数值传热学第四章2
- 格式:pdf
- 大小:2.76 MB
- 文档页数:58
习题4-2图4-22 习题4-2插图[解]一维稳态导热问题的控制方程为:0=+⎪⎭⎫ ⎝⎛S dx dT dx d λ 4-2-1 该问题的边界条件为:()⎪⎩⎪⎨⎧=-=-==2,0,1001x T T h dx dT x T f λ 4-2-2分别对节点2,3进行离散,将已知数据代入离散格式中,得到方程组:130232=-T T 4-2-375432=+-T T 4-2-4 联立式(4-2-3)、式(4-2-4),可以解出2T ,3T : 852=T ,403=T 。
下面验证总体守恒性:4-2-5右端3放出的热量为:()()30020401533=-⨯=-=f T T h Q 4-2-6在总体容积内部产生的热量为:2.0150 2.0300S Q S x =⨯∆=⨯=还需要证明左端是绝热条件: 节点2的热平衡为:21851000.550.5150757501T T xS x λ--+∆=+⨯=-+=∆ 左端绝热,所以计算结果符合总体能量守恒。
习题 4-5[解] 根据习题4-2的分析,可以得到节点2的离散方程:130232+=T T 4-5-1对于节点3,应用边界条件:()()1324330.510f f T T S T T T T xλδ--+⨯=-- 4-5-2式(4-5-2)可以整理成:()5432355751020T T T =+-- 4-5-3采用局部线性化方法,可以得到:()()()()515***444333331020102012.520T T T T T -=-+-- 4-5-4节点3的离散方程表示成:()()()51**44323335575 2.52012.52020T T T T T =++---- 4-5-5迭代求解得出:2382.82;35.64T T == 检验热平衡:内热源生成热1300φ=; 右端散热5/4210(35.6420)311.0h T φ=∆=-=左端散热382.821000.5150510.91φ-=⨯+⨯=-所以123()30031110.90φφφ-+=-+≅不作热平衡扣0.5 分。
4-1解:采用区域离散方法A 时;网格划分如右图。
内点采用中心差分123278.87769.9T T T === 22d T T=0dx - 有 i+1i 122+T 0i i T T T x ---=∆ 将2点,3点带入321222+T 0T T T x --=∆ 即321209T T -+= 432322+T 0T T T x --=∆4321322+T 0T T T x --=∆ 即4321209T T T -+-= 边界点4(1)一阶截差 由x=1 1dT dx =,得 4313T T -= (2)二阶截差 11B M M q x x x T T S δδλλ-=++V 所以 434111. 1.36311T T T =++ 即 43122293T T -=采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ⎛⎫⎛⎫--∆= ⎪ ⎪⎝⎭⎝⎭ 所以代入2点4点有322121011336T T T T T ----= 即 239028T T -= 544431011363T T T T T ----= 即 34599 02828T T T -+=对3点采用中心差分有 432322+T 013T T T --=⎛⎫ ⎪⎝⎭ 即 2349901919T T T -+= 对于点5 由x=1 1dT dx =,得 5416T T -= (1)精确解求左端点的热流密度由 ()21x x e T e e e -=-+ 所以有 ()220020.64806911x x x x dTe e q e e dx e e λ-====-+=-=++ (2)由A 的一阶截差公式(3)由B 的一阶截差公式(4)由区域离散方法B 中的一阶截差公式:通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3解:将平板沿厚度方向3等分,如图由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为x=0, T 0=75℃x=0.1 dT =h(T-T )dx f λ-1点 ,2点采用中心差分有21022+T 0T T S xλ-+=∆ (1) 32122+T 0T T S x λ-+=∆ (2) 右端点采用一阶截差的离散231f hx T T T x h λλ⎡⎤+⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭V (3) 右端点采用二阶截差的离散代入(1)(2)(3)得1223132280.62 5.67625T T T T T T T -=--=-= 解得123278.87769.9T T T ===代入(4)得解得 12380.6380.6675.1T T T ===精确解 22d T +S=0dxλ (4) x=0, T 0=75℃ (5) x=0.1 dT =h(T-T )dxf λ- (6)代入数据积分的将 x 1=10.13⨯,x 2=20.13⨯, x 3=0.1T 1=80.56 T 2=80.56 T 3=75.1通过比较可得右端点采用二阶截差的离散更接近真实值。
