液压挖掘机负流量负荷传感控制策略
- 格式:pdf
- 大小:197.84 KB
- 文档页数:4
第16卷 增刊石家庄铁道学院学报V o l116 Supp1 2003年7月 JOU RNAL O F SH IJ I A ZHUAN G RA I L WA Y I N ST ITU TE Ju l12003液压挖掘机的负荷传感技术王满增1, 祖炳洁2, 贾粮棉2(11石家庄铁道学院教务处,河北石家庄 050043; 21石家庄铁道学院机械工程分院,河北石家庄 050043)摘要:以日本小松PC25液压挖掘机为例,系统分析液压负荷传感技术应用于挖掘机液压泵中,使泵的输出流量自动调节,减少压力损失,提高工作效率。
重点论述负荷传感器的工作原理。
关键词:挖掘机;负荷传感技术;流量控制中图分类号:TH137 文献标识码:A 文章编号:100623226(2003)S1201282031 引言液压负荷传感技术应用于挖掘机的液压系统中,可以控制一个或多个执行元件工作,微调性能非常好;可在满足机器各种控制功能的前提下,减少了压力损失,提高效率,有更佳的经济性、可靠性和先进性。
PC25挖掘机液压系统采用开式中心负荷传感系统(OL SS),该系统是以控制斜盘式柱塞泵斜盘角度的方法,根据外界负荷自动调节液压泵输出流量,以减少溢流和管路压力损失,达到提高发动机效率、节约能源的目的。
2 系统组成及工作原理开式中心负荷传感系统(OL SS)由液压油泵、操作阀和工作装置用油缸等执行元件组成,如图1所示。
液压油泵系统由液压泵(两个)、辅助泵、扭变控制阀、截断阀、反向控制阀、伺服阀等构成。
液压泵为轴向柱塞式,前泵和后泵两路系统结构相同。
211 伺服阀伺服阀主要由控制活塞、导向滑阀等组成,它的作用是控制液压泵的排量。
其工作原理如图2所示。
(1)增大泵的流量(如图2所示)。
先导泵来油一路流入孔c,一路流入扭变控制阀,经截断阀至反向控制阀,由反向控制阀输出的压力油P c,由孔e流入f室。
当f室的压力升高时,控制活塞5向左移动。
当f 室的压力与弹簧平衡时,活塞的移动停止。
负载敏感控制在掘进机液压系统中的应用作者:张世毅来源:《中国科技博览》2014年第01期[摘要]掘进机行走、油缸系统采用恒功率、压力切断、负载敏感单泵控制系统,其控制阀采用负载敏感比例多路换向阀。
行走回路为恒功率控制,实现行走快速调动、工进钻进;油缸回路为负载敏感控制,实现油缸升降、回转等动作。
[关键词]掘进机;恒功率;压力切断;负载敏感中图分类号:TD421.5 文献标识码:A 文章编号:1009-914X(2014)01-0000-010 概迹半煤巷道掘进机是煤矿采准巷道的掘进设备。
从20世纪70年代我国开始自行研制,至今已有30余年。
在这30余年中,在广大工程技术人员的努力下,我国自主研发的掘进机已经达到国际先进水平,并形成从小型掘进机到大型掘进机系列产品,从而提高了我国掘进机械化水平。
掘进机控制系统除切割部为电控外,其行走、装运、油缸各部均采用液压控制。
然而目前掘进机液压控制系统基本都采用恒流量系统或恒压系统,其能量损失大,导致系统发热较大,使其故障频发。
1 液压系统三种基本供油方式1.1 恒压系统(节流控制)(见图1)该系统由一定量泵1供油,通过供油节流口2对执行元件供油,多余的流量通过限压阀4旁通回油箱。
1.2 恒流量系统(见图2)该系统由一定量泵1供油,通过执行元件的流量由三通流量调节阀6决定。
三通流量调节阀阀芯的位置由可调节流口5处的控制压差AP确定。
多余的流量直接通过三通流量调节阀⑥中的通道返回油箱。
泵总是在执行元件的压力加上控制压差AP下工作。
图1 恒压系统图2 恒流量系统1.泵2.节流阀3.溢流阀4.限压阀5.节流阀6.调节阀1.3 变量泵系统(见图3)该系统使用1台变量泵,在可调节流口处产生的控制压差AP控制组合式压力/流量控制器,该控制器有作用于泵的调节装置。
于是,泵就调整到它只提供所需流量(执行元件所需流量+泄漏量),并且总是在执行元件加控制压差AP下工作。
与恒压系统比较,恒流量系统具有较少的压力损失,通往执行元件的流量越接近供油流量,损失越小。
挖掘机液压系统的流量控制方法研究随着机械化水平和工程技术的不断提升,挖掘机已经成为了现代建筑中不可或缺的重要工具之一。
而在挖掘机的各个功能模块中,液压系统扮演着至关重要的角色。
液压系统可以通过传递压力和流量,驱动各种液压执行机构完成工作。
挖掘机液压系统的流量控制方法是该系统运转过程中的重要问题,对于提高挖掘机的工作效率和便利程度都有着不可或缺的作用。
一、挖掘机液压系统流量的控制方法1. 手动控制方法:这种方法是最为简单的一种控制方法,通常在早期的挖掘机中被广泛应用。
