人教版八年级数学《三角形》培优训练
- 格式:docx
- 大小:67.41 KB
- 文档页数:4
第十一章三角形习题集第1课时三角形的边——三边关系姓名:___________☆知识导学1.若三角形的两边长分别为a,b(a>b),则第三边长x的取值范围是_______________________.2.三角形具有___________,四边形具有_____________.☆习题演练1.已知三角形ABC三边a、b、c满足(a-b)2+|b-c|=0,则△ABC的形状是()A.钝角三角形B.直角三角形C.等边三角形D.以上都不对2.不能组成一个三角形的三条线段的长度是()A.3,3,3 B.3,6,2 C.3,4,3 D.3,5,73.(2012•海南)一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm4.(2013•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1 B.2 C.3 D.45.(2012•肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或206.下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角7.图中有______个三角形,用符号表示这些三角形:__________________________.第7题图第13题图8.在△ABC中,已知两条边a=6,b=7,则第三条边c的取值范围是_________________.9.若三角形的两边长分别为3和5,且周长为奇数,则第三边可以是________(只填符合条件的一个即可).10.(2012•哈尔滨)一个等腰三角形的两边分别为5和6,则这个等腰三角形的周长是________________.11.若三角形的两边长分别为3和5,则它的周长l的取值范围是________________.12.(提高题)△ABC的边长均为整数,且最大边的边长为7,那么这样的三角形共有________个.13.如图,木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木条(图中的AB,CD两根木条),这样做的数学道理是_____________________________.14.用一条长为20cm的铁丝围成一个等腰三角形能围成有一边长为6cm的等腰三角形吗?为什么?第2课时三角形的高、中线与角平分线姓名:___________ ☆知识导学如图,完成下面几何语言的表达:(1)∵AD是△ABC的高(已知)∴AD⊥BC,∠______=∠______=90º.(2)∵AE是△ABC的中线(已知)∴______=______=21______,______=2______=2______.(3)∵AF是△ABC的角平分线(已知)∴∠______=∠______=21∠______,∠______=2∠______=2∠______.☆习题演练1.如图所示的△ABC中,线段BE是三角形AC边上的高的是()A.B.C.D.2.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③3.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定4.如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD 的中线;③DE是△ADC的中线;④S△ADE= S△CDE,其中结论正确的有()A.1个B.2个C.3个D.4个5.三角形中的角平分线、中线、高都是三条特殊的__________(填直线、射线、线段).6.如图,在边长为1的正方形网格中,△ABC的顶点B的坐标是(1,-4),过点B作AC边上的高线,则垂足D点的坐标是________.AB CD EF第3题图第4题图第6题图8.如图,在△ABC中,已知CD是角平分线,∠A=70°,∠B=50°,求∠BCD的度数.9.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.10.如图,△ABC的边BC上的高为AD,且BC=9cm,AD=2cm,AB=6cm.(1)画出AB边上的高CE;(2)求CE的长.11.如图,D,E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE 的周长相等.设BC=a,AC=b,AB=c.求AE,BD的长(用含a,b,c的代数式表示).AB CD第3课时 三角形的内角 姓名:___________☆知识导学如图,延长BC 至D ,过点C 作CE//AB ∵CE//AB∴∠ECD=∠______(_________________________________________) ∠ECA=∠______(_________________________________________)∵∠ECD+∠ECA+∠ACB=180°(___________________) ∴∠A+∠B+∠ACB=180°(等量代换) 归纳:三角形的内角和等于____________. ☆习题演练 1.在△ABC 中,(1)若∠A=40°,∠C=35°,则∠B=_______,△ABC 是__________三角形. (2)若∠A=70°,∠B=∠C ,则∠B=_______°.(3)若∠A ∶∠B ∶∠C=1∶1∶2,则△ABC 是__________三角形.2.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°第2题图 第4题图 第5题图 3.在△ABC 中,∠B 与∠C 的角平分线交于O 点,若∠A=50°,则∠BOC=( ) A .130° B .50° C .25° D .115°4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A .45°B .60°C .75°D .85°5.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=75°,则∠1+∠2=( ) A .150° B .210° C .105° D .75°6.(2005•长沙)在△ABC 中,若∠A=38°36′,∠B=57°36′,则∠C=_________度. 7.已知△ABC 中,∠A=2(∠B+∠C ),则∠A 的度数为________度.8.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内ABC DE9.如图,在△ABC 中,∠ABC=∠C ,BD 平分∠ABC ,∠A=36º,求∠BDC 的度数.10.如图,在△ABC 中,∠ABC=66°,∠ACB=54°,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,求∠ABE 、∠ACF 和∠BHC 的度数.11.如图,在△ABC 中,∠ACB=90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E .求证:∠CFE=∠CEF .12.如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=40°,求∠XBA+∠XCA 的度数. EFABCD13.如图,B岛在A岛的南偏西45°方向,C岛在A岛的南偏东15°方向,C岛在B岛的北偏东80°方向.从C岛看A,B两岛的视角∠ACB是多少度?14.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,(1)若∠B=47°,∠C=73°,求∠DAE的度数.(2)若∠B=α,∠C=β,(α<β),求∠DAE的度数(用含α、β的代数式表示)15.已知,如图,在△ABC中,AD平分∠BAC,DE,DF分别是△ADC的高和角平分线(∠C>∠DAC),若∠B=80°,∠C=40°.(1)求∠DAE的度数;(2)试猜想∠EDF、∠C与∠DAC有何关系?并说明理由.第4课时 三角形的外角 姓名:___________☆知识导学1.如图,延长QR 至T ,∵∠PRQ+∠P+∠Q=180º(__________________________) 又∵∠PRQ+∠PRT=180º(__________________________) ∴∠PRT =∠P+∠Q可得:三角形的一个外角等于__________________的两个内角的和.∵∠PRT =∠P+∠Q∴∠PRT >∠P ,∠PRT >∠Q可得:三角形的一个外角大于_______________________________.2.如图,∵∠1=∠XYZ+∠YZX ,∠2=_______+_______,∠3=_______+_______.∴∠1+∠2+∠3=(∠XYZ+∠YZX )+(______+______)+(______+______) =2(_____+______+______)=2×_____°=_____°.归纳:三角形的外角和等于____________. ☆习题演练1.如图,(1)若∠A=50º,∠B=70º,则∠ACD=_________. (2)若∠A=40º,∠ACD =130º,则∠B =_________. (3)若∠B=80º,∠ACD =135º,则∠A =_________. 2.将一副三角板按如图所示摆放,图中∠α的度数是( ) A .75° B .90° C .105° D .120°第2题图 第3题图 第4题图 第5题图 3.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( ) A .165° B .120° C .150° D .135°4.如图,∠BDC=98°,∠C=38°,∠B=23°,∠A 的度数是( ) A .61° B .60° C .37° D .39° 5.如图,∠1、∠2、∠3的大小关系为( )A .∠2>∠1>∠3B .∠1>∠3>∠2C .∠3>∠2>∠1D .∠1>∠2>∠3 6.如图,直线MA ∥NB ,∠A=70°,∠B=40°,则∠P=_______度.第6题图 第7题图 第8题图 第9题图PQRTαABC DN A BM PEAB DCABCDXYZ 12 38.三角形三个内角之比为3∶4∶5,则它的三个外角之比为____________.9.如图,在△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边BC 上E 处,折痕为CD ,则∠EDB=_________°.10.