2.1 晶体的对称原理
- 格式:pptx
- 大小:6.96 MB
- 文档页数:39
三种晶体结构的最密排晶面和最密排晶向1.引言1.1 概述晶体是具有长程有序排列的原子、离子或分子的固体物质。
晶体的结构是由最密排列的晶面和晶向构成的。
最密排晶面是指在晶体结构中,原子、离子或分子最紧密地靠近的面,而最密排晶向则指的是在晶体中最紧密地排列的方向。
本文将分析三种不同的晶体结构,探讨它们各自的最密排晶面和最密排晶向。
通过深入研究这些结构的排列方式,可以更好地理解晶体的性质和行为。
第一种晶体结构是立方晶系,也是最简单的晶体结构之一。
它的最密排晶面是(111)晶面,最密排晶向则是[110]晶向。
这些晶面和晶向在晶体中具有紧密的排列,使晶体的结构呈现出高度的对称性。
第二种晶体结构是六方晶系,它相对于立方晶系而言稍复杂一些。
在六方晶系中,最密排晶面是(0001)晶面,最密排晶向是[10-10]晶向。
与立方晶系不同,六方晶系具有六方对称性,呈现出更复杂的晶体结构。
第三种晶体结构是四方晶系,它也是一种常见的晶体结构。
在四方晶系中,最密排晶面是(100)晶面,最密排晶向是[110]晶向。
四方晶系的晶体结构与立方晶系相似,但具有更多的对称性和排列方式。
通过对这三种晶体结构的最密排晶面和最密排晶向进行研究,我们可以更好地理解晶体的基本结构和性质。
这对于材料科学、凝聚态物理和相关领域的研究具有重要意义,同时也有助于开发新材料和改进现有材料的性能。
1.2文章结构文章结构部分的内容可以包括以下几个方面的介绍:1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分概述了晶体结构和最密排晶面、最密排晶向的研究背景和重要性,并提出了本文研究的目的和意义。
正文部分分为三个小节,分别介绍了三种晶体结构的最密排晶面和最密排晶向。
每个小节将首先介绍该种晶体结构的一般特点和常见应用,然后详细讨论最密排晶面和最密排晶向的确定方法和规律,并给出具体的实例和数据进行说明。
结论部分对于每种晶体结构的最密排晶面和最密排晶向进行总结和回顾,并指出各种晶体结构最密排晶面和最密排晶向的综合特点和应用前景。
材料科学基础第2 章2.1.1 球体堆积(上)一球体紧密堆积原理二等大球体六方紧密堆积问题提出 构成晶体的质点在空间是如何排列的?如何描述NaCl 的晶体结构? 氯离子是如何排列的? 钠离子又是如何排列的?Na + Cl - Cl - Na + Na + Na + Cl - Cl - Na + Cl - Na + Na + Cl - Cl - Na + Cl - Na + Cl - Na + Cl -Cl - Na +Na + Na + Cl - Cl - Na + 有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)球体紧密堆积原理离子结合 球体堆积晶体结合 遵循势能 最低原则球体紧密 堆积球体紧密堆积示意图AA A A AA A A A A A A A A A A BB B B B B BB B B BB BB CC C C C C C CC C C C C C C C 球体的二维密排球体相互接触 每三个球体间形成弧形三角形空隙1 23456球体的二维密排1 23564球体堆积第二层最紧密的堆积方式是将球对准1,3,5位。
( 或对准2,4,6位,其情形是一样的 )AB堆积第三层,第一种是将球对准第一层的球。
12 3 4 5 6每两层形成一个周期,即 AB AB 堆积方式,形成六方紧密堆积---ABAB 型。
配位数 12 。
( 同层 6,上下层各 3 )A B A B A 六方紧密堆积的前视图堆积第三层,第一种是将球对准第一层的球。
AB六方晶胞——六方密堆积密排面。
第一章晶体与非晶体★相当点(两个条件:1、性质相同,2、周围环境相同。
)★空间格子的要素:结点、行列、面网★晶体的基本性质:自限性: 晶体能够自发地生长成规则的几何多面体形态。
