3静定结构的内力分析习题解答
- 格式:doc
- 大小:1.49 MB
- 文档页数:21
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 (5)图(6) 习题(6)(a)图所示体系去掉二元体ABC 后,成为习题(6) (b)图,故原体系是几何可变体系。
( )(7) 习题(6)(a)图所示体系去掉二元体EDF 后,成为习题(6) (c)图,故原体系是几何可变体系。
( )(a)(b)(c)D习题 (6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题 填空(1) 习题(1)图所示体系为_________体系。
习题(1)图(2) 习题(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题(3)图(4) 习题(4)图所示体系的多余约束个数为___________。
习题(4)图(5) 习题(5)图所示体系的多余约束个数为___________。
习题(5)图(6) 习题(6)图所示体系为_________体系,有_________个多余约束。
习题(6)图(7) 习题(7)图所示体系为_________体系,有_________个多余约束。
作简支梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程*[例题3-2-2]作外伸梁的剪力图与弯矩图。
解:求支座反力<荷载叠加法平衡方程*作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程、[例题3-3-1]作多跨静定梁的内力图。
解:求支座反力荷载叠加法&[例题3-3-2]作三跨静定梁的内力图。
解:求支座反力[[例题3-3-3]作多跨静定梁的内力图。
解:求支座反力[例题3-4-1]作静定刚架的内力图解:求支座反力)[例题3-4-2]作静定刚架的内力图解:求支座反力[例题3-4-3](作静定刚架的内力图解:求支座反力[例题3-4-4]作静定刚架的内力图解:求支座反力—[例题3-4-5]作三铰刚架的内力图解:求支座反力|[例题3-4-6]作三铰刚架的内力图解:求支座反力)[例题3-4-7]作静定刚架的内力图解:求支座反力…[例题3-4-8]作静定刚架的图解:[例题3-4-9]作静定刚架的图解:。
[例题3-4-10]作静定刚架的图解:[例题3-4-11]作静定刚架的图解:"[例题3-4-12]作静定刚架的图解:[例题3-4-13] 作静定刚架的图解:*[例题3-4-14] 作静定刚架的图解:求支座反力[例题3-4-15])作静定刚架的图解:[例题3-5-1]试绘制三铰拱的内力图。
拱轴方程为解:相应简支梁的反力和内力求支座反力.拱轴方程当时》00001050145105233315105233315533,75546403305055315-25693255-5507-45135-8581200-1150[例3-5-2]试求对称三铰拱在竖向均布荷载作用下的合理轴线。
解:相应简支梁的弯矩方程为水平推力合理轴线方程为合理轴线为一抛物线。
[例3-6-1]用结点法求桁架各杆的内力。
解:求支座反力解题路径:以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-2]用结点法求桁架各杆的内力。
第3章 静定结构的力分析习题解答习题3.1 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。
习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。
习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
第二章 静定结构内力计算一、判断题:1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。
3、静定结构的几何特征是几何不变且无多余约束。
4、图(a)所示结构||M C =0。
(a)BCa aAϕ2a2(b)5、图(b)所示结构支座A 转动ϕ角,M AB = 0, R C = 0。
6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。
7、图(c)所示静定结构,在竖向荷载作用下,AB 是基本部分,BC 是附属部分。
ABC(c)8、图(d)所示结构B 支座反力等于P /2()↑。
(d)9、图(e)所示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。
AB(e)10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。
11、图(f)所示桁架有9根零杆。
(f)a a a a(g)12、图(g)所示桁架有:N 1=N 2=N 3= 0。
13、图(h)所示桁架DE 杆的内力为零。
a a(h)(i)14、图(i)所示对称桁架在对称荷载作用下,其零杆共有三根。
15、图(j)所示桁架共有三根零杆。
(j)(k)16、图(k)所示结构的零杆有7根。
17、图(l)所示结构中,CD 杆的内力N 1 = P 。
(l)4a(m)18、图(m)所示桁架中,杆1的轴力为0。
二、作图题:作出下列结构的弯矩图(组合结构要计算链杆轴力)。