如图,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012=____________.11.如图,已知D 为△ABC 边BC 延长线一点,DF ⊥AB 于F ,且交AC 于E ,∠A=34°,∠D=42°.求∠ACD 的度数.12.一个零件的形状如图中阴影部分.按规定∠A 等于90°,∠B 、∠C 应分别等于29°和21°. (1)检验人员度量得∠BDC=141°,就断定这个零件不合格.你能说明理由吗?(2)你知道∠B 、∠C 、∠BDC 三个角之间有何关系吗?请写出你的结论.(不需说明理由)13.如图,在△ABC 中,∠1=100°,∠C=80°,∠2=21∠3,BE 平分∠ABC .求∠4的度数.14.如图,已知∠BAD=∠CBE=∠ACF ,∠FDE=48°,∠DEF=64°,求△ABC 各内角的度数.15.如图,∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD ,且BE 、CE 交于E 点. 求证:∠E=21∠A .16.如图①,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的正方向运动,点B 以每秒n 个单位长度沿y 轴正方向移动.(1)若|m+2n-5|+|2m-n|=0,试分别求出1秒后,A 、B 两点的坐标;(2)如图②,设∠4的邻补角和∠3的邻补角的平分线相交于点P .试问:在点A 、B 运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.17.已知:在△ABC 和△XYZ 中,∠A=40°,∠Y+∠Z=95°,将△XYZ 如图摆放,使得∠X 的两条边分别经过点B 和点C .(1)当将△XYZ 如图1摆放时,则∠ABX+∠ACX=_______度;(2)当将△XYZ 如图2摆放时,请求出∠ABX+∠ACX 的度数,并说明理由;(3)能否将△XYZ 摆放到某个位置时,使得BX 、CX 同时平分∠ABC 和∠ACB ?为什么? ABXA ZCX ZYB图1图24 A3OAx1 2 BB Px y y O 图2第5课时 多边形的内角和、外角和 姓名:___________☆知识导学1.过点A 作出下列多边形的对角线,各将多边形分成几个三角形?完成表格:归纳:(1)从n 边形的一个顶点出发可以引_______条对角线,把n 边形分成________个三角形. (2)n 边形的内角和等于___________.(其中n ≥3)2.从与每个内角相邻的两个外角中分别取1个相加,得到的和称为多边形的外角和.∠1+∠2+∠3=________°, ∠1+∠2+∠3+∠=________°归纳:n 边形的外角和等于__________. ☆习题演练1.八边形的内角和是( )A .540°B .720°C .900°D .1080° 2.一个多边形的内角和等于720°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 3.下列各角不是多边形的内角和的是( )A .1800°B .540°C .1900°D .1440° 4.正六边形的每个内角都是( )A .60°B .80°C .100°D .120° 5.一个多边形的每个外角都等于72°,则这个多边形的边数为( ) A .5 B .6 C .7 D .86.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )A .六边形B .五边形C .四边形D .三角形 7.一个多边形的各个内角都等于108°,它是_______边形.8.一个多边形的内角和是1440°,则这个多边形是______边形,过其中一个顶点可以作_______条对角线,AAAA123 12349.如果一个多边形的边数增加一条,那么这个多边形的内角和增加_______,外角和__________.10.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2=_________.第9题图第10题图11.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出______个三角形.12.已知一个多边形的内角和是1440°,求这个多边形的边数.13.若两个多边形的边数之比为1∶2,内角和的度数之比为1∶3,求这两个多边形的边数.14.已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.15.如图,四边形ABCD中,如果∠A与∠C互为补角,求证:∠B与∠D也互为补角.16.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.17.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数和.18.已知一个多边形的最小的一个内角是120°,比它稍大的一个内角是125°以后依次每一个内角比前一个内角多5°,且所有内角的和与最大的内角的度数之比是63∶8,试求这个多边形的边数.19.如图所示,小明从A点出发,沿直线前进8米后左转40°,再沿直线前进8米,又左转40°,照这样走下去,他第一次回到出发点A时,(1)整个行走路线是什么图形?(2)一共走了多少米?20.如图,BC⊥CD,∠1=∠2=∠3,∠4=70°,∠5=∠6.(1)求证:AC⊥BD;(2)求四边形ABCD各内角的度数;(3)若AC=8,BD=6,求四边形ABCD的面积.。
第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
三角形单元测试题一、选择题(每空3分,共30分)1、如果三角形的两边分别为3和5,那么这个三角形的周长可能是()A.15 B.16 C.8 D.72、下列说法中,正确的个数为()①三角形的三条高都在三角形内,且都相交于一点.②三角形的中线都是过三角形的某一个顶点,且平分对边的直线.③在△ABC中,若∠A= ∠B= ∠C,则△ABC是直角三角形.④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18.A.1个 B.2个 C.3个 D.4个3、三角形的三条高所在的直线相交于一点,则这个交点的位置()A.在三角形外 B.在三角形内 C.在三角形边上D.要根据三角形的形状才能定4、有五条线段,长度分别为1、4、5、6、8,从中任取3条,一定能构成三角形的可能性是()A.20% B.30% C.40% D.50%5、如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C’处,BC’交AD于E,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A.6个 B.5个 C.4个 D.3个6、在△ABC中,AB=6,AC=3,则∠B的最大值为()A.30° B.45° C.60° D.90°7、希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中既是三角形数又是正方形数的是()A.289B.1024C.1225D.13788、图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3) 块纸板的周长为Pn ,则Pn-Pn-1的值为()A. B.C. D.9、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm10、如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是()A.4B.3C.2D.二、填空题(每空3分,共18分)11、如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC 内,若∠1=20°,则∠2=___ ___。
八年级数学上册三角形认识单元培优卷一、选择题:1、如图所示的△ABC中,线段BE是△ABC边AC上的高的是( ).2、为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()A.15mB.17mC.20mD.28m3、已知一个多边形的内角和是720º,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4、若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10B.9C.8D.65、将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°6、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50°B.30°C.20°D.15°7、三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个8、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成不同三角形的个数 ( )A.1个B.2个C.3个D.4个9、如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A. 90°B. 135°C. 270°D. 315°11、一个正方形和两个等边三角形的位置如图所示,若∠1= 50°,则∠2+∠3 =()A.190°B.130°C.100°D.80°12、如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.当A,B移动后,∠BAO=45°时,则∠C的度数是( )A.30°B.45°C.55°D.60°二、填空题:13、如图,自行车的三角形支架,这是利用三角形具有性.14、已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.15、如果一个多边形的每一个外角都是30°,则这个多边形对角线的条数是,它的内角和是,它的外角和是 .16、如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= .17、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为__________.18、如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2018,得∠A2018,则∠A2018=____.(用含α的式子表示)三、解答题:19、如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.20、在各个内角都相等的多边形中,一个外角比一个内角少120°,求这个多边形的一个内角的度数和它的边数.21、如图, AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=36°,求∠BED的度数;(2)作出△BED中DE边上的高,垂足为H;(3)若△ABC面积为20,过点C作CF//AD交BA的延长线于点F,求△BCF的面积。