数值传热学4-9章习题答案习题4-2一维稳态导热问题的控制方程:022=+∂∂S xTλ依据本题给定条件,对节点2节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程:节点1:1001=T 节点2:1505105321-=+-T T T 节点3:75432=+-T T 求解结果:,852=T 403=T 对整个控制容积作能量平衡,有:2150)4020(15)(3=⨯+-⨯=∆+-=∆+x S T T h x S q f f B 即:计算区域总体守恒要求满足习题4-5在4-2习题中,如果,则各节点离散方程如下:25.03)(10f T T h -⨯=节点1:1001=T 节点2:1505105321-=+-T T T 节点3:25.03325.032)20(4015])20(21[-⨯+=-⨯++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算;求解结果:,(迭代精度为10-4)818.822=T 635.353=T 迭代计算的Matlab 程序如下:x=30;x1=20;while abs(x1-x)>0.0001a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b;x1=x;x=t(3,1);endtcal=t习题4-12的Matlab程序%代数方程形式A i T i=C i T i+1+B i T i-1+D imdim=10;%计算的节点数x=linspace(1,3,mdim);%生成A、C、B、T数据的基数;A=cos(x);%TDMA的主对角元素B=sin(x);%TDMA的下对角线元素C=cos(x)+exp(x); %TDMA的上对角线元素T=exp(x).*cos(x); %温度数据%由A、B、C构成TDMAcoematrix=eye(mdim,mdim);for n=1:mdimcoematrix(n,n)=A(1,n);if n>=2coematrix(n,n-1)=-1*B(1,n);endif n<mdimcoematrix(n,n+1)=-1*C(1,n);endend%计算D矢量D=(coematrix*T')';%由已知的A、B、C、D用TDMA方法求解T%消元P(1,1)=C(1,1)/A(1,1);Q(1,1)=D(1,1)/A(1,1);for n=2:mdimP(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1));Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end%回迭Tcal(1,mdim)=Q(1,mdim);for n=(mdim-1):-1:1Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);endTcom=[T;Tcal];%绘图比较给定T值和计算T值plot(Tcal,'r*')hold onplot(T)n gin th a r e 结果比较如下,由比较可知两者值非常切合(在小数点后8位之后才有区别):习题4-14充分发展区的温度控制方程如下:)(1rTr r r x T uc p ∂∂∂∂=∂∂λρ对于三种无量纲定义、、进行分析如下w b w T T T T --=Θ∞∞--=ΘT T T T w ww T T T T --=Θ∞1)由得:wb wT T T T --=Θww b T T T T +Θ-=)(由可得:T x T x T x T T T x T w b w w b ∂∂Θ-+∂∂Θ=∂+Θ-∂=∂∂)1(])[(rT r T T r T T T r T w w b w w b ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂)1()(])[(由与无关、与无关以及、的表达式可知,除了均匀的情况外,该无量b T r Θx x T ∂∂rT∂∂w T 纲温度定义在一般情况下是不能用分离变量法的;2)由得:∞∞--=ΘT T T T w ∞∞+Θ-=T T T T w )(由可得:T xT x T T T x T w w ∂∂Θ=∂+Θ-∂=∂∂∞∞])[(rT r T T r T T T r T w w w ∂∂Θ+∂Θ∂-=∂+Θ-∂=∂∂∞∞∞)(])[(由与无关、与无关以及、的表达式可知,在常见的四种边界条件中除了b T r Θx x T ∂∂rT ∂∂轴向及周向均匀热流的情况外,有,则该无量纲温度定义是可以用分const q w =0=∂∂rT w离变量法的;3)由得:wwT T T T --=Θ∞ww T T T T +Θ-=∞)(由可得:T xT x T T T x T w w w ∂∂Θ-=∂+Θ-∂=∂∂∞)1(])[(r T T r T T T r T w w w -+∂Θ∂-=∂+Θ-∂=∂∂∞∞1()(])[(同2)分析可知,除了轴向及周向均匀热流const q w =温度定义是可以用分离变量法的;习题4-181)采用柱坐标分析,写出统一的稳态柱坐标形式动量方程:S r r r r r r x x w r v r r r u x +∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂(1)(1)()(1)(1)(θφλθφλφλφρθφρφρ、和分别是圆柱坐标的3个坐标轴,、和分别是其对应的速度分量,其中x r θu v w 是管内的流动方向;x 对于管内的层流充分发展有:、,;0=v 0=w 0=∂∂xu并且方向的源项:x x pS ∂∂-=方向的源项:r r pS ∂∂-=方向的源项:θθ∂∂-=pr S 1由以上分析可得到圆柱坐标下的动量方程:方向:x 0)(1)(1=∂∂-∂∂∂∂+∂∂∂∂x pu r r r u r r r θλθλ方向:r 0=∂∂r p 方向:θ0=∂∂θp 边界条件:,R r =0=u ,;对称线上,0=r 0=∂∂r u 0=∂∂θu 不考虑液体的轴向导热,并简化分析可以得到充分发展的能量方程为:)(1(1θλθλρ∂∂∂∂+∂∂∂∂=∂∂Tr r r T r r r x T uc p 边界条件:,;,R r =w q r T =∂∂λ0=r 0=∂∂rT,πθ/0=0=∂∂-θλT2)定义无量纲流速:dxdp R uU 2-=λ并定义无量纲半径:;将无量纲流速和无量纲半径代入方向的动量方程得:R r /=ηx 0))1((1)1((122=∂∂-∂-∂∂∂+∂-∂∂∂xp U dx dp R R R R U dx dp R RR R θληλθηηλληηη上式化简得:011(1(1=+∂∂∂∂+∂∂∂∂θηθηηηηηU U 边界条件:,1=η0=U ,;对称线上,0=η0=∂∂ηU 0=∂∂θU定义无量纲温度:λ/0R q T T b-=Θ其中,是折算到管壁表面上的平均热流密度,即:;0q Rq q wπ=0由无量纲温度定义可得:bT Rq T +Θ=λ0将表达式和无量纲半径代入能量方程得:T η(1)(100θληλθηηλληηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂R q R R R R q R R R x T uc b p 化简得:(1))1(1)(10θηθηηηηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂x T u c q R b p 由热平衡条件关系可以得:mm m b m p b p p RU U q R u u R q A u u dx dT A u c x T u c x T uc 020221221)(===∂∂=∂∂ππρρρ将上式代入式(1)可得:)1(1)(12θηθηηηηη∂Θ∂∂∂+∂Θ∂∂∂=m U U 边界条件:,;,0=η0=∂Θ∂η1=ηR q q w πη10==∂Θ∂,;,0=θ0=∂Θ∂θπθ=0=∂Θ∂θ单值条件:由定义可知: 且: 0/0=-=ΘλR q T T b b b ⎰⎰Θ=ΘAAb UdAUdA 即得单值性条件:=Θ⎰⎰AA UdAUdA 3)由阻力系数及定义有:f Re 228)(21/Re ⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D D U D u u dx dp D f e m e m me νρ且:m W b m W b m W R q T T D T T q Nu ,0,,0~2)/(2Θ=-=-=λλ5-21.一维稳态无源项的对流-扩散方程如下所示: (取常物性)xx u 22∂∂Γ=∂∂φφρ边界条件如下:LL x x φφφφ====,;,00上述方程的精确解如下: 11)/(00--=--⋅Pe L x Pe L e e φφφφΓ=/uL Pe ρ2.将分成20等份,所以有:L ∆=P Pe 20 1 2 3 4 5 6……………………… 17 18 19 20 21对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)中心差分中间节点: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ20,2 =i 2)一阶迎风中间节点: ∆-∆++++=P P i i i 2)1(11φφφ20,2 =i 3)混合格式当时,中间节点: 1=∆P 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ 20,2 =i 当时,中间节点: 10,5=∆P 1-=i i φφ20,2 =i 4)QUICK 格式*12111)35(8122121⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆i i i i i i i P P P P P φφφφφφφ2≠i*1111)336(8122121⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆i i i i i i P P P P P φφφφφφ2=i 数值计算结果与精确解的计算程序如下:%except for HS, any other scheme doesnt take Pe<0 into consideration %expression of exact solutiony=dsolve('a*b*Dy=c*D2y','y(0)=y0,y(L)=yL','x')y=subs(y,'L*a*b/c','t')y=simple(subs(y,'a*b/c*x','t*X'));ysim=simple(sym(strcat('(',char(y),'-y0)','/(yL-y0)')))y=sym(strcat('(',char(ysim),')*(yL-y0)','+y0'))% in the case of Pe=0y1=dsolve('D2y=0','y(0)=y0,y(L)=yL','x')y1=subs(y1,'-(y0-yL)/L*x','(-y0+yL)*X')%grid Pe