艺考生数学高考必考知识点
- 格式:docx
- 大小:37.29 KB
- 文档页数:3
高考文科艺术生数学主要知识点归纳必修1数学知识点集合1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A Y .即}|{B x A x x B A ∈∈=或Y4、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A I .即}|{B x A x x B A ∈∈=且I5、全集、补集:{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.2、求定义域的一般方法:①整式:全体实数R ;②分式分母0≠, ③偶次根式:被开方式0≥;④、对数的真数0>。
§1.3.1、单调性与最大(小)值(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.函数与导数1、导数的几何意义:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a xx ln )('=; ⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠ 4、函数的极值(1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
高三艺考数学知识点1. 几何学在高三艺考数学中,几何学是一个重要的知识点。
几何学包括平面几何和立体几何两个方面。
平面几何主要涉及点、直线、平行线、垂直线、三角形、四边形等基本图形的性质和计算方法。
立体几何主要包括立体图形的表面积、体积等计算方法。
2. 函数函数是高三艺考数学中的核心知识点之一。
函数是一种数学关系,它描述了输入与输出之间的对应关系。
高三艺考数学中常见的函数有一次函数、二次函数和指数函数等。
学生需要了解各种函数的图像特征、性质、变换规律以及函数的应用等。
3. 概率与统计概率与统计也是高三艺考数学的重点内容。
概率是研究随机事件发生的可能性的数学分支,统计则是针对数据的收集、整理、描述和分析等。
高三艺考数学中常见的概率与统计知识包括事件的概率计算、频率与概率的关系、统计图表的绘制和分析等。
4. 数列与数学归纳法数列是高三艺考数学中的一种重要的数学对象。
数列是按照一定规律排列的数的有限序列或无限序列。
高三艺考数学中常见的数列有等差数列、等比数列和斐波那契数列等。
学生需要了解数列的通项公式、求和公式以及数列问题的解决方法。
数学归纳法则是解决数列问题的重要方法。
5. 解析几何解析几何是高三艺考数学中的一项重要内容。
它是将几何图形与坐标系相互联系,使用代数的方法研究几何问题。
解析几何包括直线与曲线的方程、平面与空间的方程、曲线与曲面的相交问题等。
学生需要了解方程的性质与解法,掌握解析几何问题的分析与解决方法。
6. 数学证明数学证明是高三艺考数学中的一项重要内容,也是数学学科的核心。
数学证明是通过逻辑推理和严格的推导来证明数学论断的正确性。
在高三艺考数学中,学生需要学会运用数学定义、已知条件和已经证明的定理等,通过推理和演绎,完成数学问题的证明。
总结:高三艺考数学涵盖了几何学、函数、概率与统计、数列与数学归纳法、解析几何和数学证明等知识点。
通过系统学习和巩固这些知识点,学生可以提高数学解题的能力和思维逻辑能力,为高考数学顺利通过提供有力支持。
文科艺术生数学知识点
1.基础运算:加法、减法、乘法和除法。
这是数学运算的基础,包括
整数、小数和分数等的四则运算。
2.百分数:了解百分数的定义和使用方法,能够计算百分比、比例和
利润等问题。
3.平均数:了解平均数的概念和计算方法,能够求一组数据的平均数。
4.比例和比例关系:了解比例的概念和比例关系的应用,能够解决有
关比例的问题。
5.几何图形:了解常见的几何图形的特征和性质,如圆、矩形、三角
形和正方形等。
6.数据分析:了解如何收集、整理和分析数据,包括制作简单的统计
图表和解读图表。
7.数量关系:了解数量关系和变量之间的关系,能够进行简单的方程
式推导和解答。
8.概率和统计:了解概率和统计的基本概念,能够计算概率、解决统
计问题和应用概率统计的方法。
9.金融数学:了解如何计算利息、本金和投资回报率等金融数学知识,能够进行简单的财务分析。
10.日常生活应用:了解如何在日常生活中应用数学知识,如购物打折、计算时间和距离等。