《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。
第十一章《三角形》同步培优专项习题(一)1.如图,AE,DE分别平分∠BAC和∠BDC,∠B=∠BDC=45°,∠C=51°,求∠E的度数.2.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.(1)若∠ABC=30°,∠ACB=60°,求∠DAE的度数;(2)写出∠DAE与∠C﹣∠B的数量关系,并证明你的结论.3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠BAE的度数;(2)求∠DAE的度数;(3)探究:小明认为如果只知道∠B﹣∠C=40°,也能得出∠DAE的度数?你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.4.(1)已知:如图1,P是直角三角板ABC斜边AB上的一个动点,CD、CE分别是∠ACP 和∠BCP的平分线,试探究:当点P在斜边AB上移动时,∠DCE的大小是否会发生变化,请说明你的理由.(2)把直角三角板的直角顶点C放在直尺的一边MN上,点A和点B在直线MN的上方(如图2),此时∠ACM与∠BCN的数量关系是∠ACM+∠BCN=;当把这把直角三角板绕顶点C旋转到点A在直线MN的下方,点B仍然在直线MN的上方时(如图3),∠ACM 与∠BCN的数量关系是;当把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图4),∠ACM与∠BCN的数量关系是.5.如图,在△ABC中,∠B=30°,∠C=66°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.6.如图:在直角坐标系中,已知B(b,0),C(0,c),且|b+3|+(2c﹣8)2=0.(1)求B、C的坐标;(2)点A、D是第二象限内的点,点M、N分别是x轴和y轴负半轴上的点,∠ABM=∠CBO,CD∥AB,MC、NB所在直线分别交AB、CD于E、F,若∠MEA=70°,∠CFB=30°.求∠CMB﹣∠CNB的值;(3)如图:AB∥CD,Q是CD上一动点,CP平分∠DCB,BQ与CP交于点P,给出下列两个结论:①的值不变;②的值改变.其中有且只有一个是正确的,请你找出这个正确的结论并求其定值.7.如图,AD是△ABC边BC上的高,BE平分∠ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.8.已知:如图A,△ABC各角的平分线AD,BE,CF交于点O.(1)试说明∠BOC=90°+∠BAC;(2)如图B,过点O作OG⊥BC于G,试判断∠BOD与∠COG的大小关系(大于,小于或等于),并说明理由.9.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.10.一个多边形的内角和与外角和的差为1260°,求它的边数.11.(1)如图,已知△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC 和∠A的关系,并说明理由;(2)如图,若O为∠ABC和∠ACB外角的平分线BO,CO的交点,则∠BOC与∠A的关系又该怎样?为什么?12.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠ABC=40°、∠ACB=50°,则∠BOC=;(2)若∠ABC+∠ACB=116°,则∠BOC=;(3)若∠A=76°,则∠BOC=;(4)若∠BOC=120°,则∠A=;(5)请写出∠A与∠BOC之间的数量关系(不必写出理由).13.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD交BC于G,EH⊥BE交BC于H,∠HEG=55°.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=44°,求∠BAC的度数.14.如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,则有∠MPB+∠NPC=90°﹣∠A.若将直线MN绕点P旋转,(ⅰ)如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系是否依然成立,并说明理由;(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.15.如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.16.如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.17.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.18.已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.(1)当α=40°时,∠BPC=°,∠BQC=°;(2)当α=°时,BM∥CN;(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系:.。
人教版八年级上册数学三角形动点问题培优练习1、在等腰三角形ACB中,AC=BC=5,AB=8,D为底边AB上的一个动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF=CE。
2、在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上的一个动点,连接PB、PQ,则△PBQ周长的最小值为12cm。
3、将边长为1的等边三角形OAP按图示方式,沿x轴正方向连续翻转2011次,点P依次落在点P1,P2,P3,P4,…,P2007的位置。
P1的坐标为(1,0),P3的坐标为(-1/2,-√3/2),P50的坐标为(-1/2,√3/2),P2011的坐标为(1,0)。
4、在等腰直角三角形ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE。
连接DE、DF、EF。
1)证明:△ADF≌△CEF。
2)证明:△DFE是等腰直角三角形。
5、在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每1个单位的速度沿A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处。
1)在爬行过程中,CD和BE始终相等。
2)证明:∠CQE=60°,若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q。
3)若蜗牛沿着BC的延长线爬行,连接DE交AC于F,则爬行过程中,DF始终等于EF。
6、如图1,若△ABC和△ADE为等边三角形,M、N分别为EB、CD的中点,易证:CD=BE,△AMN是等边三角形。
1)当把△ADE绕A点旋转到图2的位置时,CD=BE仍然成立。
2)当△ADE绕A点旋转到图3的位置时,△XXX不再是等边三角形。
当AB=2AD时,△ADE与△ABC及△AMN的面积之比为1:3:4.7、在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点。
人教版八年级数学上册第11章三角形培优专题训练一、选择题1.下列长度的三条线段能组成三角形的是()A.5cm,2cm,4cm B.5cm,2cm,2cmC.5cm,2cm,3cm D.5cm,12cm,6cm2.如图,在△ABC中,CD是AB边上的高,CM是∠ACB的角平分线,若∠CAB=45°,∠CBA=75°,则∠MCD的度数为()A.15°B.20°C.25°D.30°3.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.下列说法中正确的是()A.三角形的三条高都在三角形内B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.三角形每一边上的高都小于其他两边5.已知AD为△ABC的中线,且AB=10cm,AC=8cm,则△ABD与△ACD的周长之差为()A.2cm B.4cm C.6cm D.18cm6.盖房子时,木工师傅常常先在窗框上斜钉一根木条,利用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短7.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠3=60°C.∠2=∠3 D.∠1=∠48.如图所示,∠1=∠2=145°,则∠3=()A.80°B.70°C.60°D.50°9.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°10.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10或11 B.11或12或13 C.11或12 D.10或11或12 11.若一个多边形的内角和与外角和之差是720°,则此多边形是()边形.A.6 B.7 C.8 D.912.如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°13.如图∠1,∠2,∠3是五边形ABCDE的三个外角,若∠A+∠B=215°,则∠1+∠2+∠3=()A.140°B.180°C.215°D.220°二、填空题14.如图,在△ABC中,BD平分∠ABC.CD是△ABC外角的角平分线,若∠A=50°,则∠D=.15.