数字信号处理习题讲解(第二版)
- 格式:ppt
- 大小:4.38 MB
- 文档页数:195
1. 解丗由题意可知 N=5
则周期为丗其中为整数丆且满足使N为最小整数。
2. •i1•j解丗由题意可知 N=14
则周期为丗
•i2•j解丗由题意可知 N= 8
则
则所求周期 N=14
最小公倍数丆即为丗56
3.19 (1)周期卷积的主值序列为丗f(n)R(n) ={6,3, 6,10,14,12,9};
(2)循环卷积f (n) ={6,3, 6,10,14,12,9};
•i3•j线性卷积为f(n) ={1,3, 6,10,14,12,9,5, 0, 0, 0, 0}
2.21 •i 第二种方法乯按频率抽取算法丗输入顺
序丆
输出倒序(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7, 15);
4
共有4(16=2*2*2*2 )节
第一节丗数据点间距、蝶形类型均是8•C
0 1 2 3 4 5 6 7
所乘因子丗W ,W ,W ,W ,W ,W ,
W ,W ;
N N N N N N N N N
第二节丗数据点间距、蝶形类型均是4 •C
0 2 4 6
所乘因子丗W ,W ,W ,W ;
N N N N
0 4
第三节丗数据点间距、蝶形类型均是2 •C所乘因
子丗W ,W ;
N N
第四节丗数据点间距、蝶形类型均是1 •C所乘因
子丗W ;
N。
习题详解第1章单项选择题(1-1—1-10题) 1-1 关于序列[]x n 的自相关 *[][][]xx k r n x k x k n ∞=-∞=+∑,错误的是(D )(A )[0]xx r E =,E 是序列的能量 ; (B )*[]x n -的自相关等于[]x n 的自相关; (C )[]x n m -的自相关等于[]x n 的自相关,m 是任意整数; (D )[][]xx xx r n r n -=。
解:(A )*[0][][0]xx k r x k x k E ∞=-∞=+=∑(B )[]x k 共轭翻褶再左移n 得到*[()]x k n -+***[]'[][][()][']['][]xx n k k r n x k x n k x k n x k r n ∞∞-=-∞=-∞=--+=+=∑∑(C )**[][]'[][()][()][']['][]x n m x n k k r n x k m x k n m x k x k n rn ∞∞-=-∞=-∞=-+-=+=∑∑(D )***[][][][']['][]xx xxk k r n x k x n k x k n x k rn ∞∞=-∞=-∞-=-+=+=∑∑若[]x n 是实序列则自相关偶对称1-2 序列11[]5cos(63x n n ππ=-的周期是(A )(A )12 (B )11 (C )12/11 (D )6 解:21211116ππ=,所以周期121-3下列系统因果且稳定的是(B )(A ){[]}2[]nT x n x n = (B ){[]}[][1]T x n x n u n =-+(C )10{[]}log []T x n x n = (D )55{[]}[]n k n T x n x k +=-=∑1-4下列系统线性且时不变的是(B )(A )0{[]}[]nk n T x n x k ==∑(B )00{[]}[]n n k n n T x n x k +=-=∑(C )[]{[]}0.5x n T x n = (D ){[]}[]T x n x n =-1-5有一系统输入为[]x n ,输出为[]y n ,满足关系[]([][2])[]y n x n u n u n =*+,则系统是(A )(A )线性的 (B )时不变的 (C )因果的 (D )稳定的 解:()12121212(){[][]}([][][])[]([][])[]([][])[]{[]}{[]}(){[1]}([1][])[][1]([1][])[1]var ()[][][2]k A T ax n bx n ax n bx n h n u n a x n h n u n b x n h n u n aT x n bT x n linearB T x n x n h n u n y n x n h n u n time iantC y n x n k u k =-+=+*=*+*=+∴-=-*≠-=-*-∴-=-+2[][][]([2]...)[],()k u n x n k u n x n u n non causal D unstable∞∞∞=-⎛⎫⎪⎝⎭⎛⎫=-=++∴- ⎪⎝⎭∑∑1-6 LTI 系统的单位脉冲响应如下,因果且稳定的是(C )(A )][2][n u n h n =(B )]1[][--=n u a n h n (C )][)5.0cos(][10n R n n h =(D )[][2][2]h n u n u n =+--1-7 关于LTI 系统,以下说法正确的是 (C )(A )IIR 不能实现; (B )IIR 是非因果系统; (C )IIR 不一定稳定; (D )IIR 不如FIR 好。