在学习数学知识时,文科艺术生可以借助教材、辅导资料和在线学习
资源等,注重理解数学概念和方法的应用,培养数学思维和解决实际问题
的能力。
此外,通过数学与文科艺术学科的交叉学习,可以拓宽思维视野,提高综合素质。
艺术生高考数学复习知识点艺术生高考对数学的要求并不像理科生那样高,但数学依然是考生最需要花时间和精力准备的一门科目。
艺术生的数学复习主要涉及基础知识的回顾和理解,重点在于培养艺术生的逻辑思维和解决问题的能力。
下面将从几个重要知识点出发,为大家介绍艺术生高考数学的复习内容。
一、函数与方程函数与方程是数学中的基础概念,也是艺术生高考数学的重要内容。
艺术生需要掌握函数的概念、性质和图像的绘制方法。
此外,方程的解法也要熟悉。
高考常涉及到一元一次方程、一元二次方程、指数函数、对数函数等。
二、图形的性质和变换图形的性质和变换是艺术生数学复习的另一个重点。
要熟悉各类图形的定义和性质,比如直线的斜率和截距的计算、圆的方程和性质、三角形的相似和全等条件等。
此外,图形的变换也是重要的考点,包括平移、旋转、镜像等。
三、概率与统计概率与统计是现代社会中不可或缺的一门学科,在高考数学中也占有一定份额。
艺术生需要了解随机事件和概率的基本概念,能够计算概率值和进行事件的概率计算。
统计是对数据进行收集、整理、描述和分析的过程,艺术生需要掌握统计的基本概念和统计量的计算方法。
四、解析几何解析几何是数学中一门重要的几何学科,艺术生需要熟悉平面直角坐标系、点、直线、圆的表示与方程、线性规划等内容。
熟练掌握解析几何的知识有助于艺术生解决几何问题,并培养几何思维。
五、数列与数学归纳法数列是数学中常见的数学工具,艺术生需要掌握等差数列、等比数列等常见数列的概念和性质,并能够进行数列的求和、通项公式的推导等计算。
数学归纳法是数学思维中一种常用的证明方法,艺术生需要了解归纳法的基本思想和使用方法。
除了以上几个主要的知识点外,艺术生高考数学还包括其他一些辅助性的内容,如三角函数、立体几何、复数等等。
这些内容与艺术生专业并不直接相关,但仍然需要进行一定程度的了解和掌握。
总结一下,艺术生高考数学的复习知识点主要包括函数与方程、图形的性质与变换、概率与统计、解析几何、数列与数学归纳法等。
艺考生高考数学知识点总结随着新高考改革的实施,文科生也需要参加高考数学考试。
对于艺考生而言,数学一直是一门让人头疼的学科,但无论如何,掌握一定的数学知识对于艺考生来说依然是十分必要的。
本文将以高考数学的各个知识点为线索,总结一些艺考生在备考过程中需要注意的要点。
1.函数与方程在高考数学中,函数与方程是一个重要的知识点。
对于艺考生而言,首先要掌握函数的基本概念与性质,包括函数的定义域、值域、单调性等。
其次,要熟练掌握一次、二次、三次函数的图像特征,并能够灵活运用到实际问题中。
此外,方程的解法也是相当重要的,艺考生应该掌握一元一次方程、一元二次方程的解法,以及应用题中解方程的方法与技巧。
2.立体几何立体几何是高考数学中较为复杂的知识点之一,但艺考生可以从实践的角度去理解与应用。
首先,要掌握空间图形的基本概念与性质,如棱、面、点、体积等。
其次,要熟悉几何体之间的关系,包括相交、相切、相似等。
最后,要掌握计算空间图形的体积的方法,并能够将几何知识与实际情境相结合,解决一些与艺术相关的空间问题。
3.概率与统计概率与统计是高考数学中的一大模块,也是艺考生需要掌握的重要知识点之一。
概率与统计主要包括概率、随机事件、频率与概率、统计图表等内容。
艺考生需要了解基本的概率知识,并能够计算简单的概率问题。
此外,艺考生还应该学会使用统计方法,对数据进行整理与分析,理解与运用统计图表。
艺考生可以通过艺术实践中的数据统计与分析,将数学知识用于艺术创作中,提升自己的独特性。
4.数列与数列问题在高考数学中,数列与数列问题是一个相对简单但应用广泛的知识点。
艺考生应该掌握等差数列、等比数列的概念与性质,并能够根据已知条件求解数列问题。
此外,数列的应用也是艺考生需要注意的,如根据数列的特点解决艺术中的时间安排问题,提高效率与创作质量。
5.导数与解析几何导数与解析几何是高考数学的难点和重点,艺考生可以将其与艺术创作相结合,提高自身的创作水平。
艺术生数学高考知识点笔记在高考数学中,艺术生们也需要掌握一些基本的数学知识。
尽管他们的数学并不是重点,但是仍然需要一定的基础来应对高考中的数学考题。