如图,在△ABC中,已知DE∥BC,∠1=∠2,∠BEC=96°,则∠FGE=°.16.小华用三根木棒搭一个三角形,其中两根木棒的长度分别为10cm和2cm,第三根木棒的长度为偶数,则第三根的长度是cm.17.如图,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠BOE的度数是.三、解答题18.如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=度时,∠ADC=∠C.19.如图,在△ABC中,BD平分∠ABC,DE∥BC交AB于点E,∠C=50°,∠BDC=95°,求∠BED的度数.20.如图,已知CD是△ABC的角平分线,∠CDE=∠DCE.(1)求证:DE∥BC;(2)若CD⊥AB,∠A=30°,求∠CED的度数.21.如图,已知四边形ABCD中,∠B=90°,点E在AB上,连接CE、DE.(1)若∠1=35°,∠2=25°,则∠CED=°;(2)若∠1=∠2,求证:∠3+∠4=90°.参考答案1.解:A、2+4>5,能构成三角形,符合题意;B、2+2<5,不能构成三角形,不符合题意;C、2+3=5,不能构成三角形,不符合题意;D、5+6<12,不能构成三角形,不符合题意.故选:A.2.解:∵∠CAB=45°,∠CBA=75°,∴∠ACB=180°﹣∠CAB﹣∠CBA=60°.∵CM是∠ACB的角平分线,∴∠ACM=∠ACB=30°.∴∠CMB=∠CAB+∠ACM=75°.∵CD是AB边上的高,∴∠CDA=∠CDB=90°.∵∠CDB=∠MCD+∠CMB.∴∠MCD=∠CDB﹣∠CMB=90°﹣75°=15°.故选:A.3.解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.4.解:A、三角形的三条高不一定都在三角形内,如钝角三角形的高在三角形外部,说法错误,不符合题意;B、直角三角形有三条高,说法错误,不符合题意;C、锐角三角形的三条高都在三角形内,说法正确,符合题意;D、三角形每一边上的高不一定小于其他两边,说法错误,不符合题意;故选:C.5.解:∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=10,AC=8,∴△ABD与△ACD的周长之差=10﹣8=2(cm).故选:A.6.解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选:A.7.解:Rt△ABC中,∵∠ACB=90°,∴∠1+∠2=90°,故A正确;∵CD⊥AB,∴∠ADC=90°,∴∠1+∠3=90°,∴∠2=∠3,故C正确;∵∠3+∠4=90°,∴∠1=∠4,故D正确;故选:B.8.解:∵∠1、∠2、∠3是△ABC的三个外角,∴∠1+∠2+∠3=360°,∵∠1=∠2=145°,∴∠3=360°﹣145°×2=70°,故选:B.9.解:∵CF∥AB,∴∠B=∠FCM,∵CF平分∠ACM,∠ACF=50°,∴∠FCM=∠ACF=50°,∴∠B=50°,故选:D.10.解:设多边形截去一个角的边数为n,则(n﹣2)•180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选:D.11.解:∵一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∴这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n﹣2)×180°=1080°,解得:n=8,即多边形是八边形,故选:C.12.解:因为五边形ABCDE是正五边形,所以∠E=∠CDE==108°,AE=DE,所以,所以x=∠CDE﹣∠1﹣∠3=36°.故选:C.13.解:五边形ABCDE的内角和为(5﹣2)×180°=540°,∵∠A+∠B=215°,∴∠AED+∠EDC+∠BCD=540°﹣215°=325°,又∵∠AED+∠EDC+∠BCD+∠1+∠2+∠3=180°×3=540°,∴∠1+∠2+∠3=540°﹣325°=215°.故选:C.14.解:∵∠ACE是△ABC的一个外角,∴∠A=∠ACE﹣∠ABC,同理:∠D=∠DCE﹣∠DBC,∵BD平分∠ABC,CD平分∠ACE,∴∠DBE=∠ABC,∠DCE=∠ACE,∴∠D=(∠ACE﹣∠ABC)=∠A=×50°=25°,故答案为:25°.15.解:∵DE∥BC,∴∠2=∠EBC,∵∠1=∠2,∴∠EBC=∠1,∴GF∥BE,∴∠BEC+∠FGE=180°,∵∠BEC=96°,∴∠FGE=180°﹣∠BEC=180°﹣96°=84°.故答案为:84.16.解:根据三角形的三边关系,得10﹣2<第三根木棒<10+2,即8<第三根木棒<12.又∵第三根木棒的长选取偶数,∴第三根木棒的长度只能为10cm.故答案为:10.17.解:由题意:∠OED=108°,∠OBA=120°,∴∠OEB=72°,∠OBE=60°,∴∠BOE=180°﹣72°﹣60°=48°,故答案为:48°.18.解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=×64°=32°.∵∠ADC=∠B+∠BAD=44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=×(153°﹣∠C)=76.5°﹣.∴∠ADC=∠B+∠BAD=27°+76.5°﹣∠C=103.5°﹣∠C.∵∠ADC=∠C,∴103.5°﹣∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.19.解:∵∠C=50°,∠BDC=95°,∴∠DBC=180°﹣∠C﹣∠BDC=180°﹣50°﹣95°=35°.∵BD平分∠ABC,∴∠EBC=2∠DBC=70°,∵DE∥BC,∴∠BED+∠EBC=180°,∴∠BED=180°﹣70°=110°.20.(1)证明:∵CD是△ABC的角平分线,∴∠BCD=∠ECD,∵∠CDE=∠DCE,∴∠EDC=∠BCD,∴DE∥BC;(2)解:∵CD⊥AB,∴∠ADC=90°,∵∠A=30°,∴∠ACD=60°,∴∠EDC=∠ACD=60°,∴∠CED=180°﹣∠EDC﹣∠ECD=60°.21.解:(1)∵∠1=35°,∠2=25°,∠B=90°,∴∠BEC=180°﹣∠B﹣∠2=180°﹣90°﹣25°=65°,∠CED=180°﹣∠1﹣∠CEB=180°﹣35°﹣65°=80;故答案为:80.(2)∵∠1=∠2,∵∠B=90°,∴∠2+∠BEC=90°,∴∠1+∠BEC=90°,∴CDE=180°﹣90°=90°,∴∠3+∠4=180°﹣∠CDE=180°﹣90°=90°。
人教版八年级上册数学:第11章 三角形培优单元测试卷一、填空题(本大题共10小题,每小题3分,共30分)1.已知一个正多边形的每个外角都等于45°,则这个正多边形的边数是__________.2.一个边形从一个顶点出发引出的对角线可将其分割成5个三角形,则的值为__________.n n 3.如果一个三角形的两边长分别是2 cm 和7 cm ,且第三边为奇数,则三角形的周长是__________cm .4.如图,将△ABC 绕着点C 顺时针旋转50°后得到△.若∠A =40°,=110°,则∠的度数为A B C ''B ∠'BCA '___________.5.如图,△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B =70°,∠C =34°.则∠DAE 的大小是___________.6.如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1-∠2=__________°.7.如图,AB ∥CD ,BE 交CD 于点D ,CE ⊥BE 于点E ,若∠B =34°,则∠C 的大小为__________度.8.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=__________.9.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为__________.10.如图,已知AE是△ABC的边BC上的中线,若AB=8 cm,△ACE的周长比△AEB的周长多2 cm,则AC=__________cm.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.在△ABC中,若∠A=60°,∠B=95°,则∠C的度数为A.24°B.25°C.30°D.35°12.如图,在△ABC中,∠B、∠C的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=A.118°B.119°C.120°D.121°13.如图,图中锐角三角形的个数是A.2个B.3个C.4个D.5个14.已知等腰三角形两边长是10 cm 和5 cm ,那么它的腰长是A .25 cmB .15 cmC .10 cm 或5 cmD .10 cm15.如图,∠BDC =98°,∠C =38°,∠B =23°,∠A 的度数是A .61°B .60°C .37°D .39°16.如图,△ABC 的平分线AD 与中线BE 交于点O ,有下列结论:①AO 是△ABE 的角平分线;②BO 是△ABD 的中线,下列说法正确的是A .①②都正确B .①不正确,②正确C .①②都不正确D .①正确,②不正确17.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为A .55°B .60°C .65°D .70°18.△ABC 中,∠A =∠B =∠C ,则△ABC 是1314A .锐角三角形B .直角三角形C .钝角三角形D .都有可能19.下列说法正确的是①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.①②B.②③C.③④D.②④20.如图,在直角△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在CB上的A′处,折痕CD,则∠A′DB=A.10°B.20°C.30°D.40°三、解答题(本大题共7小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE 与BC交于点F.(1)填空:∠AFC=___________度;(2)求∠EDF的度数.22.如图,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.23.