19、 20、2m2m2m2m4m 21、22、23、24、10kN/m.25、26、qa 27、28、a29、30、31、32、aaam33、 34、ll35、36、6m37、 38、llqq39、 40、a 2a41、42、3m43、44、45、46、2ql3m3m 47、48、49、50、.51、52、53、54、2aABCDEF4m2m55、56、2m2mqa57、 58、4m59、60、l61、62、l/2qlqP63、 64、ql65、 66、aa a a267、68、ll llaa a a69、70、.a71、72、73、74、2kN/m75、76、77、78、a三、计算题:79、计算图示半圆三铰拱K截面的内力M K,N K。
第三章 静定结构的内力与变形3-1 判断如图所各桁架的零力杆并计算各杆内力。
1P(a) (a)解:(1)0272210=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆2-3,杆2-4,杆4-5,杆5-6。
对于结点1:N 1-2PN 1-33001P N =⨯-2121 P N 221=-0233121=+⨯--N N P N 331-=-对于结点3:N 3-43N 3-1P N N 31343-==--对于结点4:N 4-64N 4-3P N N 33464-==--对于结点2:N 2-52N 2-1PN N 21252==--对于结点5:N 5-75N 5-2P N N 22575==--(b)(b)解:(1)082313=⨯-+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆5-4,杆6-4,杆6-7,杆6-8,杆1-5。
对于结点5:P5N 5-8P N -=-85对于结点8:N 7-88N 5-8Fθ05528785=+⨯--N N P N 55287=-对于结点7:N 7-47N 7-8P N 55247=-对于结点4:N 3-44N 7-4P N N 5524743==--对于结点3:N 1-33N 3-4P N N 5524331==--2(c)(c)解:(1)026228=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆4-3,杆4-6。
对于结点1:N 1-61N 1-3Pθ05561=+⨯-P N P N 561-=-05526131=⨯+--N N P N 231=-对于结点3:3N 3-1N 3-5P N N 21353==--(e)(d)解:(1)02112316=⨯-⨯+=f故该结构为无多余约束的几何不变结构。
(2)零力杆:杆4-5,杆5-6,杆4-6,杆7-6,杆2-3,杆2-8,杆2-9,杆1-2,杆9-11,杆8-9,杆9-11.对于结点4:4N 4-7N 3-4450PP N 2243=- P N 2274=-对于结点7:7N 4-7N 3-7N 8-7P N N 22227374=⨯-=-- P N -=-73P N 2278=-对于结点3:3N 3-4N 3-7N 8-7022734332=⨯+=---N N N P N 2283=-对于结点8:022228982=⨯⎪⎭⎫ ⎝⎛+=--N P N运用截面法:N 1-2N 9-10N 9-11PP23456789由对9点的力矩平衡:0222221=⨯⨯-⨯+⨯-P a P a a N 021=-N对于结点9:9N 2-9N 9-11N 9-10N 9-88911910922---=⨯+N N N P N 22109-=-8N 3-8(e)(e)解:(1)024125=⨯-++=f故该结构为无多余约束的几何不变结构。
第三章静定结构受力分析3.1判断题,并说明原因。
1.静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
()原因:2.静定结构受外界因素影响均产生内力。
大小与杆件截面尺寸无关。
()原因:3.静定结构的几何特征是几何不变体系。
()原因:4.静定结构在支座移动时,会产生变形。
()原因:5.两个弯矩图的叠加不是指图形的简单拼合,而是指两图对应的弯矩纵矩叠加。
()原因:6.在相同的荷载和跨度下,静定多跨梁的弯距比一串简支梁的弯距要大。
()原因:7.荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。
()原因:8.图示为一杆段的M、Q 图,若Q 图是正确的,则M 图一定是错误的。
()M图Q图题8 图题9 图9.图示结构的支座反力是正确的。
()10.在无剪力直杆中,各截面弯矩不一定相等。
()原因:11.图示梁的弯矩分布图是正确的。
()q题10 图题11 图12.图示刚架的弯矩分布图是正确的。
()Al l13.图示结构B 支座反力等于P/2 (↑)。
()题12 图题13 图14.图示梁的弯矩分布图是正确的。
()15.只要已知静定刚架杆件两端弯矩和所受外力,则该杆内力就可完全确定。
()原因:16.图示桁架有9 根零杆。
()17.图示对称桁架中杆1 至8 的轴力等于零。
()d题16 图题17 图题18 图18.图示桁架中,上弦杆的轴力为N = -P 。
()19.三铰拱的弯矩小于相应简支梁的弯矩是因为存在水平支座反力。
()原因:20.在相同跨度及竖向荷载下,拱脚等高的三铰拱,其水平推力随矢高减小而减小。
()原因:21.简支支承的三角形静定桁架,靠近支座处的弦杆的内力最小。
()原因:22.组合结构中,链杆的内力是轴力,梁式杆的内力只有弯矩和剪力。
()原因:23.图示结构中,支座反力为已知值,则由结点D 的平衡条件即可求得N CD 。
()ED aDB C 4 a题23 图题24 图24.图示结构中,CD 杆的内力N1 = -P 。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
第3章静定结构的内力分析习题解答习题3.1是非判断题(1)在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