!!"#$%&’!"#$()*+,-./!!!"!!!"!""!!"#$!!""#!"$"#%$#"#%"%##"#$#"$%&%&’(!""9:!!""+;<&=>?@A+(%!!"BC !!""D&EF+GHIJ !!""%!&"K &"!""#!!!"%""&B9:&"!""+;<%!$"K &!!""#&!!"$!"&B9:&!!""+;<%!’"L !!""G H $M N O A P Q &R S T &U &&!""&B 9:&&!""+;<%!%"VL !!""ST &PGH $MNOAUW &$!""&B9:&$!""+;<%!’!""!!""+;<X;"’"’"YJ %;!"("("!!"!!""#%!!""$%!!"%""$%!!"%!"$%!!"%&"$%!!"%$"$)!!"$""$%!!"$!"$$!!"$&"$!!!"$$"!!"#$%&’()*+,-!!!!!&"&"!""#!!!"%""Z[4\!!""GH"MNO]^&P_Q‘-!UW+&&;<X;"’"’!YJ%;!"("(!!$"&!!""#&!!"$!"Z[4\!!""a7!MNO]^&=_Q‘-&UW+&;< X;"’"’&YJ%;!"("(&!’"L!!""GH$MNOAU!(!""#!!"%$"&PL!(!""Q&RSTU&&!""# !(!%""#!!%"%$"&&&!""+;<X;"’"’$YJ%;!"("($!%"&$!""bIc%’&$!""#!!%"$$"&&;<X;"’"’’YJ%!"#!!"#"!d"’"!:+!!""’!""9:!!%""+;<%"!./01#$2./01345’67(8"!;!"("(’!&"ef !+!""#"!(!!""%!!%"")&=9:!+!""+;<%!$"BC !*!""&!+!""IJ !!""&=ghLiM4\jk%iMldm4\niM odm4\+pq %!’!""!!%""+;<X;"’!’"YJ %;!"(!("!!"!*!""#"!(!!""$!!%"")#"$)%$#"#%"%"$)"#"#$%"###"$%&%&’(&;<X;"’!’!YJ %!!"#$%&’()*+,-#!!&"!+!""#"!(!!""%!!%"")#"$!%$#"#%""%!"#"#$#"$%&%&’(&;<X;"’!’&YJ %;!"(!(&!$"drstuvwx4\!!""&bQL&jk%iMldm4\!*!""yiMo dm4\!+!""zy &{Zuvwx#$jk+i|}~p & !!""#!*!""$!+!"" *!*!""#"!(!!""$!!%"")!+!""#"!(!!""%!!%"$%&") &!*!""y !+!""j !*!""#!*!%""&!+!""#%!+!%""+dm ‘%!"$!#"!"!!" ‘ ’!""&!""#!!""$!!"%""$!!"%!"%!!"&!""#&!%""%!&"&!""#!!"!"%!$"&!""#!!!""%!’"&!""#!!"",-.!"""%!%"&!""#)!!""$*&&*)&*% -%B iM‘ Z * += 0 %!’!""d‘ &!""#!!""$!!"%""$!!"%!"&!" !"!""y !!!""& Y! j p &"!./01#$2./01345’67(8$! K!!""##!"!""$$!!!""‘ d!!""+ F&!""#+(!!"")##!"!""$$!!!""$#!"!"%""$$!!!"%""$#!"!"%!"$$!!!"%!"##(!"!""$!"!"%""$!"!"%!")$$(!!!""$!!!"%""$!!!"%!")&!""##&"!""$$&!!""¡¢‘ !""Z +%r&!""#+(!!"")#!!""$!!"%""$!!"%!"£¤‘ d!!"%,"+ F&,!""Z&,!""#+(!!"%,")#!!"%,"$!!"%,%""$!!"%,%!"¥&!"%,"#!!"%,"$!!"%,%""$!!"%,%!"¦§&!"%,"#+(!!"%,")#&,!""¡¢‘ !"" %!!"d‘ &!""#&!%""&!" !"!""y!!!""& Y! jp &&"!""#+(!"!"")#!"!%""&!!""#+(!!!"")#!!!%""K!!""##!"!""$$!!!""£¤‘ d!!""+ F&!""#+(!!"")##!"!%""$$!!!%""##&"!""$$&!!"" ? +¨©ªZ&"!""y&!!""+«¬&‘ !!"Z +%r&!""#+(!!"")#!!%""£¤‘ d!!"%,"+ F&,!""Z&,!""#+(!!"%,")#!(%!"%,")¥&!"%,"#!(%!"%,")!!"#$%&’()*+,-%!YQ‘ !!" %!&"d‘ &!""#!!"!"&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!"!"!"&!!""#+(!!!"")#!!!"!"K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")##!"!"!"$$!!!"!"##&"!""$$&!!""? +¨©ªZ &"!""y &!!""+«¬&‘ !&"Z +% r&!""#+(!!"")#!!"!"£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!(!"%,"!)¥&!"%,"#!(!"%,"!)¦§&!"%,"#+(!!"%,")#&,!""YQ‘ !&" %!$"d‘ &!""#!!!""&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!!"!""&!!""#+(!!!"")#!!!!""K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#(#!"