number tt=[1 5 10];%dimensionless length m=20;%mdim is the number of inner node mdim=m-1;X=linspace(0,1,m+1);%initial value of variable during calculation y0=1;yL=2;%cal exact solution for n=1:size(tt,2) t=m*tt(1,n); if t==0 yval1(n,:)=eval(y1); else yval1(n,:)=eval(y); end end%extra treatment because max number in MATLAB is 10^308if max(isnan(yval1(:))) yval1=yval1'; yval1=yval1(:);indexf=find(isnan(yval1)); for n=1:size(indexf,1) if rem(indexf(n,1),size(X,2))==0 yval1(indexf(n),1)=yL; else yval1(indexf(n),1)=y0; endendyval1=reshape(yval1,size(X,2),size(yval1,1)/size(X,2));yval1=yval1';end%CD solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*tt(1,n))*y0;d(n,mdim)=0.5*(1-0.5*tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval2=TDMA(a,b,c,d,mdim);yval2=[repmat([1],size(tt,2),1),yval2,repmat([2],size(tt,2),1)]; Fig(1,X,yval1,yval2,tt);title('CD Vs. Exact Solution')% FUS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval3=TDMA(a,b,c,d,mdim);yval3=[repmat([1],size(tt,2),1),yval3,repmat([2],size(tt,2),1)]; Fig(2,X,yval1,yval3,tt);title('FUS Vs. Exact Solution')% HS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);if t>2b(n,:)=repmat([0],1,mdim);c(n,:)=repmat([1],1,mdim);d(n,1)=y0;elseif t<-2b(n,:)=repmat([1],1,mdim);c(n,:)=repmat([0],1,mdim);d(n,mdim)=yL;elseb(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*t)*y0;d(n,mdim)=0.5*(1-0.5*t)*yL;endendc(:,1)=0;b(:,mdim)=0;% numerical cal by using TDMA subfuctionyval4=TDMA(a,b,c,d,mdim);yval4=[repmat([1],size(tt,2),1),yval4,repmat([2],size(tt,2),1)]; Fig(3,X,yval1,yval4,tt);title('HS Vs. Exact Solution')%QUICK Solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval5=zeros(size(tt,2),mdim);yval5com=yval5+1;counter=1;%iterativewhile max(max(abs(yval5-yval5com)))>10^-10if counter==1yval5com=TDMA(a,b,c,d,mdim);endfor nn=1:size(tt,2)for nnn=1:mdimif nnn==1d(nn,nnn)=((6*yval5com(nn,nnn)-3*y0-3*yval5com(nn,nnn+1))*tt(1,nn))/(8*(2+tt(1,nn)))+((1+tt(1,nn))/(2+tt(1,nn))*y0);elseif nnn==2d(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-y0)*tt(1,nn))/(8*(2+tt(1,nn)));elseif nnn==mdimd(nn,nnn)=((5*yval5com(nn,nnn)-3*yL-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)))+(1/(2+tt(1,nn))*yL);elsed(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)));endendendyval5=TDMA(a,b,c,d,mdim);temp=yval5;yval5=yval5com;yval5com=temp;counter=counter+1;endyval5=yval5com;yval5=[repmat([1],size(tt,2),1),yval5,repmat([2],size(tt,2),1)];Fig(4,X,yval1,yval5,tt);title('QUICK Vs. Exact Solution')%-------------TDMA SubFunction------------------function y=TDMA(a,b,c,d,mdim)%form a b c d resolve yval2 by using TDMA%eliminationp(:,1)=b(:,1)./a(:,1);q(:,1)=d(:,1)./a(:,1);for n=2:mdimp(:,n)=b(:,n)./(a(:,n)-c(:,n).