()(2)区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
()(3)多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
()(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。
()ABCDEF习题3.1(4)图(5)三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
()(6)所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
()(7)改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
()(8)利用结点法求解桁架结构时,可从任意结点开始。
()【解】(1)正确;(2)错误;(3)正确;(4)正确;EF为第二层次附属部分,CDE为第一层次附属部分;(5)错误。
从公式F H M C/f可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化;(7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C所传递的弯矩M C的大小为______;截面B的弯矩大小为______,____侧受拉。
F P FPF PF PAB DEClllll习题3.2(1)图(2)习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB=______kN·m,____侧受拉;左柱B截面弯矩M B=______kN·m,____侧受拉。
CBm/Nk m4/Nk6A D m 4 m 46m习题3.2(2)图(3)习题3.2(3)图所示三铰拱的水平推力F H等于。
FPaaa习题3.2(3)图(4)习题3.2(4)图所示桁架中有根零杆。
F P F P习题3.2(4)图【解】(1)M C=0;M C=F P l,上侧受拉。
第3章 静定结构的力分析习题解答习题3.1 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN ·m ,____侧受拉;左柱B 截面弯矩M B =______kN ·m ,____侧受拉。
习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。
习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。
习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
CDE部分在该荷载作用下自平衡;(2)M AB=288kN·m,左侧受拉;M B=32kN·m,右侧受拉;(3)F P/2;(4)11(仅竖向杆件中有轴力,其余均为零杆)。
习题3.3作习题3.3图所示单跨静定梁的M图和QF图。
(a) (b)(c) (d)(e) (f)习题3.3图【解】M图(单位:kN·m)F Q图(单位:kN)(a)2aF24 F P 5M图F Q图(b)M图F Q图(c)F 3P4M 图 F Q 图(d)qa 21.5qa 22qaM 图 F Q 图(e)M 图 (单位:kN ·m )F Q 图(单位:kN )(f)习题3.4 作习题3.4图所示单跨静定梁的力图。
(a)(b)m(c) (d)习题3.4图【解】M 图 (单位:kN ·m ) F Q 图(单位:kN )(a)M 图 (单位:kN ·m ) F Q 图(单位:kN )M图(单位:kN·m)F Q图(单位:kN)(c)M图(单位:kN·m)F Q图(单位:kN)(d)习题3.5作习题3.5图所示斜梁的力图。
习题3.5图【解】M图(单位:kN·m)F Q图(单位:kN)F N图(单位:kN)习题3.6作习题3.6图所示多跨梁的力图。
(a)A(c)(d) 习题3.6图【解】DM 图 (单位:kN ·m ) F Q 图(单位:kN )(a)21M 图 (单位:kN ·m ) F Q图(单位:kN )(b)AM 图(单位:kN ·m )AF Q 图(单位:kN )(c)M图(单位:kN·m)F Q图(单位:kN)(d)习题3.7 改正习题3.7图所示刚架的弯矩图中的错误部分。
(a) (b) (c)(d) (e) (f)习题3.7图【解】(a) (b) (c)(d) (e) (f)习题3.8作习题3.8图所示刚架的力图。
(a) (b) (c)(d) (e) (f)习题3.8图【解】M图(单位:kN·m)F Q图(单位:kN)F N图(单位:kN)(a)M 图 (单位:kN ·m ) F Q 图(单位:kN ) F N 图(单位:kN )(b)M 图 (单位:kN ·m ) F Q 图(单位:kN ) F N 图(单位:kN )(c)M 图 F Q 图 F N 图(d)3.5M 图 (单位:kN ·m ) F Q 图(单位:kN ) F N 图(单位:kN )(e)F PM 图 F Q 图 F N 图(f)习题3.9作习题3.9图所示刚架的弯矩图。
(a) (b) (c)(d) (e)(f)(g) (h) (i)习题3.9图【解】P(a) (b) (单位:kN·m)(c)(单位:kN·m)(d) (e)(f)(单位:kN·m)aF P(g) (单位:kN·m)(h) (i) (单位:kN·m)习题3.10试用结点法求习题3.10图所示桁架杆件的轴力。
P(a) (b)习题3.10图【解】(1)提示:根据零杆判别法则有:N13N43F F==;根据等力杆判别法则有:N24N46F F=。
然后分别对结点2、3、5列力平衡方程,即可求解全部杆件的力。