均一性:同一晶体的不同部分物理化学性质完全相同。
晶体是绝对均一性,非晶体是统计的、平均近似均一性。
异向性:同一晶体不同方向具有不同的物理性质。
例如:蓝晶石的不同方向上硬度不同。
对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。
最小内能性:晶体与同种物质的非晶体相比,内能最小。
稳定性:晶体比非晶体稳定。
■本章重点总结:本章包括3组重要的基本概念:1) 晶体、格子构造、空间格子、相当点;它们之间的关系。
2) 结点、行列、面网、平行六面体; 结点间距、面网间距与面网密度的关系.3) 晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。
第二章晶体生长简介2.1 晶体形成的方式★液-固结晶过程:⑴溶液结晶: ①降温法②蒸发溶剂法③沉淀反应法⑵熔融结晶: ①熔融提拉②干锅沉降③激光熔铸④区域熔融★固-固结晶过程:①同质多相转变②晶界迁移结晶③固相反应结晶④重结晶⑤脱玻化2.2 晶核的形成●思考:怎么理解在晶核很小时表面能大于体自由能,而当晶核长大后表面能小于体自由能?因为成核过程有一个势垒:能越过这个势垒的就可以进行晶体生长了,否则不行。
★均匀成核:在体系内任何部位成核率是相等的。
★非均匀成核:在体系的某些部位(杂质、容器壁)的成核率高于另一些部位。
●思考:为什么在杂质、容器壁上容易成核?为什么人工合成晶体要放籽晶?2.3 晶体生长★层生长理论模型(科塞尔理论模型)层生长理论的中心思想是:晶体生长过程是晶面层层外推的过程。
★螺旋生长理论模型(BCF理论模型)●思考:这两个模型有什么联系与区别?联系:都是层层外推生长;区别:生长新的一层的成核机理不同。
●思考:有什么现象可证明这两个生长模型?环状构造、砂钟构造、晶面的层状阶梯、螺旋纹2.4 晶面发育规律★★布拉维法则(law of Bravais):晶体上的实际晶面往往平行于面网密度大的面网。
结晶化学导论2013年9月《结晶化学导论》课程笔记目录序言: (3)第一部分:晶体宏观对称性 (4)1.1 晶体的投影 (4)1.2 晶体的对称原理 (6)1.3 10种宏观对称元素组合原理 (13)1.4 晶体的32点群—晶体共有32种宏观对称类型 (19)1.5 依据32种点群进行晶体分类 (27)1.6 32种点群符号对应关系: (28)1.7 晶体的定向: (31)1.8 Bravais定律(决定晶体生长形态的内因) (33)1.9 晶体的晶形 (34)第二部分晶体的微观对称性 (39)2.1 7大晶系(讨论平行六面体(格子)的形状和对称性) (40)2.2 14种布拉维格子 (43)2.3 晶体的独立微观对称元素(共26种) (51)2.4 微观对称元素组合原理 (58)2.5 单位晶胞的投影及其符号表示 (61)2.6 晶体的230种空间群(空间对称群) (62)2.7 等效点系 (69)2.8 晶体微观对称性总结 (72)第三部分晶体X射线衍射基本原理 (74)3.1 X射线的产生 (74)3.2 X射线与物质的相互作用 (77)3.3 X射线衍射原理 (79)3.4 Laue方程 (81)3.5 布拉格方程 (86)3.6 Bragg方程和Laue方程的等价推导(以立方晶系为例) (89)3.7 倒易点阵 (89)g(倒格矢) (92)3.8 倒易点阵的向量推导—倒易矢量hkl3.9 7大晶系的面间距公式 (94)3.10 衍射的Ewald作图与衍射方法 (95)3.11 非单质结构的衍射 (98)3.12 X射线衍射的强度分析(消光) (100)第四部分:X射线粉末衍射及应用 (113)4.1 X射线粉末衍射原理及仪器构造 (113)4.2 X射线粉末衍射样品制备 (114)4.3 测定晶胞参数需要注意的两个问题 (116)4.4 X射线物相分析 (117)4.5 粉末衍射指标化 (121)4.6 粉末衍射结构分析 (127)第五部分:结晶化学概论 (130)5.1 等径球的密堆积 (130)5.2 其他密堆积类型 (134)5.3立方最密堆积A1,体心立方密堆积A2,六方最密堆积A3分析 (137)5.4 多层堆积的表示方法 (145)5.5 不等径球的密堆积 (146)5.6 分子的堆积 (156)5.7 结晶化学定律 (159)第六部分:典型结构化合物的结晶化学 (167)序言:这本《结晶化学导论笔记》是我自己在学习过程中整理的,笔记的整体框架以老师上课的PPT为基础。
