一次函数图象和性质
- 格式:doc
- 大小:54.00 KB
- 文档页数:6
一次函数的性质与像解析一次函数,也称为线性函数,是数学中常见的一种函数形式。
它的函数表达式为y = ax + b,其中a和b为常数,x和y为自变量和因变量。
本文将讨论一次函数的性质以及如何解析其像。
一、一次函数的性质1. 斜率一次函数的斜率表征了函数图像的倾斜程度。
斜率表示为a,它决定了函数图像是向上还是向下倾斜,以及倾斜的程度。
当a>0时,函数图像向上倾斜;当a<0时,函数图像向下倾斜;当a=0时,函数图像为水平线。
2. 截距一次函数的截距决定了函数图像与y轴的交点位置。
截距表示为b,当x=0时,对应的函数值为b,即函数图像与y轴的交点的纵坐标。
3. 定义域和值域一次函数的定义域为所有实数集R,即该函数在实数范围内都有定义。
而值域则根据斜率和截距的不同取值而有所变化。
当a>0时,值域为(-∞, +∞);当a<0时,值域也为(-∞, +∞);当a=0时,值域为{b}。
4. 单调性一次函数的单调性由斜率的正负决定。
当a>0时,函数递增;当a<0时,函数递减。
二、像解析像解析是指通过函数表达式计算出函数图像上的点的方法。
对于一次函数y = ax + b,计算像的步骤如下:1. 确定自变量的取值范围,即定义域。
2. 将自变量的值代入函数表达式,并进行计算,得到对应的因变量值。
3. 得到的结果便是函数图像上的点,其坐标为自变量和因变量的值。
举例说明:以一次函数y = 2x + 3为例,我们可以计算出函数在不同自变量取值下的因变量值,并得到相应的点坐标。
例如,当x = 0时,代入函数表达式可得y = 3,即点(0, 3);当x = 1时,代入函数表达式可得y = 5,即点(1, 5)。
通过类似的计算,我们可以得到更多的点坐标,进而描绘出一次函数的图像。
结论:一次函数具有以下性质:斜率决定了倾斜方向和程度,截距决定了与y轴的交点位置,定义域为实数集,值域根据斜率和截距的不同取值而变化,单调性由斜率的正负决定。
第4讲、一次函数的图象与性质姓名:____________【知识回顾】一、一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,因此我们也把一次函数y=kx+b(k ≠0)的图象叫做直线y=kx+b.特例:(0)y kx k =≠的图像是经过坐标原点的一条直线。
2、一次函数图像的画法:用取两点A (kb-,0),B (0,b )画直线的方法画图像 3、一次函数y=kx+b 中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距,kb-叫做直线在x 轴上的截距;二、一次函数的性质:【典例精讲】◆【要点1】正比例函数的图像性质:正比例函数的图象是通过坐标原点的一条 直线: 当k>0时,图象在一、三象限,呈上升趋势,y 随x 的增大而增大; 当k<0时,图象在二、四象限,呈下降趋势,y 随x 的增大而减小; ◆【要点2】一次函数的图像性质:当121212k k b b =≠ 且时,∥,当1212k k ⋅⊥=-1,则,l l【例1】1、已知函数:①、0.26y x =+;②、172y x =-+;③、32y x =-;④、2y x =-; 其中y 随x 的增大而增大的函数是 ;y 随x 的增大而减小的函数是 ;2、若正比例函数3(3)m y m x -=-的图象经过二、四象限,则这个正比例函数的解析式是 ;3、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( )xyxyb >0b <0k >0k <xy Ox yO xyO xyO0b >0b <A B C D-1-111-11-11y=-x+1y=-x+1y=-x+1y=-x+1xy xy xy xyA 、12y y >B 、12y y <C 、12y y =D 、无法确定4、函数b ax y +=与y bx a =+的图象在同一坐标系内的大致位置正确的是( )变式训练1:关于一次函数y =-x +1的图象,下列所画正确的是( )◆【要点3】----求直线与坐标轴的交点直线y kx b =+与x 轴的交点坐标,令0y =,得交点(kb-,0);求与y 轴的交点坐标,令0x =,得交点(0,b );【例2】1、直线23y x =-+经过 象限,与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,图象与坐标轴所围成的三角形面积是 ; 2、 若直线14-=+-=x y m x y 与的图象交于y 轴上一点,则________m =;3、(12培优)若直线p x y +=3与直线q x y +-=2的图象交x 轴于同一点,则p 、q 之间的关系式为 ; 练习:1、(12∙重点轮动)直线2y kx =+与x 轴交于点(1-,0),则______k =;2、(桂林)直线1-=kx y 一定经过点( )A 、(1,0) B 、(1,k ) C 、(0,k ) D 、(0,1-) 3.