有限单元法分析的基本步骤
- 格式:ppt
- 大小:287.00 KB
- 文档页数:31
一、有限单元法的基本原理有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。
它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。
有限元方法的基本思路是:化整为零,积零为整。
即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。
由位移求出应变, 由应变求出应力二、ABAQUS有限元分析过程有限元分析过程可以分为以下几个阶段1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。
“Part(部件)用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。
有限单元法基本原理和数值方法1. 引言有限单元法(Finite Element Method,FEM)是一种数值计算方法,广泛应用于结构力学、流体力学、电磁场及热传导等领域中。
本文将介绍有限单元法的基本原理和数值方法,并阐述其在工程实践中的应用。
2. 基本原理有限单元法的基本原理是将复杂的连续体问题离散化为若干简单的子域,即有限单元。
每个有限单元由一个或多个节点组成,通过将子域内的导数方程或平衡方程转化为代数方程,再通过求解这些代数方程得到全局解。
有限单元法的基本步骤如下: - 确定问题的几何形状和边界条件; - 将几何形状分割为有限个单元,并为每个单元定义适当的数学模型; - 根据单元的数学模型建立刚度矩阵、质量矩阵等,并通过组装成全局矩阵; - 应用合适的边界条件,并求解线性或非线性代数方程组; - 根据代数方程组的解,计算各个单元内部的物理量。
3. 数值方法有限单元法中常用的数值方法包括: - 剖分方法:将连续域剖分为若干简单的有限单元,常用的有三角形剖分和四边形剖分。
- 元素类型:根据问题的特性选择合适的单元类型,如线性元、三角元、四边形元等。
- 积分方法:采用高斯积分等方法对每个单元内的积分方程进行数值求解。
- 方程求解:对线性方程组采用直接法(如高斯消元法)或迭代法(如共轭梯度法)进行求解。
- 后处理:根据问题的要求,进行应力、位移、应变等物理量的计算和显示。
4. 应用实例有限单元法广泛用于工程实践中,以下为其常见应用实例:- 结构力学:用于模拟建筑物、桥梁、飞机等结构的应力和变形。
- 流体力学:用于模拟流体在管道、水槽、风洞等中的流动。
- 电磁场:用于模拟电磁场在电路、电机、天线等中的分布。
- 热传导:用于模拟热传导在导热管、散热器、热交换器等中的传热情况。
5. 结论有限单元法作为一种数值计算方法,在工程实践中得到了广泛应用。
通过将连续问题离散化为有限单元,再通过数值方法求解代数方程组,可以获得连续问题的近似解。
一.简答题:1.有限单元法和里兹法的区别:有限单元法:(1) 将连续的求解域离散为有限个单元组合体,利用在每一个单元内假设的近似函数来表示全求解域上待求的未知场函数。
(2)数学意义上,是把微分方程的连续形式转化为代数形式方程组。
里兹法:在整个求解域上,直接从泛函出发,通过假设试探函数,求得问题的近似解。
2. 泛函的两个基本点:(1)泛函有它的定义域,这个定义域是指满足一定条件的函数集。
(2)泛函](xy具有明确的对应关系,泛函的值是由一条可取曲线 与可取函数)[y的整体性质决定的,它表现在“积分”上。
3. 有限单元法的基本步骤:(1)结构或物体的离散化。
(2)选取单元内的场变量插值函数。
(3)进行单元分析,求单元特性矩阵和单元特性列阵。
(4)进行整体分析,组装整体特性矩阵和整体特性列阵,建立整体方程。
(5)计算单元内部的场变量。
4. 选取插值函数的原则:(1)广义坐标的个数与单元自由度数一致。
(2)为提高单元精度,插值多项式应尽量选取完全多项式。
有时完全多项式的项数与单元自由度数并不相同,这时可以增加单元的节点个数以使单元的自由度数和完全多项式的项数相同;还可以减少多项式的项数,以使问题变得简单,但此时应注意保持多项式的对称性。
