3静定结构的内力分析习题解答分解
- 格式:doc
- 大小:1.88 MB
- 文档页数:23
作简支梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程*[例题3-2-2]作外伸梁的剪力图与弯矩图。
解:求支座反力<荷载叠加法平衡方程*作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程、[例题3-3-1]作多跨静定梁的内力图。
解:求支座反力荷载叠加法&[例题3-3-2]作三跨静定梁的内力图。
解:求支座反力[[例题3-3-3]作多跨静定梁的内力图。
解:求支座反力[例题3-4-1]作静定刚架的内力图解:求支座反力)[例题3-4-2]作静定刚架的内力图解:求支座反力[例题3-4-3](作静定刚架的内力图解:求支座反力[例题3-4-4]作静定刚架的内力图解:求支座反力—[例题3-4-5]作三铰刚架的内力图解:求支座反力|[例题3-4-6]作三铰刚架的内力图解:求支座反力)[例题3-4-7]作静定刚架的内力图解:求支座反力…[例题3-4-8]作静定刚架的图解:[例题3-4-9]作静定刚架的图解:。
[例题3-4-10]作静定刚架的图解:[例题3-4-11]作静定刚架的图解:"[例题3-4-12]作静定刚架的图解:[例题3-4-13] 作静定刚架的图解:*[例题3-4-14] 作静定刚架的图解:求支座反力[例题3-4-15])作静定刚架的图解:[例题3-5-1]试绘制三铰拱的内力图。
拱轴方程为解:相应简支梁的反力和内力求支座反力.拱轴方程当时》00001050145105233315105233315533,75546403305055315-25693255-5507-45135-8581200-1150[例3-5-2]试求对称三铰拱在竖向均布荷载作用下的合理轴线。
解:相应简支梁的弯矩方程为水平推力合理轴线方程为合理轴线为一抛物线。
[例3-6-1]用结点法求桁架各杆的内力。
解:求支座反力解题路径:以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-2]用结点法求桁架各杆的内力。
第3章 静定结构的力分析习题解答习题3.1 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。
习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。
习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
第三章 静定结构的内力与变形3-1 判断如图所各桁架的零力杆并计算各杆内力。
1P(a) (a)解:(1)0272210=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆2-3,杆2-4,杆4-5,杆5-6。
对于结点1:N 1-2PN 1-33001P N =⨯-2121 P N 221=-0233121=+⨯--N N P N 331-=-对于结点3:N 3-43N 3-1P N N 31343-==--对于结点4:N 4-64N 4-3P N N 33464-==--对于结点2:N 2-52N 2-1PN N 21252==--对于结点5:N 5-75N 5-2P N N 22575==--(b)(b)解:(1)082313=⨯-+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆5-4,杆6-4,杆6-7,杆6-8,杆1-5。
对于结点5:P5N 5-8P N -=-85对于结点8:N 7-88N 5-8Fθ05528785=+⨯--N N P N 55287=-对于结点7:N 7-47N 7-8P N 55247=-对于结点4:N 3-44N 7-4P N N 5524743==--对于结点3:N 1-33N 3-4P N N 5524331==--2(c)(c)解:(1)026228=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆4-3,杆4-6。
对于结点1:N 1-61N 1-3Pθ05561=+⨯-P N P N 561-=-05526131=⨯+--N N P N 231=-对于结点3:3N 3-1N 3-5P N N 21353==--(e)(d)解:(1)02112316=⨯-⨯+=f故该结构为无多余约束的几何不变结构。