已知一次函数y= -2x+3, 填空:(1)此一次函数的图像是 ,它经过 象限,y 随x 的增大而(2)直线y= -2x+3的斜率是 ,在y 轴上的截距是 ,在x 轴上的截距是 与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,交点之间的距离是 ,与两坐标轴所围成的面积是xy O xyO xyO xyOAB C D(3)将此直线向左平移3个单位得直线 ,再向上平移4个单位得直线 (4)当x 时,y >0,当x= 时,y=0, 当x 时,y <0,当 -1<y <3时,x 的取值范围是 ,当 -2<x <1时,y 的取值范围是 .(5)若一直线y=kx+b 与直线y= -2x+3平行,且过点(-3,1),则这条直线的解析式是 . ◆【要点4】----一次函数与方程(组)及不等式的关系 例3、1:函数x y =1,34312+=x y .当21y y >时,x 的范围是( ) A..x <-1 B .-1<x <2 C .x <-1或x >2 D .x >2y 2y 1(2,2)(-1,1)xyy=-2x+6o36xy2.已知函数62+-=x y 的图象如图所示,根据图象回答:⑴当x= 时,y=0,即方程062=+-x 的解为 思考:⑵当x 时,y >0,即不等式062>+-x 的解集为⑶当x 时,y <0,即不等式062<+-x 的解集为 总结:当y=0时,正好是图象与 轴的交点 当y >0时,图象位于 轴 方 当y <0时,图象位于 轴 方 ◆【要点5】、一次函数与二元一次方程组之间的关系 直线1 : y=11b x k + 直线:2 y=22b x k +(1)、当12121212k k b b =≠ 且时,∥,这时与没有公共点,所以方程组没有解 (2)、当21212121 与重合,这时与时,且b b k k ==有无数个公共点,方程组有无数个解。
一次函数的图像和性质的知识点
一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k,即:y=kx+b(k为任意不为零的实数,b取任何实数);2.当x=0时,b为函数在y 轴上的截距。
一次函数的图像及性质
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
一次函数图象与性质知识点一次函数知识点〔 1〕、一次函数的形式:形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当 b=0 时, y=kx + b 即 y=kx ,所以说正比率函数是一种特其他一次函数.〔 2〕一次函数的图象是一条直线- b, 0〕〔 3〕一次函数与坐标轴的交点:与Y 轴的交点是〔0, b〕与X 轴的交点是〔k〔 4〕增减性: k>0 , y 随 x 的增大而增大;k<0, y 随 x 增大而减小 .〔 5〕图像的平移:当b>0时,将直线y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .〔 6〕一次函数y=kx + b 的图象的画法 .依照几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先采用它与两坐标轴的交点:〔0,b〕,.即横坐标或纵坐标为0 的点 .〔 7〕一次函数图象及性质b>0b<0b=0k>经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<图象从左到右下降,y 随 x 的增大而减小〔 8〕待定系数法求一次函数的剖析式例题精讲 :1、做一做,画出函数 y=-2x+2 的图象 ,结合图象答复以下问题。
(1)随着 x 的增大, y 将〔填“增大〞或“减小〞〕(2)它的图象从左到右〔填“上升〞或“下降〞〕(3) 图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是(4) 这个函数中 ,随着 x 的增大 ,y 将增大还是减小 ?它的图象从左到右怎样变化 ? (5) 当 x 取何值时 ,y=0?(6) 当 x 取何值时 ,y > 0?1: .正比率函数 y (3m 5) x ,当 m时, y 随 x 的增大而增大 .2.假设 y x 23b 是正比率函数,那么 b 的值是〔〕2C.2 3B.3D.323.函数 y=( k-1) x ,y 随 x 增大而减小,那么k 的范围是 ( )A. k0 B. k 1 C. k1 D. k14:假设关于 x 的函数 y (n1)x m 1是一次函数,那么m=, n.5.函数 y=ax+b 与 y=bx+a 的图象在同一坐标系内的大体地址正确的选项是〔 〕6 将直线 y = 3x 向下平移 5 个单位,获取直线;将直线 y = - x- 5 向上平移 5 个单位,获取直线 .7 函数 y = 3x+1,当自变量增加 m 时,相应的函数值增加〔〕A. 3m+1 B. 3m C. m D. 3m -18 假设 m < 0, n > 0,那么一次函数 y=mx+n 的图象不经过 〔 〕A. 第一象限B. 第二象限C.第三象限D. 第四象限10、一次函数 y =3x + b 的图象与两坐标轴围成的三角形面积是 24,求 b.