第五章 方差分析(下)
- 格式:ppt
- 大小:206.50 KB
- 文档页数:3
第五章 方差分析一、教学大纲要求(一)掌握内容 1.方差分析基本思想(1) 多组计量资料总变异的分解,组间变异和组内变异的概念。
(2) 多组均数比较的检验假设与F 值的意义。
(3) 方差分析的应用条件。
2.常见实验设计资料的方差分析(1)完全随机设计的单因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。
(2)随机区组设计资料的两因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。
(3)多个样本均数间的多重比较方法: LSD-t 检验法;Dunnett-t 检验法;SNK-q 检验法。
(二)熟悉内容多组资料的方差齐性检验、变量变换方法。
(三)了解内容两因素析因设计方差分析、重复测量设计资料的方差分析。
二、教学内容精要(一) 方差分析的基本思想 1. 基本思想方差分析(analysis of variance ,ANOV A )的基本思想就是根据资料的设计类型,即变异的不同来源将全部观察值总的离均差平方和(sum of squares of deviations from mean ,SS )和自由度分解为两个或多个部分,除随机误差外,其余每个部分的变异可由某个因素的作用(或某几个因素的交互作用)加以解释,如各组均数的变异SS 组间可由处理因素的作用加以解释。
通过各变异来源的均方与误差均方比值的大小,借助F 分布作出统计推断,判断各因素对各组均数有无影响。
2.分析三种变异(1)组间变异:各处理组均数之间不尽相同,这种变异叫做组间变异(variation among groups ),组间变异反映了处理因素的作用(处理确有作用时 ),也包括了随机误差( 包括个体差异及测定误差 ), 其大小可用组间均方(MS 组间)表示,即 MS 组间= 组间组间ν/SS , 其中,SS 组间=21)(x xn ki ii -∑= ,组间ν=k -1为组间自由度。
第五章方差分析•如果要检验两个总体的均值是否相等,我们可以用t检验。
当要检验多个总体的均值是否相等,则需要采用方差分析。
•方差分析是R.A.Fister发明的,它是通过对误差的分析研究来检验两个或多个正态总体均值间差异是否具有统计意义的一种方法。
•由于各种因素的影响,研究所得的数据呈现波动,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果造成影响的可控因素,方差分析认为不同处理组的均值间的差异基本来源有两个:•组内差异:由随机误差造成的差异,用变量在各组的均值与该组内变量值之差平方和的总和表示,记作SSE。
•组间差异:由因素中的不同水平造成的差异,用变量在各组的均值与总均值之差平方和的总和表示,记作SSA。
•方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
•方差分析的三个条件:•被检验的各总体均服从正态分布;•各总体的方差皆相等;•从每一个总体中所抽出的样本是随机且独立的;方差分析的基本步骤:建立原假设H0:两个或多个总体均值相等。
将各不同水平间的总离差分成两个部分:组间差异SSA组内差异SSE构造检验统计量: F= MSA / MSE判断:在零假设为真时,F~F[(k-l),(n-k)]的F分布。
若各样本平均数的差异很大,则分子组间差异会随之变大,而F值也随之变大,故F检验是右尾检验。
当检验统计量F大于临界值时则拒绝原假设;或者根据 p值来判断,若p<α,则拒绝原假设§5.1 单因素方差分析(One-Way ANOVA过程)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即成组设计的方差分析,如果做了相应选择,还可进行随后的两两比较,甚至于在各组间精确设定哪几组和哪几组进行比较。
5.1.1 界面说明【Dependent List框】选入需要分析的变量,可选入多个结果变量(应变量)。
5.2 方差分析 方差分析根据设计类型的不同,种类很多,本指导中介绍如下几种设计类型资料的方差分析:成组设计的方差分析(One -way ANOVA )、配伍组设计的方差分析(Two -way ANOVA )、交叉试验设计的方差分析、析因设计的方差分析、正交试验设计的方差分析及协方差分析。
