挖掘机流量的正控与负控
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
告诉你负载敏感、负流量、正流量三种系统真正的区别1. 节能旁通流量控制系统节能性较好。
在主控阀全部中位时,旁通溢流阀开启,存在空流压力损失约3.5MPa,此时有最大的旁通流量损失。
操作手柄扳倒一半行程时,主泵流量仍有一部分通过六通滑阀的中立回路流回油箱。
先导传感控制系统节能性好。
由于主控阀为六通滑阀,仍然存在中位回油流量损失,但其比旁通流量控制系统小。
在主控阀中位时,回油背压小,仅0.5MPa左右。
当操作手柄行程加大,主泵流量和执行元件进油量随先导控制压力增加而增加。
在流量控制压力从最小到最大的调速范围内,主泵流量和执行元件进油量近似为等距曲线,流量损失变化不大。
负荷传感系统的节能性较好。
主控阀无串联的中立油路回油箱,因此没有主控阀的中位空流损失。
当操作手柄中位时,因为主泵没有备用流量,主泵的空载流量损失在理论上为零。
但是,在负荷传感主控阀的节流口存在固定的压力损失ΔP(2~2.9MPa),约为系统最高压力的6~8.5%。
当作业中流量增大时,功率损失(执行元件所需流量与压差ΔP的乘积)也不小。
复合作业各执行元件负荷压力相差很大时,由于泵流量只受最高负荷压力控制,主泵供油流量会多于执行元件需求流量之和,也会造成功率损失。
不同流量控制系统的扭矩特性比较如图1所示。
负荷传感控制系统中,主泵吸收的扭矩是变动的。
在额定功率点上,主泵按负荷压力的变化实时调整泵的排量(参看图1-a),因此主泵能够完全吸收发动机输出的扭矩。
旁通流量控制和先导传感控制则因负荷压力变化时,主泵流量调整有一个滞后过程,主泵吸收的扭矩不变,而且为防止发动机超负荷失速,主泵在匹配工作点吸收的扭矩,设计时低于发动机额定转速下输出的扭矩,将损失大约5~8%的功率。
(a)负荷传感系统 (b)其他流量控制系统图1 发动机与主泵的功率匹配需要说明的是,上述有关节能性的对比分析,仅针对流量控制而言。
某一机型是否节能,还要考虑是否采用混合动力技术、发动机本身的燃油消耗特性、发动机的调速特性及其动力适应控制(发动机-主泵功率的动态匹配)、液压主泵的负载适应控制、以及主控阀的负载适应控制等。
正流量和负流量控制的区别正流量控制和负流量控制的区别在我们常见的挖掘机中,除了小松使用LS控制外,大部分都使用负流量控制。
近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,那么正流量真的有那么神吗?挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。
所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。
挖掘机的恒功率控制在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量,就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论.二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别.我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制,负流量和正流量的区别就在于这种变化的信号采集位置的不同.什么是负流量控制系统?手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处什么是正流量控制系统?正流量控制系统,是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。
挖掘机各种控制方式的比较(基础)1、正流量控制的问题在我们常见的挖掘机中,除了小松使用LS控制外,大部分都使用负流量控制。
近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,那么正流量真的有那么神吗?让我们在下边以川崎K3V系列为例来分析一下挖掘机上液压泵地控制原理:挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。
所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。
挖掘机的恒功率控制:在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量,就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论.二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别. 我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制(正负控制的缺点),负流量和正流量的区别就在于这种变化的信号采集位置的不同.信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处.正流量:在正流量的主控制阀上没有负压信号发生装置,他的信号采集于二次先导.其它部分与负流量没有什么区别.与负流量相比正流量为什么操作敏感性好:由于负压控制的信号采集点在主挖掘阀的出口处,只有主控制阀有动作时此负压信号才会发生变化,从而使泵的排量发生变化,这就使得液压泵的控制永远滞后于主控制阀的控制.而在正流量中,由于泵的控制信号采集于二次先导压力,此压力信号同时发送液压泵和主控制阀,这就是使的两者的动作可以同步进行.这就是“与负流量相比正流量操作敏感性好”的主要原因.与负流量相比正流量为什么节油:在负流量控制的液压系统中,负压信号的压力大约是5MPa到6MPa,此压力只用于产生负压信号;而正流量控制的液压系统中,由于没有此装置,他的回油压力仅仅是背压(一般在0.5MPa左右),这就减少了一个不必要的功率损失,从而使的正流量的挖掘机在完成同样工作量的情况下一定比负流量控制的挖掘机省油.正流量控制系统是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。