一次函数图象和性质练习与反应 :1、函数 y=3x -6 的图象中:〔 1〕随着 x 的增大, y 将〔填“增大〞或“减小〞 〕〔 2〕它的图象从左到右〔填“上升〞或“下降〞 〕〔 3〕图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是2、函数 y=(m-3)x- 2.3(1) 当 m 取何值时 ,y 随 x 的增大而增大 ?(2) 当 m 取何值时 ,y 随 x 的增大而减小 ?3、直线 y=4x -2 与 x 轴的交点坐标是 ,与 y 轴的交点坐标是4、直线 y= 2x 2 与 x 轴的交点坐标是,与 y 轴的交点坐标是35、写出一条与直线 y=2x-3 平行的直线6、写出一条与直线 y=2x-3 平行,且经过点〔 2,7〕的直线7、直线 y=- 5x+7 可以看作是由直线 y=-5x -1 向 平移个单位获取的8. 函数y kx b 的图象与 y 轴交点的纵坐标为5 ,且当 x 1时, y 2 ,那么此函数的剖析式为.9. 在函数 y2x b 中,函数 y 随着 x 的增大而,此函数的图象经过点(2, 1) ,那么b.10. 如图,表示一次函数y mx n 与正比率函数 y mnx 〔 m , n 为常数,且 mn0 〕图象的是〔〕yyyyOOxOxOxxA.B.C .D .11. 在以下四个函数中,y 的值随 x 值的增大而减小的是〔〕A. y 2x B. y3x 6C. y2x 5D. y 3x 712. 一次函数 y kxk ,其在直角坐标系中的图象大体是〔〕yyy yO x O xOxOx13. 在以下函数中, 〔〕的函数值先到达 100.A .B . C.D.A. y 2x 6B. y 5xC. y 5x 1D. y 4x 214. 一 次函数y 3x 5 与一次函 数 y ax 6 ,假设它们 的图象是两 条互相同样 的直线, 那么a.15.一次函数 y x 3 与 y2x b 的图象交于y 轴上一点,那么 b.16.一次函数 y kx b 的图象不经过第三象限,也不经过原点,那么k、 b 的取值范围是〔〕A. k0 且 b 0B. k0 且 b 0C. k0 且 b 0D. k0 且 b 017.以以下图,正比率函数y kx(k 0) 的函数值y随 x 的增大而增大,那么一次函数 yx k 的图象大体是〔〕y y y yOxOxOxOxA .B.C. D .18.假设函数 y(m21)x m 2 与y轴的交点在 x 轴的上方,且m 10,m 为整数,那么吻合条件的m有〔〕A.8 个B.7个C.9个D.10个19.函数 y 34x ,y随 x 的增大而.20.一次函数 y(m3)x2m 1 的图象经过一、二、四象限,求m 的取值范围.21. 一次函数y (m 3) x m216 ,且y的值随 x 值的增大而增大.〔 1〕m的范围;〔 2〕假设此一次函数又是正比率函数,试求m 的值.。
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
一次函数的性质一次函数是数学中一种基本的函数类型,也称为线性函数。
它的特点是函数图像为一条直线,表现出一种简单而直接的变化规律。
一次函数通常以 y = ax + b 的形式表示,其中 a 和 b 都是常数。
一次函数的性质有很多,接下来我们将逐一介绍。
1. 变化趋势:一次函数的图像为一条斜率恒定的直线,斜率的值决定了函数图像的变化趋势。
当斜率 a > 0 时,函数图像为上升的直线;当斜率 a < 0 时,函数图像为下降的直线;当斜率 a = 0 时,函数图像为水平直线。
2. 截距:一次函数的图像在 x 轴上与 y 轴相交的点分别称为 x 轴截距和 y 轴截距。
x 轴截距为负数的情况下,函数的图像位于 y 轴的左侧;x 轴截距为正数的情况下,函数的图像位于 y 轴的右侧。
3. 定义域和值域:一次函数的定义域是所有实数,即该函数对于任意实数值的 x 都有定义。
一次函数的值域是所有实数,即该函数可以取到任意实数值的 y。
4. 求解交点:一次函数与 x 轴的交点称为根,也就是函数图像与 x轴的交点;与 y 轴的交点称为解,也就是函数图像与 y 轴的交点。
求解根的方法是令 y = 0,并解出 x 的值;求解解的方法是令 x = 0,并解出 y 的值。
5. 判断与关系:对于两个不同的一次函数 f(x) = ax + b 和 g(x) = cx + d,若 a = c 且 b = d,则两个函数是相等的;若 a = c 且b ≠ d,则两个函数是平行的,它们的图像永远不会相交;若a ≠ c,则两个函数是相交的,它们会有一个交点。
6. 性质推广:一次函数的性质可以推广到更高维度的情况。
对于二维空间中的直线,它可以表示为三个一次函数形式的方程组,其中每个方程都有两个变量。
对于三维空间中的平面,它可以表示为三个一次函数形式的方程组,其中每个方程都有三个变量。
在实际应用中,一次函数常常被用于描述变化的趋势和规律。
6.3一次函数图象和性质(2)
太谷三中王琴平
教学目标
知识与技能目标
1.了解一次函数两个变量之间的变化规律;
2.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质.