以下分别介绍在SPSS 中如何实现。
5.2.1 单因素的方差分析又称完全随机设计方差分析,成组设计多个样本均数比较采用单因素方差分析(one-way ANOVA ),仍以例题来说明其具体操作步骤。
例5.3 某单位研究不同药物对小白鼠的镇咳作用,实验时,先用NH 4OH 0.2ml 对小白鼠喷雾,测定其发生咳嗽时间。
以给药前后发生咳嗽时间的差值,衡量不同药物的镇咳作用,结果见表5.4。
试比较三种药物的平均推迟咳嗽时间有否显著差异?表5.2小白鼠给药前后发生咳嗽的推迟时间(秒)复方Ⅰ 复方Ⅱ 可待因 40 50 60 10 20 30 35 45 100 25 55 85 20 20 20 15 15 55 35 80 45 15 -10 30 -5 105 77 30 75 105 25 10 70 60 65 45 45 60 50 30 具体步骤: 数据录入:以变量x 表示推迟时间,g 表示组别(以数字代表组,可设1为复方I ,2为复方II ,3为可卡因)。
如复方I 中一例小鼠推迟时间为40秒,则录入数据时g 为1,x 为40。
数据格式如图5.6(见下页)。
wbs 数字签名人wbs DN:cn=wbs,o=ssmustat日期:2003.03.1819:15:03 +08'00'统计分析:依次选取Analyze-Compare Means-One-way ANOVA,弹出对话框如图5.7(见下页),将x选入Dependent list(应变量)框,g选入Factor(研究因素)框。
对话框下方还有三个按钮:Contrast、Post Hoc和Options,下面简单介绍其子对话框选项含义:Contrasts:指定一种要用t检验来检验的priori对比Post Hoc:指定一种多重比较检验方法和α水准Options:指定要输出的统计量(方差齐性检验和统计描述结果)和处理缺失值的方法。
第五章 方差分析课后习题参考答案5.1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S7.137=-=A T e S S S当H成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6.909>3.35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程组建效应检验Dependent Var iable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为6.903,对应的检验概率p 值为0.004,小于0.05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5.2 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
第五章方差分析思考与练习参考答案1.试述方差分析的基本思想。
解答:方差分析的基本思想是,将观察值之间的总变差分解为由所研究的因素引起的变差和由随机误差项引起的变差,通过对这两类变差的比较做出接受或拒绝原假设的判断的。
2.方差分析有哪些基本假设条件?如何检验这些假设条件? 解答:(1)在各个总体中因变量都服从正态分布;(2 )在各个总体中因变量的方差都相等;(3)各个观测值之间是相互独立的。
正态性检验:各组数据的直方图/峰度系数、偏度系数/Q-Q图,K-S检验*等方差齐性检验:计算各组数据的标准差,如果最大值与最小值的比例小于2:1,则可认为是同方差的。
最大值和最小值的比例等于 1.83<2。
也可以采用Levene检验方法。
独立性检验:检查样本数据获取的方式,确定样本之间无相关性。
3.对三个不同专业的学生的统计学成绩进行比较研究,每个专业随机抽取6人。
根据数据得到的方差分析表的部分内容如表5-21。
请完成该表格。
如果显著性水平a=0.05,能认为三个专业的考试成绩有显著差异吗?表5-21不同专业考试成绩的方差分析表解答:表不同专业考试成绩的方差分析表查f分布可知,p(F< 0.9067964)= 0.7952296,在显著性水平a=0.05时,不能拒绝原假设,认为三个专业的成绩无显著差异。
根据以下背景资料和数据回答4-7题。
为测试A、B、C、D、E五种节食方案,一位营养学家选择了50名志愿者随机分成五组,每组采用一种方案测量两个月后每个人的降低的体重,得到的实验数据如表5-22。