5. 收敛准则:准则1 完备性要求。
如果出现在泛函中场函数的最高阶导数为m阶,则有限单元法收敛的条件之一是单元内场函数的插值函数至少是m次完全多项式,或者说插值函数必须包括本身和直至m阶导数为常数的项。
准则2 协调性要求。
如果出现在泛函中的最高阶导数是m阶,则试探函数在相邻单元的交界面上应有函数直到m - 1阶的连续导数。
6. 等参变换的定义:将局部(自然)坐标中几何形状规则的单元变换为整体坐标系中几何形状扭曲的单元。
当坐标变换和函数插值采用相同的节点,为等参单元;当坐标变换节点数多于插值函数节点数,为超参变换;当坐标变换节点数少于插值函数节点数,为亚参变换。
7. 等参单元基本思想:用相同数目的节点参数和相同的插值函数来定义单元的形状以及单元内的场变量。
有限单元法基础
有限单元法(Finite Element Method,FEM)是一种数值计算
方法,常用于求解连续介质力学问题。
它将连续的物理域划分为有限数量的离散单元(finite elements),通过在每个单元内构建近似函数来描述物理场,再根据物理方程建立离散方程组,通过求解离散方程组来得到物理场的近似解。
有限单元法的基本思路是将连续域离散化为有限数量的小单元,每个小单元内使用适当的数学函数进行插值,将大问题分解为很多个小问题,并利用变量之间的连续性建立全局的离散方程组。
然后通过求解离散方程组得到近似解。
有限单元法的基本步骤包括:
1. 网格划分:将要求解的区域划分为多个离散单元,并在每个单元内选择适当的形状函数。
2. 形函数构造:在每个单元内选择适当的形状函数,用于描述物理场的分布。
3. 整体方程组:根据物理方程在每个单元上的积分,建立整个问题的离散方程组。
4. 边界条件:根据边界条件,将边界上的节点处的值固定为已知值。
5. 求解方程组:利用数值方法求解离散方程组,得到物理场的
近似解。
6. 后处理:根据求解结果,计算所需的物理量并进行分析和验证。
有限单元法具有广泛的应用,适用于各种连续介质力学问题的数值求解,如结构力学、固体力学、流体力学、热传导等。
它可以处理复杂的几何形状和边界条件,且精度和收敛性能较高。
有限元分析过程范文1. 建立几何模型:首先需要根据实际结构的几何形状和尺寸,在计算机上进行建模。
常用的建模软件有AutoCAD、SolidWorks等。
在建模过程中,需要考虑结构的几何复杂性,将结构划分为多个小单元。
2.网格划分:建立几何模型后,需要将结构划分为有限个小单元,即进行网格划分。
常见的划分方法有三角形划分、四边形划分、四面体划分等。
划分的小单元越多,越能精确地反映结构的实际情况,但计算量也会增大。
3.建立有限元模型:在网格划分完成后,需要建立有限元模型。
有限元模型是通过数学方程来描述结构的行为,以便进行数值计算。
一般来说,有限元模型包括节点、单元和边界条件。
节点是划分后的小单元的连接点,单元是连接节点的小单元,边界条件是结构上固定或受力的位置。
4.建立位移和力的关系:在建立有限元模型后,需要建立位移和力之间的关系,即刚度矩阵。
刚度矩阵描述了结构在受力作用下的刚度特性。
刚度矩阵的建立需要根据结构的材料性质、几何形状和边界条件等参数来计算。
5.施加边界条件:在建立刚度矩阵后,需要施加边界条件。
边界条件是指结构上一些固定或受力的位置。
根据实际情况,可以将一些节点固定或施加外力。
6. 求解有限元方程:当建立模型、边界条件和刚度矩阵后,就可以通过求解有限元方程来得到结构的应力和位移等结果。
有限元方程是一个大型线性代数方程组,可以使用一些数值方法进行求解,如高斯消元法、Jacobi迭代法、Gauss-Seidel法等。
7.分析结果和后处理:求解有限元方程后,得到结构的应力、位移等结果。
需要对分析结果进行验证和后处理。
验证分析结果需要与实际情况进行对比,以确定分析结果的准确性。
后处理的目的是对分析结果进行分析和可视化,以便进一步了解结构的行为。
有限元分析可以应用于各种不同类型的结构,如建筑物、桥梁、飞机等。
通过有限元分析,可以更好地了解结构的性能和优化设计。