如图,△ABC中,(1)若∠B=70°,点P是△ABC的∠BAC和∠ACB的平分线的交点,求∠APC的度数.(2)如果把(1)中∠B=70°这个条件去掉,试探索∠APC和∠B之间有怎样的数量关系.24.如图,E是△ABC中AB边上的一点,AD是△ABC的高,已知AD=10,CE=9,AB=12,∠B=65°,∠BCE=25°,求BC的长.25.多边形的内角和与某一外角的度数总和为1350°,那么这个多边形的边数是多少?26.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是__________度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.27.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n ﹣1BC 的平分线与∠A n ﹣1CD 的平分线交于点A n .设∠A =θ.则:(1)求∠A 1的度数;(2)∠A n 的度数.参考答案1.【答案】8【解析】设这个多边形的边数为n ,得,解得n =8.∴这个多边形的边数为8.故答案为:8.45360n ︒⨯=︒2.【答案】7【解析】∵一个边形从一个顶点出发引出的对角线可将其分割成5个三角形,∴n -2=5,解得n =7,故答案n 为:7.3.【答案】16【解析】∵7-2<第三边<7+2,∴5<第三边<9.∵第三边为奇数,∴第三边=7,所以三角形的周长是2+7+7=16(cm ).故答案为:16.4.【答案】80°【解析】由题意得,∠B =∠B ′=110°,∠ACA ′=50°,∴∠ACB =180°–∠A –∠B =180°–40°–110°=30°,∴∠BCA ′=∠ACB +∠ACA ′=30°+50°=80°.故答案为:80°.5.【答案】18°【解析】∵△ABC 中,∠B =70°,∠C =34°,∴∠BAC =180°–(70°+34°)=76°.∵AE 平分∠BAC ,∴∠BAE =38°.∵Rt △ABD 中,∠B =70°,∴∠BAD =20°,∴∠DAE =∠BAE –∠BAD =38°–20°=18°.故答案为:18°.6.【答案】72【解析】如图,过B 点作BF ∥l 1,∵五边形ABCDE 是正五边形,∴∠ABC =108°,∵BF ∥l 1,l 1∥l 2,∴BF ∥l 2,∴∠3=180°-∠1,∠4=∠2,∴180°-∠1+∠2=∠ABC =108°,∴∠1-∠2=72°.故答案为:72.7.【答案】56【解析】∵AB ∥CD ,,∴,又∵CE ⊥BE ,34B ∠=︒34CDE B ∠=∠=︒∴Rt △CDE 中,,故答案为:56.903456C ∠=︒-︒=︒8.【答案】540°【解析】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°,∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°,故答案为:540°.9.【答案】40°或15°【解析】当题中的“有一个角”是直角时,和不是直角时.当为直角时,由直角三角形ABC中有一个角是另一角的2倍小60°,设“另一角”为x,则有90°=2x-60°,则x=75°,所以最小角为15°,当题中的“有一个角”不是直角时,设直角三角形中一个锐角为x,另一个锐角为2x−60°,根据两个锐角之和为90°可得,x+2x−60°=90°,解得x=50°,较小角为90°−50°=40°,故答案为:40°或15°.10.【答案】10【解析】∵AE是△ABC的中线,∴CE=BE,∵△ACE的周长比△AEB的周长多2 cm,∴(AC+AE+CE)-(BE+AB+AE)=AC-AB=2 cm,∵AB=8 cm,∴AC=10 cm.故答案为:10.11.【答案】B【解析】三角形的内角和为180°,则∠C=180°–60°–95°=25°.故选B.12.【答案】C【解析】根据∠A=60°,∠ABC=42°可得:∠ACB=78°,根据角平分线的性质可得:∠FBC=21°,∠FCB=39°,则∠FBC+∠FCB=60°,在△FBC中应用内角和定理可得:∠BFC=180°–60°=120°.故选C.13.【答案】B【解析】①以A为顶点的锐角三角形△ABC、△ADC共2个;②以E为顶点的锐角三角形:△EDC,共1个,所以图中锐角三角形的个数有2+1=3(个),故选B.14.【答案】D【解析】当腰为5 cm时,5+5=10,不能构成三角形,因此这种情况不成立.当腰为10 cm时,10-5<10<10+5,能构成三角形,故选D.15.【答案】C【解析】如图,延长BD交AC于点E,根据外角的性质可得:∠BEC=∠BDC–∠C=98°–38°=60°,∠A=∠BEC–∠B=60°–23°=37°,故选C.16.【答案】D【解析】AD是三角形ABC的角平分线,∴AO是∠BAC的角平分线,∴AO是△ABE的角平分线,故①正确;∵BE是三角形ABC的中线,∴E是AC是中点,而O不一定是AD的中点,故②错误.故选D.17.【答案】D【解析】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.18.【答案】B【解析】设∠A=x°,则∠B=3x°,∠C=4x°,由x+3x+4x=180,解得:x=22.5,∴∠C=4×22.5°=90°,故△ABC是直角三角形.故选B.19.【答案】D【解析】三角形的角平分线是线段;三角形的三条角平分线都在三角形内部,且交于同一点;当这个三角形为钝角三角形时,则有两条高在三角形的外部;三角形的一条中线把该三角形分成面积相等的两部分.故选D.20.【答案】B【解析】∵Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,∴∠B=90°-∠A=90°-55°=35°,∠A=∠CA′D,∵∠CA′D=∠B+∠A′DB,∴55°=35°+∠A′DB,∴∠A′DB=20°.故选B.21.【解析】(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°.故答案为:110°.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°–50°–30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA–∠BDF=100°+100°–180°=20°.22.【解析】(1)∵∠ADC是△ABD的外角,∴∠ADC =∠B +∠BAD =105°,∵∠AED 是△CDE 的外角,∴∠AED =∠C +∠EDC .∵∠B =∠C ,∠ADE =∠AED ,∴∠ADC -∠EDC =105°-∠EDC =45°+∠EDC ,解得:∠CDE =30°.(2)∠CDE =∠BAD .12理由:设∠BAD =x ,∵∠ADC 是△ABD 的外角,∴∠ADC =∠B +∠BAD =45°+x ,∵∠AED 是△CDE 的外角,∴∠AED =∠C +∠CDE ,∵∠B =∠C ,∠ADE =∠AED ,∴∠ADC -∠CDE =∠45°+x -∠CDE =45°+∠CDE ,得:∠CDE =∠BAD .1223.【解析】(1)∵∠B =70°,∴∠BAC +∠BCA =110°,∵点P 是△ABC 的∠BAC 和∠ACB 的平分线的交点,∴∠PAC =∠BAC ,∠PCA =∠BCA ,1212∴∠PAC +∠PCA =(∠PAC +∠PCA )=×110°=55°,1212∴∠P =180°-55°=125°.(2)∵点P 是△ABC 的∠BAC 和∠ACB 的平分线的交点,∴∠PAC =∠BAC ,∠PCA =∠BCA ,1212∴∠PAC +∠PCA =(∠PAC +∠PCA ),12∴∠P =180°-(∠PAC +∠PCA )=180°-(∠PAC +∠PCA )12=180°-(180°-∠B )12=90°+∠B .1224.【解析】∵CE =9,AB =12,∴△ABC 的面积=×12×9=54.12因为,在△BCE 中,∠B =65°,∠BCE =25°,所以,∠BEC =180°-∠B -∠BCE =180°-65°-25°=90°.所以,CE 是△BCE 的高.所以,△ABC 的面积=BC ·AD =54,12即BC ·10=54,12解得BC =10.8.25.【解析】设边数为n ,外角为x °,则x +(n -2)×180=1350.∴x =1350-180(n -2).∵0<x <180,∴0<1350-(n -2)×180<180.解得<n <.1531817118∵n 为整数,∴n =9.26.【解析】(1)75°.(2)如图,CH 为所求的高.(3)如图,过点E 作EF ⊥BD 于点F ,∵AD 是BC 的中线,∴BD =CD ,∴,11603022ABD ACD ABC S S S ===⨯=△△△同理,11301522BED ABE ABD S S S ===⨯=△△△又∵,1151522BED S BD EF EF =⋅=⨯=△∴EF =6,即点E 到BC 边的距离为6.27.【解析】(1)∵BA 1是∠ABC 的平分线,CA 1是∠ACD 的平分线,∴∠A 1BC =∠ABC ,∠A 1CD =∠ACD ,1212又∵∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,∴(∠A +∠ABC )=∠ABC +∠A 1,1212∴∠A 1=∠A ,12∵∠A =θ,∴∠A 1=.2θ(2)同理可得∠A 2=∠A 1=·=,12122θ22θ所以∠A n =.2n θ。