手动控制方法通常是由操纵杆操作,通过调整液压泵的容积,来控制液压系统的流量。
这种方法随着技术的不断提高,逐渐被机械控制、电子控制和比例控制所替代。
2. 机械控制方法:这种方法是在手动控制方法基础上的一种升级版,它采用了机械传动装置,采用相对刚性的机械传动来控制液压系统流量。
这种方法的好处是结构比较简单,易于维修和更换,但是无法实现流量自适应和流量调节。
3. 电子控制方法:随着计算机技术和传感器技术的不断发展,电子控制方法逐渐被广泛应用。
电子控制方法通过传感器对流量和压力进行在线监测,然后通过计算机控制来实现液压系统流量的控制。
这种方法的好处是可以实现流量自适应和流量调节,但是相对于机械控制方法来说,电子控制方法的成本和维护难度都比较大。
4. 比例控制方法:比例控制方法又称为比例液压控制技术,是一种结合了机械传动和电子技术的先进液压控制方法。
比例控制方法利用比例电磁阀来控制节流元件的开度,从而实现流量的调节控制。
这种方法的优势在于既可以兼顾机械控制的稳定性和简单性,同时也可以实现电子控制的流量自适应和流量调节。
二、挖掘机液压系统的流量控制应用实例1. 挖掘机工作如果不能精确地控制油液流量,很难保证机械的工作效率和精度。
通过采用比例控制方法,可以精确地控制挖机的液压系统流量,从而保证机械的工作效率和精确度。
2. 在矿山和采石场等大型场景下,挖掘机的工作时间比较长,如果采用手动控制或者机械控制方法容易造成工人疲劳和系统失灵。
液压挖掘机的三种流量控制方式摘要:在液压挖掘机的负载适应控制策略中,负流量(Negative Flow Control)、正流量控制(Positive Flow Control)及负荷传感器控制(Load Sensing Control)三种流量控制方式的流行称谓,是按其泵控特性来分类的。
本文通过对多种厂牌型号挖掘机的比较分析,提出了旁通流量控制(By-pass Flow Control)、先导传感控制(Pilot Sensing Control)及负荷传感控制的分类。
这一分类方法,对于设计时比较不同控制系统的性能和维修时理解不同控制系统结构和功能的特点,都有所裨益。
1.流量控制在挖掘机的液压系统内,流量Q、压力P及能耗(流量损失ΔQ、压力损失ΔP)等参数的变化,反映了液压传动过程的控制特性。
液压系统工作时,压力P不是系统的固有参数,而是由外负荷决定的。
因此,当发动机转速n e一定时,要对液压系统的功率进行调节,其实是对液压缸、液压马达等执行元件的进油量Q a进行调节(参看图1)。
图1.流量调节如图2所示,有两种方法调节系统流量。
第一种方法是泵控方式,通过改变主泵的每转排量q来调节主泵的输出流量Q p,称为容积调速。
常见的容积调速方式包括:①利用主泵出口压力P P与主泵排量q的乘积保持不变的恒扭矩控制;②利用发动机转速传感(ESS)使主泵吸收的扭矩p P q与主泵转速n的乘积保持不变的恒功率控制;③在临近系统溢流压力时,减小主泵排量的压力切断控制;④配用破碎头等作业附件时,由外部指令限定主泵最大排量的最大流量二段控制;⑤双泵系统中,利用两泵出口压力的平均值与主泵流量乘积保持不变的交叉功率控制(相加控制或总功率控制);⑥多泵系统中,因主泵组的液压总功率大于发动机的输出功率,为防止发动机出现失速,采用了极限负荷控制。
除了容积调速,还有一种泵控方式是通过动力模式下的变功率控制,利用外部指令设定不同工况下不同的发动机输出功率来改变主泵转速n e,从而调节主泵输出流量Q=nq。
负流量控制国产中型挖掘机主泵分析导读:本篇章主要分析负流量控制的国产中型挖掘机的主泵总成(川崎K3V112DT)的结构、原理、变量分析及相关部位调整之后对整机的影响。
附有大量结构原理图、零部件分解爆炸图、变量分析曲线、调整相关部位后的压力-排量特性曲线等。
1、主泵总成概述负流量控制系统的国产中型挖掘机使用的主泵总成为其液压传动系统的动力元件总成,包含有两个排量可变、基本参数相同的直轴式轴向柱塞泵作主工作泵用,同时包含有一个排量不可变的外啮合齿轮泵作先导泵用。
主泵总成中各泵的基本参数如表1所示。
表1 主泵总成基本参数型号川崎K3V112DT柱塞泵单泵最大排量(m112L/r)柱塞泵单泵最小排量(m38L/r)柱塞泵最高压力(MPa)34.3先导齿轮泵排量(mL/r10)先导齿轮泵溢流压力(MP4a)液压油温度范围(℃)-20~90挖掘机各液压泵是由发动机驱动的,各泵将发动机输出的机械能转化为液压能输出,最终实现对执行元件的供油控制和多部位的先导控制。
发动机与主泵总成的相对位置关系如图1所示。