本文将为艺术生们整理一些高考数学知识点的笔记,希望对他们有所帮助。
一、函数与方程函数和方程是数学中基本的概念,也是高考数学中常出现的考点。
1. 函数的定义:函数是一个或多个自变量通过特定规则与对应的因变量之间的关系。
函数可以用公式、图像或者数据表来表示。
2. 函数的类型:常见的函数类型有线性函数、二次函数、指数函数、对数函数、三角函数等。
不同类型的函数有不同的特征和性质,艺术生们需要了解它们的图像、定义域、值域等基本概念。
3. 方程的解:方程是含有未知数的关系式,解方程是寻找满足方程的未知数的值。
方程的解可以是实数解或者复数解,艺术生们需要熟练掌握解方程的方法和技巧。
二、数列与数列的求和数列在高考数学中也是常见的考点,艺术生们需要了解数列的概念和求解数列的方法。
1. 数列的定义:数列是按照一定规律排列的一系列数,可以用一个通项公式来表示。
2. 等差数列:等差数列是相邻两项之差相等的数列,通常用常数来表示公差。
3. 等差数列的求和:对于等差数列,艺术生们需要熟悉求和公式,并能够根据已知条件求解等差数列的和。
4. 等比数列:等比数列是相邻两项之比相等的数列,通常用常数来表示公比。
5. 等比数列的求和:对于等比数列,艺术生们需要了解求和公式,并能够根据已知条件求解等比数列的和。
三、几何与三角函数几何和三角函数也是艺术生数学高考的重点内容,需要艺术生们熟练掌握相关的概念和计算方法。
1. 平面几何:平面几何主要包括直线、圆、三角形、四边形、多边形等。
艺术生需要了解这些几何图形的性质、定理以及计算方法。
2. 三角函数:三角函数是角的函数,包括正弦、余弦、正切等。
艺术生们需要熟练掌握三角函数的定义、性质、图像以及计算方法。
3. 三角函数的应用:三角函数在实际问题中有广泛的应用,如测量、建筑、导航等。
高考艺术生数学知识点资料数学作为一门科学,不仅仅在于解决实际问题,它还涵盖了丰富的艺术性和美感。
对于高考艺术生来说,数学知识点的掌握是备战高考的必备技能之一。
本文将分享一些重要的数学知识点,旨在帮助艺术生们提高数学成绩。
一、平面几何平面几何是数学的重要组成部分,艺术生需要熟悉平面几何中的基本概念和定理。
例如,平面几何的基本元素包括点、线和面;平行线的性质,如平行线的定义、平行线的判定以及平行线的性质等。
二、三角函数三角函数是高考数学中的重点内容之一。
对于艺术生来说,熟练掌握三角函数的定义、性质以及应用是非常重要的。
例如,艺术生需要掌握正弦函数、余弦函数和正切函数的定义及其主要性质;熟练掌握三角函数的图像变换,如周期性、对称性等。
三、立体几何立体几何是另一个需要艺术生掌握的数学知识点。
立体几何涉及到平面、直线和空间的相互关系,艺术生需要了解立体几何的基本概念和定理。
例如,了解圆柱体、圆锥体、球体的定义以及它们的性质;了解立体的体积和表面积的计算方法。
四、数列与数学归纳法数列与数学归纳法是数学中的基本概念和重要工具。
艺术生需要了解数列的定义、数列的通项公式以及递推关系。
同时,数学归纳法是解决数学问题的重要工具,艺术生需要理解数学归纳法的原理和基本步骤。
五、概率与统计概率与统计是数学的实际应用领域,对于艺术生来说,了解概率与统计的基本概念和技巧是必要的。
例如,艺术生需要了解事件的概率定义、事件的互斥性和独立性;掌握统计图表的制作和解读,如直方图、折线图等。
六、函数与方程函数与方程是高中阶段数学的核心内容。
艺术生需要熟练掌握函数与方程的基本概念和运算法则。
例如,艺术生需要了解函数的定义和性质,如函数的奇偶性、单调性等;掌握方程的解的求解方法,如一元一次方程、一元二次方程等。
七、数学建模数学建模是高考数学中的重要内容,也是艺术生在数学学科中发挥艺术才能的重要阶段。
艺术生需要了解数学建模的基本概念和步骤,掌握数学建模的解题思路和方法。
艺术数学高考知识点艺术数学是现代艺术与数学相结合的一门学科,它既注重审美与创造,又运用了数学的逻辑与几何思维。
作为一门独特的学科,在高考中也有着重要的地位。
本文将介绍一些与艺术数学有关的高考知识点,帮助同学们更好地备战考试。
一、立体几何与雕塑立体几何是艺术数学中的重要一环。
在高考中,常涉及到对于立体物体的理解与分析,以及对雕塑作品的艺术欣赏。
同学们需要掌握以下知识点:1. 立体物体的投影: 包括正射投影和透视投影,了解如何根据给定的视角进行物体的投影绘制。
2. 立体物体的表面积与体积: 掌握计算不规则几何体的表面积和体积的方法。