人教版八年级数学第12章全等三角形培优训练一、选择题1. 如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等,所需的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是()A.SSS B.SAS C.AAS D.ASA3. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS4. 如图,OC平分∠AOB,P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.55. 如图所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA≌△PF A的依据是()A.HL B.ASA C.SSS D.SAS6. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°7. 如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC =ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE =FB;②AB=FE;③AE=BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④8. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.39. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC10. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于()A.90°B.120 C.135°D.150°二、填空题11. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)12. 已知△ABC≌△DEF,若△ABC的周长为16,AB=6,AC=7,则EF=________.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.16. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.三、作图题17. 如图,试沿着虚线把图形分成两个全等图形.18. 如图,要在河流的右侧、公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉点A处的距离为1 cm(指图上距离)的地方,则图中工厂的位置应选在哪里?作出图形(保留作图痕迹,不写作法),并说明理由.四、解答题19. 如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并证明.20. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.21. 已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在边BC上,求证:AB=AC;(2)如图②,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.图①图②22. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.23. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.人教版八年级数学第12章全等三角形培优训练-答案一、选择题1. 【答案】C2. 【答案】A3. 【答案】A4. 【答案】A[解析] 如图,过点P作PE⊥OA于点E.∵OC平分∠AOB,PD⊥OB,∴PE=PD=3.∵动点Q在射线OA上运动,∴PQ≥3.∴线段PQ的长度不可能是2.5. 【答案】A6. 【答案】C[解析] 对于选项A来说,AB+BC<AC,不能画出△ABC;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.7. 【答案】A[解析] 由题意可得,要用“SSS”判定△ABC和△FED全等,需要AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可以;若添加AB=FE,则可直接用“SSS”证明两三角形全等,故②可以;而③④都不可以.8. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD=22+=2,DF CF∴BC=BD+CD=22+,故选A.9. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.10. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.二、填空题11. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.12. 【答案】3[解析] ∵△ABC 的周长为16,AB =6,AC =7,∴BC =3.∵△ABC ≌△DEF ,∴EF =BC =3.13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】55°[解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎨⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL). ∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.15. 【答案】7[解析] 过点P 作PF ⊥BC 于点F ,PG ⊥AB 于点G ,连接AP .∵△ABC 的两条外角平分线BP ,CP 相交于点P ,∴PF=PG=PE=2.∵S △BPC =2,∴BC ·2=2,解得BC=2.∵△ABC 的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.16. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°.分两种情况:①当AP =BC =5时, 在Rt △ABC 和Rt △QPA 中,⎩⎨⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL); ②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎨⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.三、作图题17. 【答案】解:如图所示.18. 【答案】解:工厂的位置应选在∠A 的平分线上,且距A 点1 cm 处.理由:角的平分线上的点到角的两边的距离相等.作图略.四、解答题19. 【答案】解:答案不唯一,如:添加∠BAC =∠DAC. 证明:在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS).20. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10,∴AB=CD=(AD-BC)=3.21. 【答案】(1)证明:如图①,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知,OE=OF,OB=OC,解图①∴Rt△OEB≌Rt△OFC,∴∠B=∠C,从而AB=AC.(2)证明:如图②,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知,OE=OF.在Rt△OEB和Rt△OFC中,∵OE=OF,OB=OC,解图②∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF,又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立.(注:当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图③)解图③22. 【答案】证明:如图,在AB上截取AF=AD,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE , ∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.23. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON , ∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.。
人教版八年级上册数学第11章三角形同步培优专项习题1.如图,在三角形ABC中,∠B=60°,∠C=α,点D是AB上一点,E是AC上一点,∠ADE=60°,点F为线段BC上一点,连接EF,过D作DG∥AC交EF于点G,(1)若α=40°,求∠EDG的度数;(2)若∠FEC=2∠DEF,∠DGF=∠BFG,求α.2.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.3.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.(1)若∠ABC=30°,∠ACB=60°,求∠DAE的度数;(2)写出∠DAE与∠C﹣∠B的数量关系,并证明你的结论.4.阅读下面的材料,并解决问题.(1)已知在△ABC中,∠A=60°,图1﹣3的△ABC的内角平分线或外角平分线交于点O,请直接求出下列角度的度数.如图1,∠O=;如图2,∠O=;如图3,∠O=;如图4,∠ABC,∠ACB的三等分线交于点O1,O2,连接O1O2,则∠BO2O1=.(2)如图5,点O是△ABC两条内角平分线的交点,求证:∠O=90°+∠A.(3)如图6,△ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1,O2,若∠1=115°,∠2=135°,求∠A的度数.5.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.6.如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)7.发现:已知△ABC中,AE是△ABC的角平分线,∠B=72°,∠C=36°(1)如图1,若AD⊥BC于点D,求∠DAE的度数;(2)如图2,若P为AE上一个动点(P不与A、E重合),且PF⊥BC于点F时,∠EPF=°.(3)探究:如图2△ABC中,已知∠B,∠C均为一般锐角,∠B>∠C,AE是△ABC的角平分线,若P为线段AE上一个动点(P不与E重合),且PF⊥BC于点F时,请写出∠EPF与∠B,∠C的关系,并说明理由.8.如图①,在△ABC中,∠BAC=90°,AD是BC边上的高.(1)求证:∠DAC=∠ABC;(2)如图②,△ABC的角平分线CF交AD于点E,求证:∠AFE=∠AEF.9.问题引入:(1)如图①所示,△ABC中,点O是∠ABC和∠ACB的平分线的交点,若∠A=α,则∠BOC=(用α表示):不用说明理由,直接填空.