性”。
晶体的光学对称性可以表示为反射、折射、旋转等,反射和折射是典型的光学对称现象,旋转则是在一定范围内把光线转动,而不会影响其它属性。
三、门梁对称性:
也叫等值线对称性,指晶体内测得的各种基态的能量在某些轴向上有对称性,即在垂直于该轴的某条波前,能量均为相等的值,而不会随外部环境的变化而而变化,这种对称现象被称为“门梁对称性”。
晶体学中的晶体对称性与晶体结构研究简介晶体学是自然科学中一门研究晶体结构和性质的学科。
晶体的对称性和结构是晶体学的重要内容。
晶体学的研究不仅有基础研究价值,还有着广泛的应用价值。
本文将从晶体对称性角度出发,探讨晶体结构研究的方法和应用。
晶体对称性晶体对称性是指晶体内部各部分具有相同的排列规律和几何形状。
在晶体学中,对称性是衡量晶体完美度的重要指标之一。
晶体对称性有两种:点对称性和空间对称性。
点对称性是指在晶体中存在一个点,经过该点进行旋转、镜像后,晶体的内部结构与原来完全相同。
空间对称性是指晶体在三维空间中存在对称操作,包括:旋转、镜像和反演。
常见的点对称性包括:• 二重轴对称性:具有一个旋转轴,使得晶体绕该轴旋转180°之后,晶体内部结构不变。
• 旋转对称性:具有一个旋转轴,使得晶体绕该轴旋转360/n,n为正整数,晶体内部结构不变。
• 镜像对称性:具有一个镜面,可以将晶体分为两个相等的部分,其中一部分镜像另一部分。
• 反演对称性:把晶体的每个点关于一个特定点反转,即点P 关于点O反演以后的点P'在O点所连的向量上,并且OP'=OP。
常见的空间对称性包括:• 立方晶系:八面体对称性,有三个互相垂直的二重对称轴和四个三重对称轴。
• 正六角柱晶系:具有六重对称轴和三个对面对称面。
• 单斜晶系:具有垂直于晶面的二重对称轴和平行于晶面的镜面对称性。
• 菱面体晶系:具有正四面体对称性和八面体对称性。
晶体结构研究晶体结构研究是晶体学的重要组成部分,其目的是通过测定晶体结构,揭示其性质和物理、化学等科学规律,从而为新材料开发和新制备方法提供依据。
测定晶体结构需要使用X射线衍射和电子衍射等技术。
现代技术使得晶体结构的测定更加快速、精确。
应用晶体学的应用范围很广,包括:• 材料科学:晶体学为材料科学领域提供了重要手段,例如材料的研究、优化和制备。
• 生物科技:晶体学技术为生物分子结构研究提供了关键信息,如解决蛋白质三维结构、探寻酶催化机理等。