然而,有限元分析也有其局限性,如精确刻画结构的几何形状、边界条件和材料性质需要更高的精度和计算量,因此需要权衡模型的准确性和计算效率。
有限单元法及程序设计有限单元法(Finite Element Method,FEM)是一种用于数值分析和计算的方法,广泛应用于工程和科学领域。
它通过将连续问题离散化成有限个小单元,并在每个小单元上建立数学模型来近似求解问题。
本文将介绍有限单元法的基本原理、步骤以及程序设计方面的注意事项。
一、有限单元法基本原理有限单元法的基本原理是将连续的物理区域划分为有限个离散的小单元,每个小单元内的场量近似表示为一些插值函数的线性组合。
通过对这些小单元进行逐个求解,最终得到整个问题的近似解。
有限单元法的核心思想是利用局部性原则,将整个问题分解成多个小问题。
每个小问题只涉及到相邻的单元,在确定了边界条件和材料特性后,可以进行独立的求解。
最后通过组合各个小问题的解,得到整个问题的解。
二、有限单元法步骤有限单元法的求解过程主要包括几个基本步骤,具体如下:1. 离散化:将连续的物理区域划分为有限的小单元。
常用的小单元形状包括三角形、四边形、六边形等。
2. 建立数学模型:在每个小单元上建立数学模型,通常使用插值函数来近似表示物理量。
插值函数的选择对求解结果的准确性和效率有重要影响。
3. 形成总体方程:根据物理规律和边界条件,利用适当的数学方法推导出总体方程。
常见的总体方程包括稳定性方程、运动方程等。
4. 矩阵装配:将每个小单元的局部方程装配成整个系统的总体方程。
这一步骤常常需要对单元进行编号和排序,以便正确地装配矩阵。
5. 边界条件处理:根据实际问题的边界条件,对总体方程进行修正。
边界条件的处理通常包括施加约束和设定边界值。
6. 求解方程:通过数值方法,如有限差分法或有限元法,求解总体方程。
常用的求解方法包括直接法和迭代法。
7. 后处理:对求解结果进行计算和分析,以获得实际问题的有用信息。
后处理包括输出位移、应力、应变等字段,以及进行可视化展示。
三、程序设计注意事项在进行有限单元法的程序设计时,需要充分考虑以下几个方面的注意事项:1. 算法选择:根据问题的特点和求解需求,选择合适的有限单元类型、插值函数和数值解法。
有限单元法基本原理和数值方法1. 引言有限单元法(Finite Element Method,简称FEM)是一种用于求解工程问题的数值计算方法。
它的基本原理是将连续体分割为离散的有限单元,通过建立有限单元间的关系,近似求解连续体的行为。
本文将介绍有限单元法的基本原理和数值方法。
2. 有限单元法基本原理有限单元法基于两个基本假设:一是一个连续物体可以用小的有限单元来近似表示;二是连续物体在每个有限单元内有近似均匀的力和位移。
有限单元法的基本原理可以概括为以下几个步骤:2.1 离散化将连续物体划分为有限个离散的单元,每个单元都有自己的性质和参数。
通常采用三角形、四边形、四面体等简单形状的单元。
2.2 建立单元间的关系通过节点和单元之间的连接关系来构建整个有限元模型。
每个单元都与相邻的单元共享一些节点,通过共享的节点建立单元间的关系。
2.3 定义单元的属性为每个单元定义材料性质、几何属性和荷载条件等参数,这些参数将用于描述单元的行为。
2.4 定义求解问题的边界条件为有限元模型定义相应的边界条件,如位移边界条件、力边界条件等。
2.5 利用单元间的关系建立方程通过应变能最小原理,利用单元间的关系建立求解整个结构的方程。
2.6 求解方程将建立的方程离散化,采用数值方法求解得到解。
3. 有限单元法数值方法有限单元法中常用的数值方法有直接法和迭代法。
3.1 直接法直接法是指直接求解线性方程组的方法,通常使用高斯消元法、LU分解法等。
直接法的优点是计算简单,稳定性好。
但是当方程组规模较大时,计算量会很大。
3.2 迭代法迭代法是指通过迭代逼近求解方程组的方法,常用的迭代法有Jacobi迭代法、Gauss-Seidel迭代法等。
迭代法的优点是计算量相对较小,适用于大规模方程组。
但是迭代法的收敛性需要保证,且需要选择合适的迭代停止准则。
4. 有限单元法应用有限单元法广泛应用于工程领域的结构分析、流体力学、电磁场分析等。