如图②所示,∠OBC=∠ABC,∠OCB=∠ACB,若∠A=α,则∠BOC=(用α表示),不用说明理由,直接填空.(2)如图③所示,∠OBC=∠DBC,∠OCB=∠ECB,若∠A=α,则∠BOC=(用α表示),填空并说明理由.10.如图,∠CAD与∠CBD的角平分线交于点P.(1)若∠C=35°,∠D=29°,求∠P的度数;(2)猜想∠D,∠C,∠P的等量关系.11.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明;(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系,并证明;(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角,(即∠CDE=∠CDN,∠CBE=∠CBM),求∠E度数.12.完成下面的证明:已知:如图,四边形ABCD中,∠A=106°﹣α,∠ABC=74°+α,BD⊥DC于点D,EF⊥DC于点F.求证:∠1=∠2.证明:∵∠A=106°﹣α,∠ABC=74°+α(已知),∴∠A+∠ABC=180°.∴AD∥().∴∠1=.∵BD⊥DC,EF⊥DC(已知),∴∠BDF=∠EFC=90°().∴BD∥().∴∠2=().∵∠1=(已证),∴∠1=∠2().13.已知点A在射线CE上,∠BDA=∠C.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若BD⊥BC,请证明∠DAE+2∠C=90°;(3)如图3,在(2)的条件下,∠BAC=∠BAD,过点D作DF∥BC交射线CE于点F,当∠DFE=8∠DAE时,求∠BAD的度数.(直接写出结果)14.在△ABC中,∠A=70°,点D、E分别是边AC、AB上的点(不与A、B、C重合),点P是平面内一动点(P与D、B不在同一直线上),设∠PEB=∠1,∠DPE=∠2,∠PDC=∠3.(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠2=;(用含有∠1、∠3的代数式表示)(2)若点P在△ABC的外部,如图(2)所示,则∠1、∠2、∠3之间有何关系?写出你的结论,并说明理由.∠3之间的关系式.(不需要证明)15.如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.(1)CD与EF是否平行,请说明理由.(2)若DF平分∠ADC,求∠DOC的度数(注:三角形的三个内角和等于180°).16.如图,在△ABC中,BE是△ABC角平分线,点D是AB上的一点,且满足∠DEB=∠DBE.(1)DE与BC平行吗?请说明理由;(2)若∠C=50°,∠A=45°,求∠DEB的度数.17.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=70°,∠ACB=40°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.18.在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求:(1)直接写出∠BAC=.(2)求∠BAH的度数.19.如图,在四边形ABCD中,∠A与∠C互补,BE、DF分别平分∠ABC、∠ADC,EG∥AB与BC相交于点G.(1)∠1与∠2有怎样的数量关系?说明理由;(2)若∠A=108°,∠1=46°,求∠CEG的度数.20.如图,在四边形ABCD中,∠A=140°,∠D=80°.(1)如图1,若∠B=∠C,则∠C=度;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠DCB的角平分线交于点E,试求出∠BEC的度数;②在①的条件下,若延长BA、CD交于点F(如图4).将原来条件“∠A=140°,∠D=80°”改为“∠F =40°”.其他条件不变.则∠BEC的度数为.。
2021年人教版数学八年级上册《三角形》专题培优练习一、选择题1.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°2.如图,l1∥l2,则下列式子中值等于180°的是()A.∠α+∠β+∠γB.∠α+∠β-∠γC.∠α+∠γ-∠βD.∠β-∠α+∠γ3.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°4.如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BDG=8,S△AGE=3,则S△ABC=( )A.25B.30C.35D.405.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2cB.2a+2bC.2cD.06.如图,∠1,∠2,∠3,∠4的数量关系为( )A.∠1+∠2=∠4-∠3B.∠1+∠2=∠3+∠4C.∠1-∠2=∠4-∠3D.∠1-∠2=∠3-∠47.若三角形的三个外角的度数之比为2∶3∶4,则与之对应的三个内角的度数之比为( )A.4∶3∶2B.3∶2∶4C.5∶3∶1D.3∶1∶58.如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M,若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )A.120° B.108° C.72° D.36°10.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是()A.54 B.54 C.60 D.6611.如图,半径为2的正六边形ABCDEF的中心在坐标原点0,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2018秒时,点P的坐标是( )A.(1,)B.(-1,-)C.(1,-)D. (-1,)12.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°二、填空题13.小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .15.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C= .16.△ABC中,∠B=40°,D在BA的延长线上,AE平分∠CAD,且AE∥BC,则∠BAC= .17.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.18.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H.下面说法中正确的序号是 .①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.三、解答题19.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE= .(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)20.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40的两部分,求AC和AB的长.21.已知:如图,在△ABC 中,∠B>∠C ,AE 为∠BAC 的平分线,AD ⊥BC 于点D.求证:∠DAE=12(∠B -∠C).22.如图,∠EOF=90°,点A ,B 分别在射线OE ,OF 上移动,连结AB 并延长至点D ,∠DBO 的平分线与∠OAB 的平分线交于点C ,试问:∠ACB 的度数是否随点A ,B 的移动而发生变化?如果保持不变,请说明理由;如果随点A ,B 的移动而发生变化,请给出变化的范围.23.如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,BE 平分∠ABC ,分别交AC ,CD 于点E ,F. 求证:∠CEF=∠CFE.24.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,试说明∠A、∠B、∠C、∠D之间的关系;(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.①若∠D=40°,∠B=36°,则∠P=________;②探究∠P与∠D、∠B之间有何数量关系,并说明理由.25.如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.参考答案1.答案为:B.2.答案为:B.3.答案为:B.4.答案为:B.5.答案为:D.6.答案为:A.7.答案为:C.8.答案为:B9.答案为:B.10.答案为:D.11.答案为:D12.答案为:9.13.答案为:100°.14答案为:40°.15.答案为:92°16.答案为:100°17.答案为:2b﹣2c.18.答案为:①②③.19.解:∵AD⊥BC于D,∴∠ADC=90°,∵AE平分∠BAC,∴∠EAC=∠BAC,而∠BAC=180°﹣∠B﹣∠C,∴∠EAC=90°﹣∠B﹣∠C,∵∠DAC=90°﹣∠C,∴∠DAE=∠DAC﹣∠EAC=90°﹣∠C﹣[90°﹣∠B﹣∠C]=(∠B﹣∠C),(1)若∠B=70°,∠C=40°,则∠DAE=(70°﹣40°)=15°;(2)若∠B ﹣∠C=30°,则∠DAE=×30°=15°;(3)若∠B ﹣∠C=α(∠B >∠C ),则∠DAE=α;故答案为15°.20.解:∵AD 是BC 边上的中线,AC=2BC ,∴BD=CD ,AC=4BD .设BD=CD=x ,AB=y ,则AC=4x .分两种情况讨论:①AC +CD=60,AB +BD=40,则4x +x=60,x +y=40,解得x=12,y=28,即AC=4x=48,AB=28,BC=2x=24,此时符合三角形三边关系定理. ②AC +CD=40,AB +BD=60,则4x +x=40,x +y=60,解得x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理.综上所述,AC=48,AB=28.21.证明:∵AE 为∠BAC 的平分线,∴∠BAE=12∠BAC=12(180°-∠B -∠C). ∵AD ⊥BC ,∴∠BAD=90°-∠B ,∴∠DAE=∠BAE -∠BAD=12(180°-∠B -∠C)-(90°-∠B)=12(∠B -∠C). 22.解:∠ACB 的度数不随点A ,B 的移动发生变化.