*p(:,n-1));q(:,n)=(d(:,n)+c(:,n).*q(:,n-1))./(a(:,n)-c(:,n).*p(:,n-1));end%iterativey(:,mdim)=q(:,mdim);for n=(mdim-1):-1:1y(:,n)=p(:,n).*y(:,n+1)+q(:,n);end%-------------ResultCom SubFunction------------------function y=ResultCom (a,b,c)for n=1:max(size(c,2))y(2*n-1,:)=a(n,:);y(2*n,:)=b(n,:);end%-------------Fig SubFunction------------------function y=Fig(n,a,b,c,d)figure(n);plot(a,b);hold onplot(a,c,'*');str='''legend(';for n=1:size(d,2)if n==size(d,2)str=strcat(str,'''''Pe=',num2str(d(1,n)),''''')''');elsestr=strcat(str,'''''Pe=',num2str(d(1,n)),''''',');endendeval(eval(str));a n d A l l t h i n g s i n t h ei r b e i n g a r e g 13精确解与数值解的对比图,其中边界条件给定,。
主讲陶文铨西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2010年9月27日, 西安数值传热学第四章扩散方程的数值解及其应用(1)4.1 一维导热问题4.1.1一维稳态导热的通用控制方程4.1.3界面导热系数的确定方法4.1.4 一维非稳态导热控制方程的离散化4.1.2通用控制方程控制容积积分法的离散4.1.5 数学上的稳定未必导致物理上有意义的解一维稳态导热问题不同坐标系通用控制方程0 P P()0P x x Δ=i调和平均已经广泛为国内外学术界所接受。
≤1数学上的稳定未必导致物理上有意义的解无内热源一维非稳态导热,初场均匀,两表面0]T +代入下式:P(全隐格式)才能满足。
结论:数学上的稳定未必导致物理上有意义的解;推=xΔa TP P极坐标均可以表示成为:2.解决通用化的一种方案为写出适合于三种坐标系中系数的通用表达式,特引进两个辅助变量:(1)x –方向标尺因子,scaling factor ,x-方向的距离表示成为sx x δi 。
对直角、圆柱坐标规定1;sx ≡(2)y-方向引入一个名义半径,R 。
对直角坐标R =1,据此,东西导热距离为:sx xδi 东西导热面积为:R /y sxΔ对极坐标取;sx r =对圆柱与极坐标R =r三种二维正交坐标系中离散方程的统一表达式按这种方式编制程序时,只要设置一个变量MODE,4.3 源项与边界条件的处理4.3.1非常数源项的线性化处理1. 线性化方法4.3.2第二、三类边界条件使方程组封闭的处理2. 线性化方法讨论3. 线性化方法应用实例1. 补充以边界节点代数方程的方法2. 附加源项法S= P2. 线性化方法讨论(1)对与被求解变量有关的非常数源项,线性化比假定为常数更合理:用*()PS f T =来表示P 的源项比落后一个迭代步;P C P T S S S =+(2)任何复杂的函数总可以用线性函数来近似逼近;线性又是建立线性代数方程所必须的;(3)是为保证代数方程迭代求解收敛所必须;0P S ≤P P nb nb a a b φφ=+∑P nb a a ≥∑P nb P a a S V =−Δ∑代数方程迭代求解收敛的充分条件是,因为可以确保代数方程迭代求解收敛。
第四章 导热问题的数值解法1、重点内容: ① 掌握导热问题数值解法的基本思路;② 利用热平衡法和泰勒级数展开法建立节点的离散方程。
2、掌握内容:数值解法的实质。
3、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。
由前述3可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。
但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。
随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1) 有限差分法 (2)有限元方法 (3)边界元方法数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。
如:几何形状、边界条件复杂、物性不均、多维导热问题。