!""$$!!!"")!’#&"!""$$&!!""¡¢&‘ !$"Z® +% r&!""#+(!!"")#!!!""£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!!!"%,"¥&!"%,"#!!!"%,""!./01#$2./01345’67(8&!YQ‘ !$" %!’"d‘ &!""#!!"",-.!"""&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!"!"",-.!"""&!!""#+(!!!"")#!!!"",-.!"""K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#(#!"!""$$!!!""),-.!"""##!"!"",-.!"""$$!!!"",-.!"""&!""##&"!""$$&!!""¡¢&‘ !’"Z +% r&!""#+(!!"")#!!"",-.!"""£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!!"%,",-.!"""¥&!"%,"#!!"%,",-.(!"%,"")¦§&!"%,"’+(!!"%,")#&,!""¡¢&‘ !’" %!%"d‘ &!""#)!!""$*&!" !"!""y !!!""& r )&*% -& Y! j p &&"!""#+(!"!"")#)!"!""$*&!!""#+(!!!"")#)!!!""$*K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#)(#!"!""$$!!!"")$*’#&"!""$$&!!""¡¢&‘ !%"Z® +% r!!"#$%&’()*+,-’!&,!""#+(!!"%,")#)!!"%,"$*¥&!"%,"#)!!"%,"$*¦§&!"%,"#+(!!"%,")#&,!""¡¢&‘ !%" %!"%!#"#"!!" ‘ ’!""&!""#"-$"(-,##!!"%,"&&*-%¯r°+±-%!!"&!""#)!!""$*%!&"&!""#!!""$.!!"$""&&*.% -%!$"&!""#!!"!"%!’"&!""#!!,""&&*,%¯r°+±-%!%"&!""#!!%""%B "²iMZ¡³‘ +²iMZ®¡³‘ += 0 %!’!""&!""#"-$"(-,##!!"%,"&&*-%¯r°+±-%¡%´‘ µs¶w·+ :¸¹"rºµw·y»¼+ !!""&!!"%""&,& !!"%-"&¥yL½+ ¾ &YQ&´‘ Z¡³‘ %!!"&!""#)!!""$*%¡%´‘ µs¶w·+ :¸¹"rºµw·+!!""&¥yL½+ ¾ &Y Q&´‘ Z¡³‘ %!&"&!""#!!""$.!!"$""&&*.% -%¡%´‘ µ¿7w·!""+ : ÀÁ¹r¿7w·!""+ !!""&¥ÂÃÁ¹rL½w·!"$""w+ !!"$""&YQ´‘ Z®¡³‘ %!$"&!""#!!"!"%µ")!w&´‘ ds¶w·"w+ :Ä L½w·"!+ Y¹"&¡¢´‘ %®¡³‘ %!’"&!""#!!,""&&*,%¯r°+±-%XÅÆ,!$"&¿"*#w&‘ + : L½w·,"+ Y¹"&¡¢‘ %®¡³‘ %"!./01#$2./01345’67(8(!¡³‘ %!"&!#"$"!X ÈM‘ ’!""&!""#(-%",###,!!"%,"&&*##&#"&,&#-%"% -%!!"&!""#!#/+,"#&!"%""%#!&!"%!"$!!""%#/+,"#!!"%""&&*#&"#% -%BÉ&ÊËNO F /!""&= ‘ Z Ì"+Ì"+ÍÎZϤ+!’!""ÊËNO FZ‘ µ %ÊËNO4\!!""w+ :%dr´‘ &&ÊËNO F/!""#(-%",###,!!"%,"!!ÐZi M ÑÒr "##&ÓÔ%-+ ÕÓ4\& Z i M 012‘ %Ö r ##&#"&,&#-%"Ä% Õ+ -&YQ´‘ gZÌ"+%!!"bCÈ|pqÉU´‘ +ÊËNO F %pqi ’K !!""#!!""& ‘ + :&!""#/!""& /!""#!#/+,"#/!"%""%#!/!"%!"$!!""%#/+,"#!!"%"""##!/!#"#""#"!/!""#!#/+,"#%#/+,"###/+,"#"#!!/!!"#!#/+,"#(#/+,"#)%#!##!/+,!"#"#&!/!&"#!#/+,"#(#!/+,!"#)%#!(#/+,"#)##&/+,&"#×¢ØÙ&/!""##"/+,""#0!""!!pqÚ’ÛÜbQÝCÞßà!á r 3 â+pqÉ:‘ +ÊËNO F %d‘ + jp ãä3 â&U !"%!#1%"/+,"#$#!1%!"2!1"#!"%#1%"/+,"#"3!1"ã¥UW´‘ T å-4!1"#2!1"3!1"#"%#1%"/+,"#"%!#1%"/+,"#$#!1%!ÊËNO F /!""ZT å-4!1"+æ3 â& Þß+I !’&’"!ç’d #-.#$/012$ZI !’’’""&U /!""#5%"(4!1")##"/+,""#0!""¿§&È|pq!:+h³ZiO+%!!"#$%&’()*+,-)*!8&!""8#8/!"""!!""8#($7,###,/+,"#,!!"%,"#($7,###,/+,"#,8!!"