挖掘机常用系统-负流量系统介绍作者:Stonelet 2009-5-31挖掘机常用系统类型较多,从不同的角度可得出不同的名称。
如有定量系统、变量系统;恒功率控制、变功率控制;转速感应控制、压力感应控制;负流量控制、正流量控制、负荷敏感控制等。
很多初学者在刚刚接触到这些术语时,都会晕!挖掘机液压系统在工程机械中属复杂的那类,所以与其有关的技术也比较多;这是造成挖掘机液压系统专用名词多的一个重要原因。
但随着对挖掘机液压技术学习的深入,大家会发现其实各种技术主要是关于“发动机-液压泵-负载”这个能量传递链的;其中负流量控制、正流量控制、负荷敏感控制即是从“液压泵-负载”环节中两者匹配而产生的术语。
在上述三种挖掘机系统中,以采用负流量液压系统的挖掘机居多。
下图1为挖掘机负流量液压系统原理图。
虚线框为主控阀,为简化问题图1中只画出了一个回路,在实际中应有多个回路,如动臂回路、斗杆回路、铲斗回路、行走回路、回转回路等。
从图中可以看出该液压系统为进油节流、回油节流、旁路节流调速回路的复合应用。
实际当中A、B、C三个节流阀是联动关系,其结构通常为一个三位流通滑阀形式,滑阀的位置由先导油来控制。
当滑阀处于中位时,节流阀C开口面积最大,A、B完全关闭,主泵排出的油均由旁路返回油箱。
当滑阀处于左位或右位即油缸小腔或大腔进油,C几乎完全关闭,主泵排出的油几乎全由工作油路返回油箱。
根据节流特性,当流经节流口D的流量越大,Pn点的压力也就越大。
该负流量液压系统通过压力Pn来控制主泵的排量,也即用通过旁路的流量,来控制主泵的排量。
为了使得主泵排量与负载相适应,当Pn 增大时(即旁路流量增大),说明系统有许多的压力油从旁路卸载即出现了流量富余,故此时应该减少主泵的排量。
与此相反,当Pn 减小时说明系统出现了供油不足现象,此时应增加主泵的排量。
负流量液压系统即是基于以上思想而设计的。
从某种意义上来说,负流量系统也是一种负载感知系图 1 挖掘机负流量液压系统原理图图 2 挖掘机负流量系统实例。
挖掘机三种液压系统,一个就在国内比较多见的负流量,还有一种就是被炒得很火的正流量,另外一种就是欧州最为常用的负荷传感。
正流量与负流量同是开中心,负荷传感为闭中心。
开中心典型为负流量,其价格相对底兼,至于正流量价格一定不低,其成功批量应用可以说是等于零!呵呵!开中心的代表为川崎,闭中心的代表为德国林德LSC(1978年就已经在Altas上应用,如果了解小松,你们就知道其Class的由来,这里不多做介绍),我要更正一点就是rexroth在中挖并没有历史,各位力士迷们希望别以为力士乐都行!哈哈!都知道螺纹插装阀不如SUN吧!径向柱塞不如合格龙吧!应用上有地区因素:因欧州人生活水平较高,他们对可操作要求高,所以具动作可预知性且与负载无关的LSC在欧州最为流行,但其价格比负流量高点!在亚洲地区劳动力便宜且劳动力充足,这就决定在中国的老板更偏向于采用需要比较丰富经验才能开好的动作与负载压力有关的负流量系统。
在能耗上看:负流量在阀中位时都有30L/min左右的流量进入油箱。
我这里只举一种功况:负载轻载移动时,进入油箱的流量为减少很少,但当负载增加到很大,这时进入油箱的流量会增大,然后泵排量减小,当进入油箱流量到达近30L后,负载可以说动作降到非常慢,这样系统压力应该在30MPa,大家算一下这会产生多少节流损失?在挖机这种工况时时发生!应该是一种典型工况!负流量也在一种跟正流量一样的情况,就是当手柄最大,泵近最大排量,可这里是一个很大负载,系统压力高,可是执行机构只需要一点流量,可是近全排量的泵注入!这样大部分油液将经过开中心阀溢流进入油箱!这样将是巨大的能量浪费!别以为正流量是需要多少供多少!在来谈谈林德LSC,哈哈!大家一定说LSC是什么东西了吧!有兴趣去找找Altas 和volvor的负载敏感系统轮挖,也许能给点印像给你!LSC的多路阀就是大家了解的阀后补尝阀,当Rexroth开发1.5回路时,人家已经是双回路了(这可不是定量系统的双回路)。
挖掘机正流量控制系统是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。
执行元件不工作的时候,油泵上没有先导压力,斜盘摆角最小,油泵只输出少量的备用流量。
操纵先导手柄,则液压先导回路中建立起与手柄偏转量成比例的压力来控制换向阀阀芯的位移和泵的排量。
挖掘机油泵的流量和由此产生的执行元件的工作速度与先导压力-控制压力成正比例。
挖掘机负流量控制系统,也是力士乐上世纪80年代的技术,主要特点是:按主操纵阀回油量的大小即主操纵阀阀后节流孔前建立相应的控制压力调节主油泵的排量。
主油泵的排量与该控制压力成反比。
挖掘机正流量液压系统对于一些业内人士来讲可能比较陌生,其主要特点是主泵的排量与先导操作手柄输出的信号压力成正比。
主控制器根据先导压力信号及其变化趋势判断执行器的流量需求及其变化趋势,并据此对主泵排量实施调节,以使系统的流量供应能够动态跟随执行元件的流量需求,实现系统流量的实时匹配,达到“所得即所需”。
该系统相对负流量系统中位流量损失小,相对负载敏感系统则可靠性高,复合动作更节能。
该系列机器比其它机型工作效率提高了8%左右,能耗下降了10%左右
挖掘机负流量控制系统是指液压泵输出油液通过操纵阀(换向阀)阀
杆的控制将油分成两部分:一部分去液压缸或液压马达,是有效流量,另一部分通过阀中位回油道回油箱,为浪费的流量。
为控制这部分浪费流量,使它保持在尽可能小的范围内,在操纵阀中位回油道上加一个节流孔,通过节流孔产生压差,将节流口前压力引至泵排量调节机构来控制泵的排量。
通过节流孔的流量越大,则节流口前先导压力越大,泵排量越小。
泵变量机构的控制压力(先导压力)与泵排量呈反比关系,故称为负流量控制。
这种控制方式能减少流量损失。
您现在明白挖掘机流量的正控与负控了吗?。