廊坊师范学院本科生毕业论文论文题目:晶体的对称性论文摘要:对称性在物理研究的应用中非常广泛,从对称性的角度出发,可以研究许多物理问题。
本文则主要是从几个不同的方面对晶体的对称性进行论述。
首先,介绍国内外有关晶体对称性的历史发展过程;其次,从宏观对称性和微观对称性对晶体的对称性做进一步的阐述和说明。
在宏观方面:简述宏观对称元素和点对称操作、限制宏观对称性的基本原理、32种空间点群以及7个晶系和14种布拉菲格子的简单证明。
在微观方面:介绍微观对称元素和对称类型以及空间操作;再次,简要说明晶体的宏观对称性和微观对称性的区别与联系。
最后,介绍准晶(准周期晶体)对称理论的历史及其发展概况。
关键词:晶体的对称性;宏观对称性;微观对称性;对称元素;准晶(准周期晶体)Abstract:Nowadays, the application of symmetry in physics is very broad. From the perspective of symmetry, we can study many physical problems. This paper wasmainly from several different aspects to discuss the symmetry of the crystal. First,introduce the development of symmetry of crystal between domestic and foreignhistory. Second, to elaborate and explanted the symmetry of crystal furtherbetween Macro- symmetry and Micro-symmetry .At the macro level, describe themacro elements、point symmetry operation、the basic principles of limit formacro-symmetry、32 kinds of space group and a simple demonstrate of 7 and 14Bluff crystal lattice .At the micro level, overview the elements and type ofmicrocosmic symmetry and space operation. Third, we will have a briefdescription of the differences and similarities between Macro- symmetry andMicro-symmetry .Last; describe the history and its development of Quasi-crystalsymmetry theory.Key word:symmetry of crystal;macroscopic symmetry of crystal;microcosmic symmetry of crystal;symmetry element;quasiperiodic crystal目录论文摘要、关键词 (1)1.晶体对称性研究的历史发展过程 (3)1.1 17世纪中叶——19世纪末 (3)1.2 20世纪初——20世纪70年代 (4)2.