3. 雕塑的造型要素: 包括雕塑的形状、材质、结构等,了解雕塑的创作过程与艺术风格。
二、色彩理论与绘画色彩是艺术创作中不可或缺的元素,对色彩的理解与运用在绘画中起着至关重要的作用。
同学们需要了解以下知识点:1. 基本颜色的运用: 对于色彩的基本分类以及如何运用基本颜色进行绘画有一定的了解。
2. 色彩搭配与运用: 掌握不同色彩之间的搭配原则,了解如何使用冷暖色调、对比色等进行艺术创作。
3. 光与色彩: 了解光的形成与传播原理,掌握如何运用光线与色彩表现立体感和光影效果。
三、透视与绘画构图透视是艺术数学中重要的技法之一,它能够帮助艺术家更准确地表现物体的远近和立体感。
同学们需要掌握以下知识点:1. 透视的原理与基本方法: 包括单点透视、双点透视和多点透视的原理与构图方法。
2. 透视的运用: 在绘画中灵活运用透视原理,掌握如何表现近大远小、线性透视等效果。
3. 构图与画面布局: 理解画面构图的基本原则,包括对称构图、镜头引导、主次结构等。
四、比例、对称与装饰比例与对称是艺术作品中常用的设计元素,它们能够给人一种美的感受和艺术享受。
同学们需要了解以下知识点:1. 比例与尺度: 理解比例的概念与运用,掌握如何运用比例进行构图和创作。
2. 对称与平衡: 理解对称的种类与对称的美学效果,掌握如何运用对称与平衡原则进行艺术创作。
艺术生高考数学知识点数学在高考中是所有考生的必考科目之一,包括艺术生在内。
虽然艺术生的重点是文化课考试,但数学同样是不能忽视的一门学科。
本文将对艺术生高考数学的重点知识点进行梳理和总结,以帮助艺术生更好地备考数学科目。
一、函数与方程1.1 函数及其表示艺术生在数学中需要掌握函数的概念及其表示方法。
函数由自变量和因变量组成,通常用 f(x) 或 y 表示。
1.2 一次函数与二次函数一次函数的特征是其图像为一条直线,可以通过截距和斜率来确定。
二次函数的特征是其图像为一个抛物线,可以通过顶点、焦点等关键点来确定。
1.3 方程与不等式艺术生需熟练掌握方程与不等式的解法,包括一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等。
二、数列与数列求和2.1 数列的概念数列是按照一定规律排列的一组数,包括等差数列和等比数列等。
2.2 等差数列与等比数列艺术生需要了解等差数列和等比数列的特点及其求解方法。
2.3 数列的通项公式与求和公式数列的通项公式是指通过一个通项公式可以直接求得数列中任意一项的公式。
数列的求和公式是指通过一个公式可以直接求得数列的前n项和。
三、平面几何与空间几何3.1 平面几何基础知识艺术生需要熟悉平面几何中的基本概念、基本性质和基本定理,包括线段、角、三角形、四边形等的性质和判定方法。
3.2 圆的性质与相关定理圆是平面几何的重要内容之一,艺术生需要掌握圆的性质以及与之相关的定理,如切线定理、弦切角定理等。
3.3 空间几何基础知识艺术生需要了解立体几何中的基本概念、基本性质和基本定理,包括直线、平面、三棱锥、四棱锥等的性质和判定方法。
四、概率与统计4.1 概率的基本概念艺术生需要掌握概率的基本概念,包括样本空间、事件等。
4.2 概率的计算艺术生需要熟悉概率的计算方法,包括事件的概率计算、事件的互斥与对立等。
4.3 统计的基本概念与分析方法艺术生需要了解统计的基本概念和分析方法,包括频数、频率、频率分布表、统计图等。
高三数学艺考复习知识点数学艺考是许多学生进入理工类院校或艺术类专业的重要途径之一。
高三的数学艺考复习是一项关键性任务,掌握复习的重点知识点对于考生来说至关重要。
本文将介绍高三数学艺考的主要知识点,帮助考生有针对性地进行备考。
1. 函数和方程高三数学艺考的复习重点之一是函数和方程。
考生需要熟练掌握一次函数、二次函数、指数函数、对数函数等基本函数的性质和图像特征;同时还要了解二次方程、一元高次方程的求解方法以及方程在平面直角坐标系中的图像表示等内容。
2. 三角函数三角函数是高三数学艺考中的另一个重点。
考生需要掌握正弦函数、余弦函数、正切函数等三角函数的定义、性质和图像特征;还需熟悉三角函数的基本关系式,包括和差化积、倍角公式、半角公式等。
3. 二次曲线考生还需要了解二次曲线的相关知识。
包括熟悉圆、椭圆、抛物线、双曲线的方程和性质;了解如何通过方程确定二次曲线的位置、形状和大小等。
4. 三角恒等式在数学艺考的复习中,三角恒等式也是重要的考点。
