一次函数图象和性质
- 格式:ppt
- 大小:129.50 KB
- 文档页数:9
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
15一次函数的图像与性质1.图像特点:一次函数的图像是一条直线,它经过原点(0,0)。
直线的斜率k可以表示函数的性质,决定了直线的倾斜程度和方向。
当k大于0时,直线向右上方倾斜;当k小于0时,直线向右下方倾斜;当k等于0时,直线平行于x轴。
2.变化趋势:一次函数的变化趋势与自变量x的变化直接相关。
当x变大时,若k大于0,则y也会增大;若k小于0,则y会减小。
反之,当x变小时,则y的变化情况也相应地相反。
由此可见,一次函数的图像呈现出一个直线,且变化趋势具有确定性。
3.斜率性质:斜率k是一次函数的重要性质,它表示了函数图像的倾斜程度和方向。
一次函数的斜率有以下几个关键性质:-当k大于0时,函数图像是向上倾斜的,即从左下向右上。
斜率越大,直线越陡峭。
-当k小于0时,函数图像是向下倾斜的,即从左上向右下。
斜率越小,直线越平缓。
-当k等于0时,函数图像是平行于x轴的水平直线。
4.截距性质:一次函数还有一个重要的性质是截距。
截距表示了一条直线与y轴的交点,记作(0,b)。
对于一次函数y=kx来说,截距b等于函数在x=0处的取值,即b=k*0=0。
因此,一次函数经过原点(0,0),并且与y轴没有交点。
5.定比关系:一次函数的数值关系具有一种特殊的定比关系。
对于一次函数y=kx来说,当x增大或减小时,y的值与x的比值始终保持不变,即y/x=k。
这称为一次函数的定比关系,可以用来解决一些实际问题,如单位换算、速度、密度等概念的计算。
6.定义域和值域:一次函数的定义域为所有实数集R,即函数在实数范围内都有定义。
值域则取决于斜率k的正负。
当k大于0时,一次函数的值域是(0,+∞);当k小于0时,值域是(-∞,0)。
由于一次函数的图像是直线,所以图像在纵轴方向上没有上下界限。
7.相关性质:一次函数的图像与直线的性质有密切关联,因为一次函数的图像就是一根直线。
因此,一次函数也具有直线的一些基本性质,如:-一次函数的斜率等于直线的斜率。
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
一次函数图像性质总结一次函数图像性质总结3、一次函数的图象及性质(1)形状:一次函数y=kx+b的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.(2)画法:由于一次函数y=kx+b的图象是一条直线,因此作一次函数图象时,只要确定两个点,再过这两个点作直线就可以了.一般地,一次函数y=kx+b的图象是经过点(0,b)和b(-,0)的一条直线,当b=0时,即为正比例函数,其图象k是经过原点(0,0)和点(1,k)的一条直线.(3)性质:一次函数y=kx+b(k、b是常数,且k≠0)的图像是一条直线,它的性质如下:性质一:(增减性)一次函数中k的取值决定了图像的倾斜方向。
①k>0直线必然经过一、三象限,y的值随着x的增大而增大。
②k<0直线必然经过二、四象限,y的值随着x的增大而减小。
性质二:一次函数中b的取值确定直线与y轴交点的位置,反之亦然。
①b>0直线与y的交点在x轴的上方。
②b=0直线过原点。
③b<0直线与y的交点在x轴的下方。
性质三:当k确定b变化时,图像为无数条平行线;即两直线平行K的值相等。
当b确定k变化时,图像为一束都经过点(0,b)的直线。
即当b相等时两直线相交于Y轴一点。
性质四:一般的,一次函数的k、b都未确定,他的图像分为四种情况:注意:一般的画一次函数y=kx+b(k、b是常数,且k≠0)图像时,选取(0,b)、(-,0)两点,即选取直线与两坐标轴的交点。
bk扩展阅读:一次函数图像性质小结与配套练习一次函数的图像性质总结(阅读+理解)一、一次函数的图像姓名1.正比例函数y=kx(k≠0,k是常数)的图像是经过O(0,0)和M(1,k)两点的一条直线(如图13-17).(1)当k>0时,图像经过原点和第一、三像限;(2)k<0时,图像经过原点和第二、四像限.2.一次函数y=kx+b(k是常数,k≠0)的图像是经过A(0,b)和B(-直线,当kb≠0时,图像(即直线)的位置分4种不同情况:(1)k>0,b>0时,直线经过第一、二、三像限,如图13-18A(2)k>0,b<0时,直线经过第一、三、四像限,如图13-18B(3)k<0,b>0时,直线经过第一、二、四像限,如图13-18C(4)k<0,b<0时,直线经过第二、三、四像限,如图13-18Db,0)两点的一条k3.一次函数的图像的两个特征(1)对于直线y=kx+b(k≠0),当x=0时,y=b即直线与y轴的交点为A(0,b),因此b叫直线在y轴上的截距.(2)直线y=kx+b(k≠0)与两直角标系中两坐标轴的交点分别为A(0,b)和B(-4.一次函数的图像与直线方程(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)b,0).k②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).二、两条直线的关系1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1与l2相交,则k1≠k2,其交点是联立这两条直线的方程,求得的公共解;若l1与l2平行,则k1=k2.三、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.用待定系数法求一次函数的解析式:若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①y2=kx2+b②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.一次函数的图像和性质练习题题组一:1.正比例函数ykx(k0)一定经过点,经过(1一次函数ykxb(k0)经,),过(0,)点,(,0)点.2.直线y2x6与x轴的交点坐标是,与y轴的交点坐标是。
一次函数的图象及性质1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴ 次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数和一次函数图像及性质3、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:即横坐标或纵坐标为0的点.4、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k5、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.例1:已知一次函数y=kx+b 的图象如图所示,求函数表达式.例2、直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,求直线的解析式。
例1:已知一次函数)1()14(+-+=m x m y 。
(1)m 为何值时,y 随x 的增大而减小?(2)m 为何值时,此直线与y 轴交点在x 轴下方? (3)m 为何值时,此直线不经过第三象限?(4)若1=m ,求这个一次函数与两个坐标轴的交点。