晶体的宏观对称性 (5)2.1 宏观对称元素和点对称操作 (6)2.2 限制宏观对称性的基本原理 (6)2.3 宏观对称元素的组合与32种点群 (7)2.4 7个晶系和14种布拉菲格子 (8)2.4.1 7个晶系 (8)2.4.2 14种点阵 (12)3.晶体的微观对称性 (14)3.1 晶体的微观对称元素 (14)3.2 晶体的微观对称类型与230个空间群 (15)4.晶体宏观对称性和微观对称性的关系 (15)5.准晶对称理论 (16)参考文献 (21)1 晶体对称性研究的历史发展过程晶体学属于近代科学,尽管在遥远的古代具有规则多面体的矿物晶体就已引起人们的极大的兴趣和注意,然而在人类的蒙昧时期,瑰丽多彩的晶体却被具有魔力的神话和荒诞不经的迷信所统治,晶体学自17世纪中叶诞生,时至今日已有三百余年的历史。
第二章 固体的结合晶体中粒子的相互作用力可以分为两大类,即吸引力和排斥力,前者在远距离是主要的,后者在近距离是主要的;在某一适当的距离,两者平衡,使晶格处于稳定状态。
吸引作用来自于异性电荷的库仑作用;排斥作用源于:一、同种电荷之间的库仑作用,二、泡利原理所引起的作用。
固体的结合根据结合力的性质分为四种基本形式:⎪⎪⎩⎪⎪⎨⎧范德瓦尔结合金属性结合共价性结合离子性结合 实际结合可能是兼有几种结合形式或者具有两种结合之间的过渡性质。
§2-1 离子性结合离子性结合的基本特点是以离子而不是以原子为结合的单位,结合的平衡依靠较强的静电库仑力,要求离子间相间排列。
其结构比较稳定,结合能为800千焦耳/摩尔数量级。
结合的稳定性导致导电性能差、熔点高、硬度高和膨胀系数小等特点。
以N a Cl 晶体为例,由于N a +和 Cl -离子满壳层的结构,具有球对称结构,可以看成点电荷,若令r 表示相邻离子的距离,则一个正离子的平均库仑能为:∑++-++321321,,2122322222102)(4)1(21n n n n n n r n r n r n q πε这里n 1,n 2,n 3为整数且不能同时为零。
一个元胞的库仑能为:απεπεr q n n n r q n n n n n n 02,,21232221024)()1(4321321-≡∑++-++上式中α为无量纲量,称为马德隆常数。
当邻近离子的电子云显著重叠时,将出现排斥,其能量可以由下式描述:n r rr bbe 或者0-因此含N 个元胞的晶体的系统内能可以表示为:)(nr B r A N U +-= 其和体积或者晶格常数的关系如下图(1) 晶格常数结合最稳定时的原子间距即为晶格常数,由下式决定0)(0=∂∂=r r r r U(2) 压缩系数压缩系数定义为单位体积的改变随单位压强的变化的负值,即:T pV V )(1∂∂-=κ 由热力学第一定律有:pdV dU -=(这里忽略了热效应),则压缩系数为:TV UV )(122∂∂=κ 体弹性模量为:κ1=K(3) 抗张强度晶体能够承受的最大张力,叫抗张强度。
第二章晶体结构一、教学要求(1)内容提要:物质通常有三种聚集状态:气态、液态和固态。
而按照原子(或分子)排列的规律性又可将固态物质分为两大类,晶体和非晶体。
晶体中的原子在空间呈有规则的周期性重复排列;而非晶体的原子则是无规则排列的。
原子排列在决定固态材料的组织和性能中起着极重要的作用。
金属、陶瓷和高分子的一系列特性都和其原子的排列密切相关。
一种物质是否以晶体或以非晶体形式出现,还需视外部环境条件和加工制备方法而定,晶态与非晶态往往是可以互相转化的。
本章主要内容包括::晶体学基础;金属的晶体结构;合金相结构;离子晶体结构;共价晶体结构;聚合物的晶态结构;非晶态结构。
(2)基本要求掌握晶体的空间点阵、晶胞、晶向和晶面指数、晶体的对称性等结晶学基础知识,了解32种点群和230种空间群等;掌握三种典型的金属晶体结构、合金相结构、离子晶体结构和硅酸盐晶体结构,了解共价晶体结构和分子与高分子晶体结构。
(3)重点难点重点:结晶学基本原理及典型的金属晶体、合金相、离子晶体结构。
难点:空间点阵、非化学计量化合物和鲍林规则。