过程与方法目标:
1.经历对一次函数图象变化规律的探究过程,在探究中学会解决一次函数问题的一些基本方法和策略;
2.在结合图象探究一次函数性质的过程中,增强学生数形结合的意识,渗透分类讨论的思想;
3.通过对一次函数图象及性质的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.
情感与态度目标:
1.在一次函数图象及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;
2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.
教学重点
结合一次函数的图象,探究一次函数的简单性质.
教学难点
一次函数图象变化规律及特点的探究过程及建立数形结合和分类讨论的思想.
教学方法:“探究—归纳—总结—运用”
教学过程:
一、温故互查(二人小组复述)
1.作函数图象有几个步骤?
2.一次函数图象有什么特点?
3.作出一次函数图象需要描出几个点?
二、探究新知
(一)、正比例函数图象特征及直线倾斜程度的确定
1、在同一平面直角坐标系中作出函数y=0.5x,y=x,y=3x和y=-2x的图象。
(课下已完成)观察图象回答下列问题:
(1)这些图象有什么特征?(口答)
(2)直线y=0.5x,y=x 和y=3x哪一个与x轴正半轴的夹角最小?哪个最
大?(口答)
(3)你有什么猜想?(小组交流)
2、几何画板演示归纳小结。
教师板书:正比例函数图象特征及k对直线倾斜程度的影响。
(二)一次函数图象的性质
1、在同一平面直角坐标系中作出函数y=2x+4,y=3x-2,y=-x和y=-x+4的图象。
(指名在白板上完成)观察图象回答下列问题:
(1)图象与y轴的交点分别是多少?与哪个值有关?(口答)
(2)哪些图象呈上升趋势?哪些图象呈下降趋势?与哪个值有关?(口答)
(3)在函数y=2x+4的图象上任取几点,随着x值的变化y的值如何发生变化?在函数y=-x+4的图象上呢?(小组交流)
(4)观察图象的位置有何特征?(小组交流)
2、几何画板演示归纳小结。
(教师板书,一次函数图象性质)
3、填表
一次函数y=kx+b(k≠0)图象性质
图象位置k>0 k <0
b >
b=0
b <
b>
b=0
b <
性质k>0时y随x的增大而,图象必经过象限
k<0时y随x的增大而,图象
必经过象限
常数项b决定一次函数图象与轴交点的位置.
三、课堂练习
(一)基础闯关
1、你能找出下面的四个一次函数对应的图象吗?请说出你的理由.
2、下列一次函数中,y的值随x的增大而减小的有________。
3、x从0开始逐渐增大时,y=2x+6和y=5x哪一个的值先达到20?
4、(1)判断下列各组直线的位置关系:
A、y=x与y=x-1
B、y=3x-2与y=x-2
(2)已知直线 y=2x-5 与一条经过原点的直线 l平行,则这条直线l 的函数关系式为_____.
(二)能力提升
1、如果一次函数y=kx-3k+6的图象经过原点,
那么k的值为_________。
2、直线y=2x+k2+1经过第象限。
3、直线y=kx+b经过一三四象限,则k ,b .
4、直线y=-2x-1向上平移2个单位后的解析式是。
5、一次函数 y=mx+n 的图象如图所示,则下列结论正确的是()
A、m<0,n<0
B、m<0,n>0
C、m>0,n<0
D、m>0,n>0
6、写出m的3个值,使相应的一次函数y = (2m-1)x+2的值都是随x的增大而减小.
(三)拓展探究
画直线y=2x-3的草图,回答下列问题
(1)在直线y=2x-3上有两点 A(2,y1),B(-4,y2),则 y1 y2(填>、<或=)
(2)利用图象回答问题,
当x 时,y >0,
当x 时,y<-3.
四、课堂小结
本节课你有什么收获?。