1-发动机;2-主泵总成图1 发动机与主泵总成相对位置负流量控制的国产中型挖掘机使用了川崎K3V112DT型主泵,该主泵总成内各泵实际为串联,即发动机输出的机械能通过一根输出轴(实际为两根,通过花键套串联),将动力传输与各泵,故该主泵总成被称为串联式多泵。
对于该型主泵,从外部看,如图2所示,该主泵总成由两个主工作泵(双柱塞泵)泵体、先导齿轮泵、主泵调节器和比例电磁阀(也称PSV阀或电磁比例减压阀)阀块等组成。
1-主工作泵(双柱塞泵);2-先导齿轮泵;3-主泵调节器;4-比例电磁阀阀块图2 主泵总成基本组成结构图如图3所示,对于该型主泵总成,是由两个直轴式轴向柱塞泵及一个外啮合齿轮泵串联而成。
其中,靠近发动机侧的柱塞泵被称为前泵(或左泵、P1泵),另一柱塞泵被称为后泵(或右泵、P2泵)。
1-前泵;2-中间体;3-后泵;4-先导泵;5-前泵调节器;6-后泵调节器(前泵输出的油液可流经左行走、回转、动臂2(动臂副联)及斗杆1(斗杆主联)的主换向阀芯,后泵输出的油液可流经右行走、备用(破碎锤或液压剪等)、动臂1(动臂主联)、铲斗及斗杆2(斗杆副联)的主换向阀芯)图3 主泵总成各部件位置及名称对于前泵与后泵,每个泵均由泵体、输入轴、缸体、(九个带滑靴结构的)柱塞、配流盘、斜盘、伺服活塞及对应泵调节器等组成,柱塞头部(即滑靴表面)紧贴斜盘表面。
正流量和负流量液压控制系统在我们常见的挖掘机中,除了小松使用LS控制外,大部分都使用负流量控制。
近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,那么正流量真的有那么神吗?挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。
所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。
挖掘机的恒功率控制在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量,就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论.二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别.我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制,负流量和正流量的区别就在于这种变化的信号采集位置的不同.什么是负流量控制系统?手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处什么是正流量控制系统?正流量控制系统,是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。
挖掘机三种液压系统,一个就在国内比较多见的负流量,还有一种就是被炒得很火的正流量,另外一种就是欧州最为常用的负荷传感。
正流量与负流量同是开中心,负荷传感为闭中心。
开中心典型为负流量,其价格相对底兼,至于正流量价格一定不低,其成功批量应用可以说是等于零!呵呵!开中心的代表为川崎,闭中心的代表为德国林德LSC(1978年就已经在Altas上应用,如果了解小松,你们就知道其Class的由来,这里不多做介绍),我要更正一点就是rexroth在中挖并没有历史,各位力士迷们希望别以为力士乐都行!哈哈!都知道螺纹插装阀不如SUN吧!径向柱塞不如合格龙吧!应用上有地区因素:因欧州人生活水平较高,他们对可操作要求高,所以具动作可预知性且与负载无关的LSC在欧州最为流行,但其价格比负流量高点!在亚洲地区劳动力便宜且劳动力充足,这就决定在中国的老板更偏向于采用需要比较丰富经验才能开好的动作与负载压力有关的负流量系统。
在能耗上看:负流量在阀中位时都有30L/min左右的流量进入油箱。
我这里只举一种功况:负载轻载移动时,进入油箱的流量为减少很少,但当负载增加到很大,这时进入油箱的流量会增大,然后泵排量减小,当进入油箱流量到达近30L后,负载可以说动作降到非常慢,这样系统压力应该在30MPa,大家算一下这会产生多少节流损失?在挖机这种工况时时发生!应该是一种典型工况!负流量也在一种跟正流量一样的情况,就是当手柄最大,泵近最大排量,可这里是一个很大负载,系统压力高,可是执行机构只需要一点流量,可是近全排量的泵注入!这样大部分油液将经过开中心阀溢流进入油箱!这样将是巨大的能量浪费!别以为正流量是需要多少供多少!在来谈谈林德LSC,哈哈!大家一定说LSC是什么东西了吧!有兴趣去找找Altas 和volvor的负载敏感系统轮挖,也许能给点印像给你!LSC的多路阀就是大家了解的阀后补尝阀,当Rexroth开发1.5回路时,人家已经是双回路了(这可不是定量系统的双回路)。