%,"8#6($7,###,/+,"#,#6($7,##8#,8#6($7,##8#8,¿#+"w &‘ + :&!""#/!"""!!""#6"%8#8ÇZ ë+&YQ‘ ZÌ"+%ìz &X³#)"& ‘ Ì"%?íYC+ pq ZÌ" +"î& ë+ ïð ë+ :!4145"%!"’!#"&"!K /!""#-/!#"&/!""&/!!".#-&&!&".&É!""&"!""#/!"""/!""!!"&!!""#/!"""/!"""/!""!’Ék´, È|p q &i Z ñò óô+"îÉ&ÚZ 678974*+:õÎ/+.;½É&ºj !:EF+h³%pqi ’dÆ,!""& &"!""#(79#%7/!"%9"/!9"&bÉ:&"!#"#/!#"/!#"#<&"!""#/!#"/!""$/!""/!#"#"!&"!!"#/!#"/!!"$/!""/!""$/!!"/!#"#"#&"!&"#/!""/!!"$/!!"/!""#$&"!$"#/!!"/!!"#"!!dÆ,!!"&ö÷?&!!""#&"!"""/!""&øùóô+"îbÉ:&!!""#-!=&’$&%&&$$&!"&%&". ú+Ékûüýþÿ!"!:%pqÚ’öºÆ,!""+678974 4Z *>/#"/#%/"(:&#ä´ 4+h³%<!!"!!!"#!!$!!"!!öºÆ,!!"+678974 4ýþÿ!"!:%!"(!/!""$ "’%,!:&K !!""#-!!#"&!!""&!!!"&!!&".#-"&!&&&$.%!""É/!""+!E å-:/!9"%!!"É/!""y !!""+%E å-:/!!9"&=9::/!9"&:/!!9"+;<%。
————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。
为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。
1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。
例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。
掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。
1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。
()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。
要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。
当≠n 整数时,()n x 无定义,但不能理解为零。
当()()nT x n x a =时,这一点容易理解。
当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。
在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。
例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。
2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。
第一章 部分习题解答(数字信号处理(第二版),刘顺兰,版权归作者所有,未经许可,不得在互联网传播) 1.1 序列)(n x 示意如图T1-1,请用各延迟单位脉冲序列的幅度加权和表示。
)(n图T1-1解: )3(2)1(3)()3(2)(−+−+−+−=n n n n n x δδδδ1.3 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期。
(1)873cos()(ππ−=n A n x (2))313sin()(n A n x π=(3))6()(n j en x −=π(4) )18/sin()12/cos()(ππn n n x += 解 (a) 873cos()(ππ−=n A n x314722,7311===πωππω为有理数 所以该序列为周期序列,其周期143314=×=N (b ))313sin()(n A n x π=13631322,31322===ππωππω为有理数 所以该序列为周期序列,其周期613136=×=N (c ))6()(n j e n x −=πππωπω2122,133===为无理数 所以该序列为非周期序列。
1.12有一连续正弦信号)2cos(ϕπ+ft ,其中6,20πϕ==Hz f 。
(1) 求其周期0T ;(2) 在nT t =时刻对其采样,s T 02.0=,写出采样序列)(n x 的表达式; 求)(n x 的周期N 。
解: 6,20πϕ==Hz f(1)其周期ms s s f T 5005.020110====(2)s T 02.0=,)68.0cos()2cos()(ππϕπ+=+=n fnT n x(3)252,8.000==ωππω 则)(n x 的周期5225=×=N 1.13 今对三个正弦信号t t x πα2cos )(1=,t t x πα6cos )(2−=,t t x πα10cos )(3=进行理想采样,采样频率为π8=Ωs ,求三个采样输出序列,比较这三个结果,画出)(1t x α、)(2t x α、)(3t x α的波形及采样点位置并解释频谱混淆现象。