考生需要掌握基本的三角恒等式,如正弦定理、余弦定理、正切定理等,同时要能熟练应用这些定理解决相关问题。
5. 数列与数学归纳法考生需要理解数列的概念与表示方法,并且熟悉数列的等差数列、等比数列等特殊数列的性质与求和公式。
此外,数学归纳法在数列证明中的应用也是重要的考点。
6. 导数与微分高三数学艺考还涉及到导数与微分的知识。
考生需要熟悉导数的概念、基本性质和运算法则,并能熟练应用导数求函数的增减性、极值、拐点等。
此外,还要了解微分的概念和应用,包括微分近似计算和微分中值定理等。
7. 不等式与极限考生还需要掌握不等式的基本性质、解法和应用,包括一元不等式与二元不等式等;同时还要理解极限的概念与性质,并能运用极限求函数的渐近线和无穷大、无穷小的性质。
8. 统计与概率统计与概率也是高三数学艺考的复习内容之一。
考生需要了解统计的基本概念和描述统计的方法,掌握离散型和连续型随机变量的概率分布和性质,熟悉概率论的基本原理和计算方法。
高三艺术班数学知识点汇总随着高三学业压力逐渐增大,高三艺术班的学生也需要掌握一定的数学知识点,以应对高考的挑战。
本文将对高三艺术班需要掌握的数学知识点进行汇总和总结,帮助大家更好地备考。
一、代数与函数1. 一次函数概念及其性质2. 二次函数的图像、性质和应用3. 指数函数与对数函数4. 多项式函数的图像与性质5. 三角函数的基本概念与性质6. 线性规划的基本概念和解法7. 集合与命题的基本概念二、几何与向量1. 平面几何的基本概念和性质2. 平面向量的基本概念和运算3. 平面向量的线性相关性与线性无关性4. 平面向量的数量积与向量积5. 解析几何的基本概念和性质6. 空间几何的基本概念和性质7. 空间向量的基本概念和运算三、数与数列1. 实数的基本性质和分类2. 数列的定义和基本性质3. 数列的极限与收敛性4. 数列的通项公式与递推公式5. 等差数列与等比数列的性质和求和公式6. 一些常见的数学问题的数列应用四、概率与统计1. 随机事件与概率的基本概念2. 概率的计算方法和性质3. 条件概率与独立事件4. 排列与组合的基本概念和计算方法5. 统计样本与抽样调查6. 统计图表的制作与分析7. 正态分布的基本概念和应用五、数学建模1. 数学建模的基本方法和步骤2. 选择适当的数学模型进行建模3. 运用数学方法解决实际问题4. 数据分析与结果验证5. 模型的评价与改进综上所述,高三艺术班学生需要掌握的数学知识点包括代数与函数、几何与向量、数与数列、概率与统计以及数学建模等方面。
通过系统的学习和练习,加强对这些知识点的理解和掌握,相信大家能够在高考中取得优异的成绩。
祝愿大家学业顺利,实现自己的艺术与数学双重梦想!。
2015 艺考生高考数学总复习讲义第一章、集合基本运算一、基础知识:1. 元素与集合的关系:用或表示;2. 集合中元素具有确定性、无序性、互异性•3. 集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2}, 表示非负实数集,点集{( x,y)| y=x2}表示开口向上,以y轴为对称轴的抛物线;4. 集合的表示法:①列举法:用来表示有限集或具有显着规律的无限集,如M={0,1, 2, 3,-};②描述法:一般格式: x A p(x),如:{x|x-3>2},{(x,y)|y=x2+1},…;描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与{y|y= x2+3x+2}是不同的两个集合③字母表示法:常用数集的符号:自然数集N;正整数集N*或N ;整数集Z;有理数集Q实数集R;5 •集合与集合的关系:用,,二表示;A是B的子集记为A B;A是B的真子集记为A B。
常用结论:①任何一个集合是它本身的子集,记为 A A;②空集是任何集合的子集,记为 A ;空集是任何非空集合的真子集;③如果A B,同时B A,那么A = B ;如果A B,B C,那么A C .④ n个元素的子集有2n个;n个元素的真子集有2n—1个;n个元素的非空真子集有2n—2个.6. 交集A n B={x|x€ A 且x € B};并集A U B={x|x € A,或x € B};补集CA= {x| x € U,且x A},集合U表示全集.7. 集合运算中常用结论:注:本章节五个定义1. 子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B 的元素,我们就说集合 A 包含于集合B,或集合B 包含集合A ,记作A B (或 B A ),即若任意x A,有x B,则A B (或A B )。