(2)零力杆:杆4-5,杆5-6,杆4-6,杆7-6,杆2-3,杆2-8,杆2-9,杆1-2,杆9-11,杆8-9,杆9-11.对于结点4:4N 4-7N 3-4450PP N 2243=- P N 2274=-对于结点7:7N 4-7N 3-7N 8-7P N N 22227374=⨯-=-- P N -=-73P N 2278=-对于结点3:3N 3-4N 3-7N 8-7022734332=⨯+=---N N N P N 2283=-对于结点8:022228982=⨯⎪⎭⎫ ⎝⎛+=--N P N运用截面法:N 1-2N 9-10N 9-11PP23456789由对9点的力矩平衡:0222221=⨯⨯-⨯+⨯-P a P a a N 021=-N对于结点9:9N 2-9N 9-11N 9-10N 9-88911910922---=⨯+N N N P N 22109-=-8N 3-8(e)(e)解:(1)024125=⨯-++=f故该结构为无多余约束的几何不变结构。
静定结构内力分析习题集锦(一)徐丰武汉工程大学第3章 静定结构的内力分析习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
习题3.2(2)图(3) 习题3.2(3)图所示三铰拱的水平推力F H等于。
习题3.2(3)图(4) 习题3.2(4)图所示桁架中有根零杆。
习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
CDE部分在该荷载作用下自平衡;(2)M AB=288kN·m,左侧受拉;M B=32kN·m,右侧受拉;(3)F P/2;(4)11(仅竖向杆件中有轴力,其余均为零杆)。
习题3.3作习题3.3图所示单跨静定梁的M图和QF图。
(a)(b)qP(c) (d)2(e) (f)习题3.3图【解】CDM 图 (单位:kN·m ) F Q 图(单位:kN )(a)2aF 2F P5M 图 F Q 图(b)8ql 22ql 8ql 5M 图F Q 图(c)F 3P 4M 图 F Q 图(d)qa 21.5qa 22qaM 图 F Q 图(e)M 图 (单位:kN·m )F Q 图(单位:kN )(f)习题3.4 作习题3.4图所示单跨静定梁的内力图。
(a)(b)m(c) (d)习题3.4图【解】M 图 (单位:kN·m ) F Q 图(单位:kN )(a)M 图 (单位:kN·m ) F Q 图(单位:kN )(b)M 图 (单位:kN·m ) F Q 图(单位:kN )(c)M 图 (单位:kN·m ) F Q 图(单位:kN )(d)习题3.5 作习题3.5图所示斜梁的内力图。
习题3.5图【解】M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )习题3.6 作习题3.6图所示多跨梁的内力图。
(a)(b)A(c)(d) 习题3.6图【解】DM 图 (单位:kN·m ) F Q 图(单位:kN )(a)21M 图 (单位:kN·m ) F Q图(单位:kN )(b)AM 图(单位:kN·m )AF Q 图(单位:kN )(c)M 图(单位:kN·m )F Q图(单位:kN)(d)习题3.7 改正习题3.7图所示刚架的弯矩图中的错误部分。
(a) (b)(c)(d) (e)(f)习题3.7图【解】(a) (b)(c)(d) (e) (f)习题3.8 作习题3.8图所示刚架的内力图。
(a) (b) (c)(d) (e) (f)习题3.8图【解】M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(a)M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(b)M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(c)M 图 F Q 图 F N 图(d)3.5M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(e)F PM 图 F Q 图 F N 图(f)习题3.9 作习题3.9图所示刚架的弯矩图。
(a) (b) (c)(d) (e)(f)(g) (h) (i)习题3.9图【解】P(a) (b) (单位:kN·m)(c)(单位:kN·m)(d) (e)(f)(单位:kN·m)aF P(g) (单位:kN·m)(h) (i) (单位:kN·m)习题3.10试用结点法求习题3.10图所示桁架杆件的轴力。
P(a) (b)习题3.10图【解】(1)提示:根据零杆判别法则有:N13N43F F==;根据等力杆判别法则有:N24N46F F=。
然后分别对结点2、3、5列力平衡方程,即可求解全部杆件的内力。
(2)提示:根据零杆判别法则有:N18N17N16N27N36N450F F F F F F ======;根据等力杆判别法则有:N12N23N34F F F ==;N78N76N65F F F ==。
然后取结点4、5列力平衡方程,即可求解全部杆件的内力。
习题3.11 判断习题3.11图所示桁架结构的零杆。
P(a) (b)(c)习题3.11图【解】P(a) (b)(c)提示:(c)题需先求出支座反力后,截取Ⅰ.Ⅰ截面以右为隔离体,由30M=∑,可得N120F =,然后再进行零杆判断。
习题3.12 用截面法求解习题3.12图所示桁架指定杆件的轴力。