(4)主讲内容①晶体学基础;②金属的晶体结构;③合金相结构;④离子晶体结构;⑤共价晶体结构;⑥聚合物晶体结构。
《第二章晶体结构》目录——引言——晶体的结构特征与基本性质(1.0h)2.1晶体结构的周期性(4.0-6.0h)2.2.1点阵与平移群一、点阵结构与点阵(1)一维点阵结构与直线点阵;(2)二维点阵结构与平面点阵(3)三维点阵结构与空间点阵二、点阵的条件与性质(1)定义;(2)条件;(3)点阵与点阵结构的对应关系。
2.2.2点阵单位与点阵参量一、点阵单位与点阵常数(1)直线点阵单位与线段参数(2)平面点阵单位与网格参数(3)空间点阵单位与晶胞参数二、其他晶体结构参数(1)(原子)阵点坐标与原子间距;(2)晶向(直线点阵)指数(3)晶面(平面点阵)指数;(4)晶面间距与晶面夹角(5)晶带与晶带定律三、极射投影*2.2.3 倒易点阵与晶体衍射*2.2晶体结构的对称性(4.0h)2.3.1对称性的基本概念——对称及其对称元素与对称操作2.3.2宏观对称性—晶体外形(有限)表现的对称性—点对称性一、点对称操作与宏观对称元素;二、点群及其表示方法——32个点群(晶类);三、晶系与空间点阵型式——7种晶系与14种布拉菲点阵2.3.3微观称对性—晶格基元(无限)排列的对称性—体对称性一、空间对称操作与微观对称元素;二、空间群及其表示方法;三、等效点系——2.3.4点群与空间群的关系2.3.4 晶体结构符号2.3典型晶体结构分析(8.0h)2.3.1金属晶体结构2.3.2共价晶体结构2.3.3离子晶体结构2.3.4分子晶体结构2.3.5高分子(晶体)结构2.4 合金相结构2.2晶体结构的对称性——强调:对称操作与矩阵变换(点阵与矩阵)2.2.1对称性的基本概念——对称的概念(定义与划分)擅长形象思维的中国人在西汉〈韩诗外传〉就有:“凡草木花(注:有生命)多五出,雪花(注:无生命)独六出。
《结晶学与矿物学》复习要点结晶学一、基本概念:1.晶体(crystal)的概念:内部质点在三维空间周期性重复排列构成的固体物质。
这种质点在三维空间周期性地重复排列称为格子构造,所以晶体是具有格子构造的固体。
2对称型(class of symmetry)晶体宏观对称要素之组合。
(点群,point group)3.空间群:一个晶体结构中,其全部对称要素的总和。
也称费德洛夫群或圣佛利斯群。
4.单形(Simple form):一个晶体中,彼此间能对称重复的一组晶面的组合。
即能借助于对称型之全部对称要素的作用而相互联系起来的一组晶面的组合。
5.双晶:两个以上的同种晶体,彼此间按一定的对称关系相互取向而组成的规则连生晶体。
6.平行六面体:空间格子中按一定的原则划分出来的最小重复单位称为平行六面体。
是晶体内部空间格子的最小重复单位,是由六个两两平行且相等的面网组成。
7.晶胞:能充分反映整个晶体结构特征的最小结构单元,其形状大小与对应的单位平行六面体完全一致。
8.类质同像:晶体结构中某种质点为性质相似的他种质点所替代,共同结晶成均匀的单一相的混合晶体,而能保持其键性和结构型式不变,仅晶格常数和性质略有改变。
9.同质多像:化学成分相同的物质,在不同的物理化学条件下,形成结构不同的若干种晶体的现象。
10.多型:一种元素或化合物以两种或两种以上层状结构存在的现象。
这些晶体结构的结构单元层基本上是相同的,只是它们的叠置次序有所不同。
二、晶体的6个基本性质1、均一性(homogeneity):同一晶体的任一部位的物理和化学性质性质都是相同的。
2、自限性(property of self-confinement):晶体在自由空间中生长时,能自发地形成封闭的凸几何多面体外形。
3. 异向性(各向异性)异向性(anisotropy):晶体的性质随方向的不同而有所差异。
4. 对称性(property of symmetry):晶体的相同部分(如外形上的相同晶面、晶棱或角顶,内部结构中的相同面网、行列或质点等)或性质,能够在不同的方向或位置上有规律地重复出现。