第五章 方差分析
- 格式:ppt
- 大小:4.04 MB
- 文档页数:103
单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。
表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。
图5-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。
或者打开已存在的数据文件“DATA5-1.SAV”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图5-2。
图5-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图5-3所示的对话框。
该对话框用于设置均值的多项式比较。
图5-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图5-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
第五章方差分析•如果要检验两个总体的均值是否相等,我们可以用t检验。
当要检验多个总体的均值是否相等,则需要采用方差分析。
•方差分析是R.A.Fister发明的,它是通过对误差的分析研究来检验两个或多个正态总体均值间差异是否具有统计意义的一种方法。
•由于各种因素的影响,研究所得的数据呈现波动,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果造成影响的可控因素,方差分析认为不同处理组的均值间的差异基本来源有两个:•组内差异:由随机误差造成的差异,用变量在各组的均值与该组内变量值之差平方和的总和表示,记作SSE。
•组间差异:由因素中的不同水平造成的差异,用变量在各组的均值与总均值之差平方和的总和表示,记作SSA。
•方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
•方差分析的三个条件:•被检验的各总体均服从正态分布;•各总体的方差皆相等;•从每一个总体中所抽出的样本是随机且独立的;方差分析的基本步骤:建立原假设H0:两个或多个总体均值相等。
将各不同水平间的总离差分成两个部分:组间差异SSA组内差异SSE构造检验统计量: F= MSA / MSE判断:在零假设为真时,F~F[(k-l),(n-k)]的F分布。
若各样本平均数的差异很大,则分子组间差异会随之变大,而F值也随之变大,故F检验是右尾检验。
当检验统计量F大于临界值时则拒绝原假设;或者根据 p值来判断,若p<α,则拒绝原假设§5.1 单因素方差分析(One-Way ANOVA过程)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即成组设计的方差分析,如果做了相应选择,还可进行随后的两两比较,甚至于在各组间精确设定哪几组和哪几组进行比较。
5.1.1 界面说明【Dependent List框】选入需要分析的变量,可选入多个结果变量(应变量)。
1方差分析的基本步骤:①建立假设和确定检验水准②计算检验统计量③查表确定P值和作出推断结论2两样本均数比较的t检验与完全随机化设计多个样本均数比较的方差分析之间的关系:①当比较的均数为两组时,F = t2 ,此时方差分析与t检验所得结果是等价的。
②两样本均数比较的t检验只能用于两个样本,而完全随机化设计多个样本均数比较的方差分析还可以用于多个样本。
配对设计的t检验与随机区组设计的方差分析之间的关系:①当比较的均数为两组时,F = t2 ,此时方差分析与t检验所得结果是等价的。
②配对设计的t检验只能用于同一对象或者匹配的两个对象接受两种处理的情况,而随机区组设计的方差分析可以用于两种以上的处理。
③配对设计的t检验只能分析处理因素的作用,随机区组设计的方差分析除了可以分析处理因素外,还可以分析区组因素。
3ν1= 3,ν2 = 21,查表得F0.05,(3,21) = 3.07 < F,得出p<0.05,可以认为这四组结果不等或者不全相等,但并非任两组之间都有差别。
若想进一步知道任两组之间的关系,还需要进行两两比较。
4①建立假设和确定检验水准H0:四组大鼠的血清SOD活性的总体均数相等,即μ1=μ2=μ3=μ4。
H1:四组总体均数不等或不全相等。
α=0.05②计算检验统计量F值SS总=6134.890,SS组间=3166.012,SS组内=2968.869ν组间=k-1=4-1=3,ν组内=N-k=40-4=36MS组间=1055.340,MS组内=82.469,将上述结果列成方差分析表:③确定p值,作出推断结论查表得F0.05,(3,36)=2.87,F> F0.05,(3,36),p<0.05,故拒绝H0,接受H1,差别有统计学意义,可以认为四组大鼠的血清SOD活性的总体均数不等或不全相等。
5①建立假设和确定检验水准H0:三种降糖药降糖效果的总体均数相等,即μ1=μ2=μ3。
第五章方差分析方差分析是通过实验数据对影响产品的质量、产量的多个可控因素作统计分析,以分清因素的主次及水平组合形式,并求出最优组合形式,以提高产品质量、产量的一种数学分析方法。
1单因素方差分析,设影响指标的因素仅有一个,设为A 因素,该因素有a 个水平(状态)A 1,A 2^\A a ,在每个水平下,分别作 ni 次实验,i=1,2,|||a 其样本值X jj 〜N (7d 2), i =1,2,|||a ,2或 X j =斗• ;ij , ;ij 〜N (0,二)。
(1)方差分析主要解决: 1、检验A 因素对指标是否有影响及影响的程度,首先提出假设:H 。
「打=二川=4 (在各水平下的均值相等)H i : " i = " j j = j i, j,二 1 112 a (至少有一对不相等)其检验的思想方法是若组间(各水平间)平方和大,表明 A 因素对指标是有影响的,否则,组间平方和小,表明A 因素对指标没有影响。
又组内(随机误差)平方和小, 用F -检验法即F 值大可拒绝 H 0,表明 A 因素影响显著,否则接受 H 0,表明 A 因素影响不 显著。
2、计总体的均值和方差 7,「2川 叮二2。
(2)方差分析的方法:a1、样本值 X j ,i =1,2,1 Ha ,j =1,2^|n i ,n^n ,共有n个样本值,7a n i设X L = 7、Xij ,表所有样本值之和,总平均值1 j m又X x- X 表示第i 个的水平下样本值之和,i =1,2,1"a , X L =乙 X ijj 亠和=丄:X,表示第i 个的水平下样本均值,'m j± n '',且有:a门)a aa门) _1 1X L = ' n i X i_ =' X i X j = nX ,1 2 1 2X X L , X 2X_,nnyjm i¥i 1 i =1 j :in. ii' (Xj —X [)»X j —n i XT =n i 可—n 区=0, j 4 j 4 ~~ ~2、平方和:a n称S T(X j -X)2为总的离差平方和,其计算公式为i 2 j 二a na gS r =、、(X i j -X)X ij—X 二二(X j-X)i =1 j =1i = 1j 1a m x2ija n=E Z-X" 'X j -X(nX -nX)i4 'j = 1i= 1 = :1a n i =s zx 2ij—2- nXi 4 j 4a niX j-丄X[2i 4 j 4na m称S A■ (X^ -X)2为因素A 的组间平方和,其计算公式为:i二 j 二a m _ _ a ni _S A ' (X^ -X)X T - X! 1 (X T -X)i J j 1-i 4 j ±- ani ___ 2=、'' X i || i士 j 吕a2二、nX j|_i z !a _______ ,=、n X Li妊「丄xl i i 口a m _-X' '、■ X i -X(nX -nX) i 4 j 4 -a-X 二 r )i X ii =1—2—nX -X : n(X ; —- X j =丄人」,),n j 壬n iani称S E —' (X ij -XL 2为第i 个水平下的组内平方和,其计算公式为:i =i j =1a n i__ ______ _____由 S r 一 a a (X jj —X jL X j_ — X)2i :1 j :1…i2 a □ …•二二(X j —X iL )2+、、(瓦 _X )2 + 2'、(X j —X i"* —X)i A j Aa二 S ES A 2、 i丄二 S ES A即有:S^S T -S A ,3统计分析又由 E^) =E 2(n - a)匕 n -a ,有 E (--;「2, n —a 得方差二2的估计量为;「=旦。