分析解法与数值解法的异同点:1、 相同点:根本目的是相同的,即确定① t=f(x ,y ,z);② ),,,(τz y x g Q =。
2、 不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。
§4—1 数值求解的基本思路及稳态导热内节点离散方程的建立一、 解法的基本概念1、 实质对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
该方法称为数值解法。
这些离散点上被求物理量值的集合称为该物理量的数值解。
2、基本思路:数值解法的求解过程可用框图4-1表示。
由此可见:1)物理模型简化成数学模型是基础; 2)建立节点离散方程是关键;3)一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。
4-1解:采用区域离散方法A 时;网格划分如右图。
内点采用中心差分123278.87769.9T T T ===22d T T=0dx - 有 i+1i 122+T 0i i T T T x ---=∆将2点,3点带入321222+T 0T T T x --=∆ 即321209T T -+= 432322+T 0T T T x --=∆4321322+T 0T T T x --=∆ 即4321209T T T -+-= 边界点4(1)一阶截差 由x=11dT dx =,得 4313T T -= (2)二阶截差 11B M M q x x xT T S δδλλ-=++V所以 434111. 1.36311T T T =++即 43122293T T -= 采用区域离散方法B22d T T=0dx - 由控制容积法 0w edT dT T x dT dT ⎛⎫⎛⎫--∆= ⎪ ⎪⎝⎭⎝⎭所以代入2点4点有322121011336T T T T T ----= 即 239028T T -=544431011363T T T T T ----= 即3459902828T T T -+=对3点采用中心差分有432322+T 013T T T --=⎛⎫⎪⎝⎭即2349901919T T T -+= 对于点5 由x=11dT dx =,得 5416T T -= (1)精确解求左端点的热流密度 由 ()21x x eT e e e -=-+ 所以有 ()2220.64806911x xx x dT e e q e e dxe e λ-====-+=-=++ (2)由A 的一阶截差公式210.247730.743113x T T dT q dxλ=-=-==⨯= (3)由B 的一阶截差公式0.216400.649213x dTq dxλ=-=-== (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B BT T dT dx x δ-⎛⎫==⨯=⎪⎝⎭ 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3解:将平板沿厚度方向3等分,如图由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为22d T+S=0dxλx=0, T 0=75℃ x=0.1 dT =h(T-T )dxf λ- 1点 ,2点采用中心差分有21022+T 0T T S x λ-+=∆ (1) 32122+T 0T T S x λ-+=∆ (2)右端点采用一阶截差的离散231f hx T T T x h λλ⎡⎤+⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭V (3)右端点采用二阶截差的离散232.1f x S hx T x T T x h λλλ⎡⎤⎢⎥++⎢⎥⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭V V V 代入(1)(2)(3)得1223132280.62 5.67625T T T T T T T -=--=-= 解得123278.87769.9T T T ===代入(4)得12380.6380.6675.1T T T === 3221T 18125T -=解得 12380.6380.6675.1T T T ===精确解 22d T+S=0dxλ (4)x=0, T 0=75℃ (5) x=0.1 dT =h(T-T )dxf λ- (6) 代入数据积分的2250025075T x x =-++ 将 x 1=10.13⨯,x 2=20.13⨯, x 3=0.1 T 1=80.56 T 2=80.56 T 3=75.1通过比较可得右端点采用二阶截差的离散更接近真实值。
主讲
西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2010年9月27日, 西安
数值传热学
第四章扩散方程的数值解及其应用(2)
4.4 求解代数方程的TDMA 及ADI 方法
4.4.1求解一维导热问题代数方程的三对角阵算法
4.4.2求解多维非稳态导热全隐格式的ADI 方法
1.求解方法概述
1.一维导热问题代数方程通用形式
2.Peaceman-Rachford 的ADI 迭代
2.Thomas 算法
3.第一类边界条件的处理
4.4 方法4.4.1 求解一维导热问题代数方程的三对角阵算法
Thomas算法的一般形式将上式改写为:
所谓消元就是要找出系数间的关系。
(b)乘以C
i
P=1
1;
i−−。