(2)提示:根据零杆判别法则有:N18N17N16N27N36N450F F F F F F ======;根据等力杆判别法则有:N12N23N34F F F ==;N78N76N65F F F ==。
然后取结点4、5列力平衡方程,即可求解全部杆件的力。
习题3.11 判断习题3.11图所示桁架结构的零杆。
(a) (b)(c)习题3.11图【解】P(a) (b)(c)提示:(c)题需先求出支座反力后,截取Ⅰ.Ⅰ截面以右为隔离体,由30M=∑,可得N120F =,然后再进行零杆判断。
习题3.12 用截面法求解习题3.12图所示桁架指定杆件的轴力。
(a) (b)(c) (d)习题3.12图【解】 (1) N P 32a F F =-;N P12b F F =;N P 2c F F = 提示:截取Ⅰ.Ⅰ截面可得到N b F 、N c F ;根据零杆判断法则,杆26、杆36为零杆,则通过截取Ⅱ.Ⅱ截面可得到N a F 。
(2) N 0a F =;N P b F =;N 0c F =提示:截取Ⅰ.Ⅰ截面可得到N b F ;由结点1可知N 0a F =;截取Ⅱ.Ⅱ截面,取圆圈以为脱离体,对2点取矩,则N 0c F =。
Ⅰ(3) N 12kN a F =-;N 10kN 3b F =;N 28kN 3c F = 提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0AM=∑,得N a F ;由0B M =∑,得N c F ;再取结点A 为脱离体,由0yF=∑,得N b F 。
=N F N c(4) N 5.66kN a F =-;N 1.41kN b F =-;N 8kN c F =-提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,将N a F 移动到2点,再分解为x 、y 的分力,由10M=∑,得4kN ya F =-,则N 5.66kN a F =-;取Ⅱ.Ⅱ截面以左为脱离体,由0yF=∑,得1kN yb F =-,则N 1.41kN b F =-;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点4可知N340F =,再由10M=∑,得N 8kN c F =-。
习题3.13 选择适当方法求解习题3.13图所示桁架指定杆件的轴力。
(a) (b)(c) (d)(e) (f)(g) (h)习题3.13图【解】(1) N P a F F =;N 0b F =;N 0c F =。
提示:由40M=∑,可得60y F =。
则根据零杆判别原则,可知N N 0b c F F ==。
根据结点5和结点2的构造可知,N23N350F F ==,再根据结点3的受力可知N P a F F =。
(2) N 12.73kN a F =;N 18.97kN b F =;N 18kN c F =-。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0AM =∑,可得N 12.73kN aF =;取B 结点为脱离体,由0yF=∑,得N 12.73kN BD F =-;由0x F =∑,可得N 18kN cF =-;取Ⅱ.Ⅱ截面以右为脱离体,由0CM=∑,可得N 18.97kN b F =。
N B DN cF(3) N 0a F =;N P 3b F F =;N P c F F =。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0yF=∑,可得N 0a F =;由30M=∑,可得N12/3P F F =;由0x F =∑,可得N34/3P F F =-;取结点3为脱离体,由0xF =∑,可得N b F;取结点A 为脱离体,由0xF =∑,可得N cF。
注意N1N12A F F =。
N 341A(4) N P 13a F F -=;N P 3b F F =;N 0c F =。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以上为脱离体,由10M=∑,可得N a F ;取Ⅱ.Ⅱ截面以右为脱离体,由0yF=∑,可得N b F ;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点B 可知N 0BC F =,再由30M=∑,得N c F 。
(5) N P a F F =;N P b F =。
提示:根据求得的支反力可知结构的受力具有对称性,且结点A 为K 形结点,故可判别零杆如下图所示。
再取结点B 为脱离体,由0yF=∑,可得N N P b BC F F ==;由0xF=∑,可得N P a F F =。
(6) N 0a F =;N P /2b F F =;N 0ac F =。
提示:原结构可分为以下两种情况的叠加。
对于状态1,由对称性可知,R 0B F =,则根据零杆判别法则可知1N 0a F =。
取Ⅰ.Ⅰ截面以右为脱离体,由0DM=∑,可得1N 0b F =;根据E 、D 结点的构造,根据零杆判别法则,可得1N 0c F =。
对于状态2,根据零杆判别法则和等力杆判别法则,易得到:2N 0a F =;2N P /2b F F =;2N 0c F =。
将状态1和状态2各杆的力相加,则可得到最终答案。
222F PF P F P 22F P F P 状态1 状态2 (7) N 0a F =;N 0b F =;N 40/3kN c F =-。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以右为脱离体,将N a F 移动到B 点,再分解为x 、y 的分力,由0AM=∑,可得0ya F =,则N 0a F =;根据结点B 的构造和受力,可得N 0b F =; 取结点C 为脱离体,可得N 40/3kN c F =-。