表5-22不同节食方案的降低的体重(公斤)序号 万案A 万案B 万案C 万案D 万案E1 6.5 2.9 8 5.1 11.52 11.6 5.5 11.9 2.5 13.23 7.7 4.3 8.5 1.5 114 8.7 3.6 8.9 2.2 13.15 8.4 3.9 9.1 1.4 13.86 4.1 6.7 11.4 3.1 12.8 7 8.7 4.5 12.6 5.4 12 8 6.6 1.7 12.4 1.9 11.5 9 7.1 6.59.4 4.1 14.6 108.9 5.4 10.6 3.6 13.74.不同节食方案的实验效果的描述统计资料如表5-23。
第五章方差分析方差分析是通过实验数据对影响产品的质量、产量的多个可控因素作统计分析,以分清因素的主次及水平组合形式,并求出最优组合形式,以提高产品质量、产量的一种数学分析方法。
1单因素方差分析,设影响指标的因素仅有一个,设为A 因素,该因素有a 个水平(状态)A 1,A 2^\A a ,在每个水平下,分别作 ni 次实验,i=1,2,|||a 其样本值X jj 〜N (7d 2), i =1,2,|||a ,2或 X j =斗• ;ij , ;ij 〜N (0,二)。
(1)方差分析主要解决: 1、检验A 因素对指标是否有影响及影响的程度,首先提出假设:H 。
「打=二川=4 (在各水平下的均值相等)H i : " i = " j j = j i, j,二 1 112 a (至少有一对不相等)其检验的思想方法是若组间(各水平间)平方和大,表明 A 因素对指标是有影响的,否则,组间平方和小,表明A 因素对指标没有影响。
又组内(随机误差)平方和小, 用F -检验法即F 值大可拒绝 H 0,表明 A 因素影响显著,否则接受 H 0,表明 A 因素影响不 显著。
2、计总体的均值和方差 7,「2川 叮二2。
(2)方差分析的方法:a1、样本值 X j ,i =1,2,1 Ha ,j =1,2^|n i ,n^n ,共有n个样本值,7a n i设X L = 7、Xij ,表所有样本值之和,总平均值1 j m又X x- X 表示第i 个的水平下样本值之和,i =1,2,1"a , X L =乙 X ijj 亠和=丄:X,表示第i 个的水平下样本均值,'m j± n '',且有:a门)a aa门) _1 1X L = ' n i X i_ =' X i X j = nX ,1 2 1 2X X L , X 2X_,nnyjm i¥i 1 i =1 j :in. ii' (Xj —X [)»X j —n i XT =n i 可—n 区=0, j 4 j 4 ~~ ~2、平方和:a n称S T(X j -X)2为总的离差平方和,其计算公式为i 2 j 二a na gS r =、、(X i j -X)X ij—X 二二(X j-X)i =1 j =1i = 1j 1a m x2ija n=E Z-X" 'X j -X(nX -nX)i4 'j = 1i= 1 = :1a n i =s zx 2ij—2- nXi 4 j 4a niX j-丄X[2i 4 j 4na m称S A■ (X^ -X)2为因素A 的组间平方和,其计算公式为:i二 j 二a m _ _ a ni _S A ' (X^ -X)X T - X! 1 (X T -X)i J j 1-i 4 j ±- ani ___ 2=、'' X i || i士 j 吕a2二、nX j|_i z !a _______ ,=、n X Li妊「丄xl i i 口a m _-X' '、■ X i -X(nX -nX) i 4 j 4 -a-X 二 r )i X ii =1—2—nX -X : n(X ; —- X j =丄人」,),n j 壬n iani称S E —' (X ij -XL 2为第i 个水平下的组内平方和,其计算公式为:i =i j =1a n i__ ______ _____由 S r 一 a a (X jj —X jL X j_ — X)2i :1 j :1…i2 a □ …•二二(X j —X iL )2+、、(瓦 _X )2 + 2'、(X j —X i"* —X)i A j Aa二 S ES A 2、 i丄二 S ES A即有:S^S T -S A ,3统计分析又由 E^) =E 2(n - a)匕 n -a ,有 E (--;「2, n —a 得方差二2的估计量为;「=旦。