理由如下:∵BC ,AC 分别平分∠DBO ,∠BAO ,∴∠DBC=12∠DBO , ∠BAC=12∠BAO. ∵∠DBO +∠OBA=180°,∠OBA +∠BAO +∠AOB=180°,∴∠DBO=∠BAO +∠AOB ,∴∠DBO -∠BAO=∠AOB=90°.∵∠DBC +∠ABC=180°,∠ABC +∠ACB +∠BAC=180°,∴∠DBC=∠BAC +∠ACB ,∴12∠DBO=12∠BAO +∠ACB ,∴∠ACB=12(∠DBO -∠BAO)=12∠AOB=45°. 23.证明:∵BE 平分∠ABC ,∴∠ABE=∠CBE.∵∠ACB=90°,CD ⊥AB ,∴∠CEF +∠CBE=90°,∠DFB +∠ABE=90°,∴∠CEF=∠DFB.又∵∠CFE=∠DFB ,∴∠CEF=∠CFE.24.解:(1)在△AOD 中,∠AOD=180°-∠A -∠D ,在△BOC 中,∠BOC=180°-∠B -∠C ,∵∠AOD=∠BOC ,∴180°-∠A -∠D=180°-∠B -∠C.∴∠A +∠D=∠B +∠C.(2)①38°,②根据“8字形”数量关系,∠OAD +∠D=∠OCB +∠B , ∠DAM +∠D=∠PCM +∠P ,∴∠OCB -∠OAD=∠D -∠B ,∠PCM -∠DAM=∠D -∠P.∵AP 、CP 分别是∠DAB 和∠BCD 的平分线,∴∠DAM=12∠OAD ,∠PCM=12∠OCB .∴∠PCM -∠DAM=12∠OCB -12∠OAD. ∴∠D -∠P=12(∠D -∠B). ∴2∠P=∠B +∠D ,即∠P 与∠D 、∠B 之间的数量关系为2∠P=∠B +∠D.25.解:(1)(2)共连接了8个点.(3)1+2+3+…+(n+1)=0.5[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=0.5(n+1)(n+2). 故填0.5(n+1)(n+2).。
人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. 的值是( )A 、0B 、-2C 、2D 、 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形4. 若二次三项式26x ax +-可分解成,则a ,b 的值分别为( )A . 1,3B . 1-,3C . 1,3-D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。
8.如图,等边三角形△ABC 的边长是6,面积是,AD 是BC 边上的高,点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、D 、9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5=15分)11. 分解因式得正确结果为. 12. 满足的整数的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。
人教版八年级数学《三角形》培优训练(一)引言概述:本文是关于人教版八年级数学《三角形》培优训练(一)的文档。
通过该培优训练,学生可以全面了解和掌握三角形的相关知识和技巧。
本文将从五个大点入手,分别是三角形的基础知识、三角形的性质、三角形的分类、三角形的计算以及三角形的应用。
每个大点下又包括5-9个小点来具体讲解和说明。
通过学习本文,相信学生们能够在数学学习中更好地理解和应用三角形的知识。
一、三角形的基础知识1. 三角形的定义:三边的连线形成的图形2. 三角形的元素:顶点、边、角3. 三角形的命名方法:按顶点依次命名4. 三角形的内角和:180°5. 三角形的外角和:360°二、三角形的性质1. 三角形两边之和大于第三边2. 三角形两角之和大于第三角3. 三角形内角相等性质4. 三角形的外角等于与之相邻的两个内角的和5. 三角形的底角与顶角互补三、三角形的分类1. 根据边长分类:等边三角形、等腰三角形和普通三角形2. 根据角度分类:锐角三角形、直角三角形和钝角三角形3. 根据边长和角度分类:等腰直角三角形、等腰锐角三角形和等腰钝角三角形4. 根据边长、角度和对称性分类:等边直角三角形和等边钝角三角形四、三角形的计算1. 三角形的面积计算方法:底乘以高除以22. 利用三角形的面积求解其他未知量3. 利用勾股定理求解三角形的边长4. 利用正弦定理求解三角形的边长5. 利用余弦定理求解三角形的边长五、三角形的应用1. 三角形在建筑、航海和导航中的应用2. 三角形在地图制作和测量中的应用3. 三角形在航空和航天技术中的应用4. 三角形在数学模型和图形构造中的应用5. 三角形在计算机图形和游戏开发中的应用总结:通过本文的学习,我们了解了三角形的基础知识、性质、分类、计算方法和应用场景。
掌握这些知识和技巧,将有助于我们在数学学习和实际问题中更好地理解和应用三角形的概念。
希望同学们通过培优训练,能够进一步提高数学水平,充实自己的知识储备。
人教版八年级数学《三角形》培优训练
一、选择题:
1.下列长度的三条线段中,能组成三角形的是()
A、3,5 ,8
B、8,8,18
C、,,
D、3,40,8
2.若三角形两边长分别是4、5,则周长c的范围是()
A. 1<c<9
B. 9<c<14
C. 10<c<18
D. 无法确定
3.一个多边形内角和是1080°,则这个多边形的边数为()
A 6
B 7
C 8
D 9
4.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()
A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形
5.能把一个任意三角形分成面积相等的两部分是()
A.角平分线
B.中线
C.高
D..A、B、C都可以
6.如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于()A、90° B、135° C、270° D、315°
7.如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=50°,则∠BPC等于()
A、90°
B、130°
C、120°
D、115°
8.如图,点O是△ABC内一点,∠A=80°,∠1=15
∠2=40°,则∠BOC等于()
A. 95°
B. 120°
C. 135°
D.无法确定
9.在△ABC中,D,E分别为BC上两点,且BD=DE=EC,
则图中面积相等的三角形有()对对对对
10.如图四个图形中,线段BE是△ABC的高的图是()
第7题图
第6题图
A
D
B E
E
C
A
E C
B
A
E
C
B
A
E
B
A
2
_A
_O
1
11.三角形的一个外角是锐角,则此三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定
12. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500
和200
的三角形一定是钝角三角形,④直角三角形中两锐角的和为900
,其中判断正确的有( )个 个 个 个 二、填空题:
1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= _,∠B= _,这个三角形
是 。
5. 如图2,在△ABC 中,AD ⊥BC 于点D ,BE=ED=DC ,∠1=∠2,则 ○
1AD 是△ABC 的边 上的高,也是 的边BD 上的高, 还是△ABE 的边 上的高;
○
2AD 既是 的边 上的中线,又是边 上的高,还是 的角平分线。
6. 若三角形的两条边长分别为6和4,且第三边的边长为偶数,则第三边长为 。
7.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b-c|=_____________。
8.一个多边形的剪去一个角后,所得新的多边形的内角和为2160度,则原来这个多边形的边数是_____
9.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=90°-∠B ,④∠A=
∠B=∠C 中,能确定△ABC 是直角三角形的条件有 10.如图,∠1+∠2+∠3+∠ 4的值为
11.如图,若∠A =70°,∠ABD =120°,则∠ACE =
第12题图 12.如图,AB ∥CD ,∠BAE=∠DCE=45°,则∠E=
1
2
3 4
第10题图 第11题图 B
E
A
C D
2
1图2
C
A
D E
三、解答下列各题
1.如图直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°
,求∠A和∠D。
(7分)
2.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,
CD⊥AB于D,DF⊥CE于F,求∠CDF的度数。
3. 如图在△ABC,AD是高线,AE、BF是角平分线,它们相交于点O,∠BAC=50°,
∠C=70°,求∠DAC与∠BOA的度数。
4 如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,
交AB于E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.
5. 如图,在△ABC中,∠C=88°,外角∠EAB,
∠ABF的平分线AD、BD相交于点D,求∠D的度数.
D
A
E
B
F E
C B
A
D
C
A
B
D
E
F
A B
C D
O
G
F
E
D
A C 6.如图:∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD , 且BE 、CE 交于点E 。
求证:∠E =1
2
∠A .
★7.如图、四边形ABCD 中,∠A =∠C =90°,BE 、CF 分别是∠B 、∠D 的平分线. (1)∠1与∠2有何关系,为什么? (2)BE 与DF 有何关系?请说明理由.
★★8.如图,∠ECF =900
,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与 ∠CAB 的外角平分线AG 所在的直线交于一点D ,
(1)∠D 与∠C 有怎样的数量关系(直接写出关系及大小)
(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变, (1)中结论还成立吗?说说你的理由。
4
3
2
1
E
D
C
B
A
3
2
1F
E
D
C
B A。