这时我们也说集合A 是集合 B 的子集(subset )。
艺考生高三数学知识点讲义高三数学知识点讲义一、函数与方程1. 函数的概念与性质- 函数的定义- 定义域和值域- 奇偶性与周期性2. 一次函数- 一次函数的定义与性质- 直线的斜率与截距- 函数与方程的关系3. 二次函数- 二次函数的定义与性质- 抛物线的开口方向与顶点 - 二次函数的图像与性质4. 指数与对数函数- 指数函数的定义与性质 - 对数函数的定义与性质 - 对数与指数的互逆性质二、三角函数1. 三角函数的基本概念- 弧度与度的转换- 三角函数的定义与性质2. 三角函数的图像与性质- 正弦函数的图像与性质 - 余弦函数的图像与性质 - 正切函数的图像与性质3. 三角函数的性质与公式- 周期性与奇偶性- 三角函数的和差化积公式 - 三角函数的倍角与半角公式三、数列与数学归纳法1. 数列的概念与性质- 数列的定义与表示- 数列的通项公式- 等差数列与等比数列2. 数列的求和公式- 等差数列的求和公式- 等比数列的求和公式3. 数学归纳法- 数学归纳法的原理- 数学归纳法的应用四、概率与统计1. 概率的基本概念- 随机事件与样本空间 - 概率的定义与性质- 条件概率与独立性2. 排列与组合- 排列与组合的基本概念 - 排列数与组合数的计算 - 常见问题的应用3. 统计与概率分布- 数据的收集与整理- 频数与频率分布表- 离散型与连续型概率分布五、解析几何1. 平面与空间直角坐标系- 平面直角坐标系的引入 - 空间直角坐标系的引入 - 坐标变换与平移2. 点、线、面的位置关系- 点与直线的位置关系- 点与平面的位置关系- 直线与平面的位置关系3. 二次曲线与圆锥曲线- 椭圆与双曲线的定义- 椭圆的性质与方程- 双曲线的性质与方程六、数学建模1. 建模的基本概念- 建模的定义与步骤- 数学模型的构建与求解- 建模实例及应用2. 常见的数学建模方法- 线性规划模型与应用- 最优化模型与应用- 动力系统模型与应用以上是艺考生高三数学知识点的讲义,涵盖了高中数学的各个重要知识点与概念。
高三艺术生数学知识点在高三阶段,作为艺术生的学生们需要加强对数学知识点的掌握,以应对高考数学的考试要求。
以下是一些高三艺术生需要重点复习的数学知识点。
1. 高中数学基础知识回顾在开始复习高三数学知识点之前,艺术生需要回顾和巩固高中数学的基础知识,包括数列、函数、图形的性质、三角函数、概率等内容。
2. 复数与向量复数是艺术生需要重点关注的数学知识点之一,包括复数的定义、运算法则、共轭复数以及与实数的关系。
此外,向量也是需要掌握的重要内容,涉及向量的表示方法、运算法则、数量积和向量积等。
3. 函数与导数函数与导数是高考数学中的重点内容,艺术生需要重点关注函数的性质、图像与变化规律、三角函数的图像与性质。
同时,导数的概念、性质、常用函数的导数以及导数的应用也是需要掌握的内容。
4. 三角函数与解三角形艺术生需要熟悉三角函数的定义、性质、常用角的三角函数值以及三角函数的图像与变化规律。
此外,解三角形的方法、定理等也需要重点复习。
5. 数列与数学归纳法数列是高考数学中的常考点,艺术生需要熟悉数列的定义、性质、通项公式、数列的极限以及等差数列、等比数列等特殊数列的特点。
同时,数学归纳法作为证明数列等式的重要方法也需要掌握。
6. 概率与统计概率与统计是高考数学考试中的一大模块,艺术生需要掌握概率的基本概念、性质,包括事件的计算、概率的计算、条件概率以及排列组合等内容。
同时,统计学的基本概念、统计量的计算、直方图、折线图、频率分布表等图表的解读也需要重点复习。
7. 解析几何解析几何是高考数学中的难点之一,艺术生需要熟悉平面直角坐标系、曲线的方程与性质、直线与圆的相交情况、双曲线与抛物线等内容。
8. 数学证明数学证明是高考数学考试中的重要环节,艺术生需要掌握证明的基本方法与思路,包括直接证明、间接证明、递推证明、反证法等常用证明方法。
总之,高三艺术生在备战高考数学中,需要全面复习数学的基础知识,并重点关注复数与向量、函数与导数、三角函数与解三角形、数列与数学归纳法、概率与统计、解析几何以及数学证明等知识点。
高考艺术生数学知识点汇总作为高考艺术生,数学可能是你最头疼的科目之一。
艺术生以文化课成绩与专业课成绩综合评分作为录取标准,因此数学成绩对于艺术生来说也是非常重要的。