(a)(b)(c) (d)习题3.12图【解】 (1) N P 32a F F =-;N P 12b F F =;N Pc F F = 提示:截取Ⅰ.Ⅰ截面可得到N b F 、N c F ;根据零杆判断法则,杆26、杆36为零杆,则通过截取Ⅱ.Ⅱ截面可得到N a F 。
(2) N 0a F =;N P b F ;N 0c F =提示:截取Ⅰ.Ⅰ截面可得到N b F ;由结点1可知N 0a F =;截取Ⅱ.Ⅱ截面,取圆圈以内为脱离体,对2点取矩,则N 0c F =。
Ⅰ(3) N 12kN a F =-;N 10kN 3b F =;N 28kN 3c F = 提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0AM=∑,得N a F ;由0B M =∑,得N c F ;再取结点A 为脱离体,由0yF=∑,得N b F 。
=N F N c(4) N 5.66kN a F =-;N 1.41kN b F =-;N 8kN c F =-提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,将N a F 移动到2点,再分解为x 、y 的分力,由10M=∑,得4kN ya F =-,则N 5.66kN a F =-;取Ⅱ.Ⅱ截面以左为脱离体,由0yF=∑,得1kN yb F =-,则N 1.41kN b F =-;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点4可知N340F =,再由10M=∑,得N 8kN c F =-。
习题3.13 选择适当方法求解习题3.13图所示桁架指定杆件的轴力。
(a)(b)(c)(d)(e)(f)(g) (h)习题3.13图【解】(1)N PaF F=;NbF=;NcF=。
提示:由4M=∑,可得60yF=。
则根据零杆判别原则,可知N Nb cF F==。
根据结点5和结点2的构造可知,N23N35F F==,再根据结点3的受力可知N PaF F=。
(2) N 12.73kN a F =;N 18.97kN b F =;N 18kN c F =-。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0AM =∑,可得N 12.73kN aF =;取B 结点为脱离体,由0yF=∑,得N 12.73k N BD F =-;由0x F =∑,可得N 18kN cF =-;取Ⅱ.Ⅱ截面以右为脱离体,由0CM=∑,可得N 18.97kN b F =。
N B DN cF(3) N 0a F =;N P 3b F F =;N P c F F =。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0yF=∑,可得N 0a F =;由30M=∑,可得N12/3P F F =;由0x F =∑,可得N34/3P F F =-;取结点3为脱离体,由0xF =∑,可得N b F;取结点A 为脱离体,由0xF =∑,可得N cF。
注意N1N12A F F =。
N 34(4) N P 13a F F -=;N P 3b F F =;N 0c F =。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以上为脱离体,由10M=∑,可得N a F ;取Ⅱ.Ⅱ截面以右为脱离体,由0yF=∑,可得N b F ;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点B 可知N 0BC F =,再由30M=∑,得N c F 。
(5) N P a F F =;N P b F =。
提示:根据求得的支反力可知结构的受力具有对称性,且结点A 为K 形结点,故可判别零杆如下图所示。
再取结点B 为脱离体,由0yF=∑,可得N N P b BC F F ==;由0xF=∑,可得N P a F F =。
(6) N 0a F =;N P /2b F F =;N 0ac F =。
提示:原结构可分为以下两种情况的叠加。
对于状态1,由对称性可知,R 0B F =,则根据零杆判别法则可知1N 0a F =。
取Ⅰ.Ⅰ截面以右为脱离体,由0DM=∑,可得1N 0b F =;根据E 、D 结点的构造,根据零杆判别法则,可得1N 0c F =。
对于状态2,根据零杆判别法则和等力杆判别法则,易得到:2N 0a F =;2N P /2b F F =;2N 0c F =。
将状态1和状态2各杆的力相加,则可得到最终答案。
222F P F P F P22F P F P 状态1 状态2 (7) N 0a F =;N 0b F =;N 40/3kN c F =-。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以右为脱离体,将N a F 移动到B 点,再分解为x 、y 的分力,由0AM=∑,可得0ya F =,则N 0a F =;根据结点B 的构造和受力,可得N 0b F =; 取结点C 为脱离体,可得N 40/3kN c F =-。