在高考中,艺术生需要掌握一些数学知识点,下面将对一些重要的知识点进行汇总,希望能对你复习数学有所帮助。
一、函数与极限函数是数学中的基本概念之一,艺术生需要了解函数的定义、性质以及函数的图像等。
另外,极限也是重要的概念,艺术生需要掌握极限的定义、性质以及计算方法等。
二、数列与数列极限数列是艺术生需要熟悉的内容之一,需要了解数列的概念、数列的通项公式以及数列的性质等。
对于数列极限,艺术生需要掌握数列极限的定义、性质以及计算方法等。
三、平面几何与向量平面几何是数学中的基本内容之一,艺术生需要了解平面几何中的基本概念,如点、直线、平面等,以及基本的性质和判定方法等。
另外,向量也是平面几何中的重要概念,艺术生需要掌握向量的概念、基本运算以及向量的性质等。
四、立体几何与空间几何向量立体几何是数学中的重要内容之一,艺术生需要了解立体几何中的基本概念,如多面体、球体、圆锥体等,以及基本的性质和判定方法等。
另外,空间几何向量也是立体几何中的重要内容,艺术生需要掌握空间几何向量的概念、基本运算以及向量的性质等。
五、数与代数数与代数是数学中的基础内容,艺术生需要了解数的性质、数的基本运算以及各种数的表示方法等。
另外,代数是数学中的重要分支,艺术生需要掌握代数中的基本概念和运算法则等。
六、概率与统计概率与统计是数学中的实际应用内容,艺术生需要了解概率与统计中的基本概念和理论,如概率的定义、概率的计算方法以及统计图表的制作等。
以上是高考艺术生数学知识点的一个简单汇总,希望对你的复习有所帮助。
在备考阶段,艺术生可以结合自身情况和学习进度,有针对性地复习相关知识点,并进行大量的练习和题目分析。
通过科学的复习方法和坚持不懈的努力,相信你一定能在高考中取得好成绩。
加油!。
美术生高考数学必背知识点在高考备战的过程中,美术生除了需要准备绘画技巧和审美能力等方面的考察,还需要全面备考其他学科,包括数学。
数学作为一门基础学科,对于美术生来说同样至关重要。
本文将介绍美术生高考数学必备的知识点,帮助美术生合理安排备考时间,有针对性地复习,提高数学成绩。
一、集合与函数数学的基础是集合论和函数论。
在几何中,我们经常用到集合的概念,比如平面上的点可以看作一个集合,线段可以看作两个点的集合等等。
函数则是描述数学关系的一种方式,它是一个变量到另一个变量的映射,通过函数可以描述出图形的形状和特点。
美术生要熟悉集合的基本运算法则和集合的关系,掌握常见的函数类型和性质,比如线性函数、二次函数等。
二、解方程与代数运算解方程是数学中一项重要的技能,它可以帮助我们求出未知数的值。
美术生需要熟练掌握解一元一次方程、一元二次方程、一元三次方程等常见类型的方程的方法与步骤,这些方程可以在几何作图等等方面应用较多。
此外,代数运算也是美术生必备的知识点,包括分式的四则运算、根式的化简与运算等。
这些知识点在几何运算和图形构图等方面都会用到。
三、概率与统计概率与统计是数学中的实用工具,也是美术生需要掌握的知识点。
概率可以帮助我们预测事件的可能性,是我们决策和判断的重要依据。
统计则是对数据进行整理和分析的方法,通过对样本数据的研究,可以帮助我们了解现象的规律和趋势。
美术生应该熟悉常见的概率和统计的概念和方法,比如事件的概率计算、样本调查和数据分析等。
四、导数与积分导数和积分是微积分的两个基本概念,也是美术生需要掌握的知识点。
导数可以帮助我们求得函数的变化率,是描述图形斜率和曲率的重要工具。
积分可以帮助我们求得函数的面积和曲线长度,是图形求面积和求弧长的重要方法。
美术生需要熟悉导数和积分的定义和计算方法,掌握常见函数的导数和积分规则,并能够将其应用于相关的几何问题中。
五、空间几何空间几何是美术生高考数学中的重点和难点,也是美术生需要精通的知识点之一。
考点1方程与不等式解法一、一元二次方程1、ax2+bx+c=0(a≠0)2、解一元二次方程的常用方法(1)求根公式:x=−b±√b2−4ac2a {△=b2−4ac<0 方程无解△=b2−4ac=0 方程只有一解△=b2−4ac>0 方程有两解(2)十字相乘:方程可拆成(ax+b)(cx+d)=0⇒ax+b=0或cx+d=0→解出x二、一元二次不等式的解集1、一元二次不等式的常用解法(1)根据图像选择取中间还是取两边(确保平方项前的系数为正,十字相乘后根据大于取两边,小于取中间得到解集)三、绝对值不等式1、含单个绝对值的运算{|x|=a⇒±a|x|>a⇒x<−a或x>a|x|<a⇒−a<x<a2、含两绝对值的运算(1)零点分段法:根据零点分三段然后分别讨论,同段取交集,最后三段结合取并集得出解集;(2)用公式法求最值:|a|+|b|≥|a±b|≥|a|−|b|四、分式不等式1.f(x)g(x)<0/>0⇔f(x)g(x)<0/>0⇒按一元二次不等式求解2.f(x)g(x)≤0/≥0⇔{f(x)g(x)≤0/≥0g(x)≠0⇒按一元二次不等式求解3.f(x)g(x)<k/>k⇒k左移,通分,按1模式计算4.f(x)g(x)≤k/≥k⇒k左移,通分,按2模式计算五、基本不等式(1)a,b都为正,满足a+b≥2√ab(当且仅当a=b时等号成立)补“1”法的利用:凑“1”然后作乘展开运用基本不等式得出所求考点2集合一、集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、Venn图法.(4)常见数集的记法二、集合间的基本关系易错点:子集包括集合相等和真子集三、集合的基本运算提示:集合为不等式时,一般采用数轴,有等号画实心,没有等号画空心考点3充分必要条件一、充分条件、必要条件二、简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、¬p的真假判断三、量词1、全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示.(2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.2、全称命题、存在性命题及含一个量词的命题的否定考点4定义域一、概念定义域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域二、定义域的求法(一)具体函数求定义域已知函数解析式求定义域,一般遵循下面原则,列出不等式组解不等式。
艺考生数学高考必考知识点
艺考生在高考中也要参加数学考试,虽然数学并非他们的重点和专长,但这一科目的考试成绩同样会对综合排名产生影响。
因此,艺考
生需要掌握一些数学高考必考的知识点,以便能够有针对性地备考和
应对考试。
一、函数与方程
函数与方程是数学高考中最基本的知识点之一。
艺考生需要掌握常
见的一次函数、二次函数、指数函数和对数函数的性质,以及它们之
间的相互转化。
此外,方程的解法也是重要的考点,包括一元一次方程、一元二次方程和一元三次方程的解法。
艺考生应该熟练掌握这些
知识点,并能够应用到实际题目中。
二、平面几何
平面几何是艺考生需要重点掌握的数学知识之一。
考查的内容主要
包括平面直角坐标系、直线方程和直线与圆的性质。
在几何推理题中,要注意掌握平行线的性质和判定方法,以及四边形的性质等。
此外,
对于三角形来说,要了解各个角的性质与相互关系,并能够运用正弦
定理、余弦定理和面积公式解决相关问题。
三、空间几何
空间几何是艺考生需要掌握的另一个重要知识点。
它包括空间直角
坐标系和空间中的点、线、面的性质。
在考试中,几何体的表面积和
体积计算也是一个常见的考点。
艺考生要能够熟练应用空间几何的相
关知识解决计算和推理题目。
四、概率与统计
概率与统计是数学高考中的一大重点,艺考生需要掌握的知识点主
要包括计数原理、排列组合、事件与概率的关系,以及概率的计算方法。
此外,艺考生还需要了解统计学中的数据收集与整理、频率分布
和统计图表等基本概念和方法。
五、数列与数列极限
数列与数列极限是高考中较为抽象和深入的数学知识点,对学生的
综合能力有较高的要求。
艺考生需要熟悉常见数列的性质,如等差数列、等比数列和斐波那契数列等,并能够应用到实际问题中。
此外,
数列极限的概念和计算方法也是一个重点,要能够理解极限的概念、
性质和计算方法,以及极限存在和不存在的判定方法。
六、数与代数
数与代数是数学高考中的基础和核心,艺考生需要掌握的知识点主
要包括数的性质、运算规则、分数、比例与均值等基本概念和方法。
此外,函数的定义域和值域也是一个重点,要能够准确判断函数的定
义域和值域,以及解决相关的应用问题。
总结起来,艺考生面对数学高考需要掌握的知识点包括函数与方程、平面几何、空间几何、概率与统计、数列与数列极限以及数与代数等。
艺考生要通过系统的学习和练习,掌握这些知识点并能够熟练运用到
实际问题中。
同时,要注重平时的积累和复习,合理安排复习时间,不断提高自己的数学综合素质。
只有全面掌握这些数学知识点,艺考生才能够在高考中取得优异的成绩。