有限元分析及其应用思考题附答案2012
- 格式:doc
- 大小:40.00 KB
- 文档页数:4
思考题第一章V u1-1. 用加权余量法求解微分方程,其权函数和场函数的选择没有任何限制。
(×)答:权函数V的选取必须保证残值的加权积分为零,强迫近似解所产生的残值在某种平均意义上等于零;场函数u必须保证任何一点都满足积分方程式(不一定连续),在边界每一点上都满足边界条件。
1-2. 加权余量法仅适合为传热学问题建立基本的有限元方程,而基于最小势能原理的虚功原理仅适合为弹性力学问题建立基本的有限元方程。
(×)分析:加权余量法只要能形成场的微分方程都能用,不局限于温度场。
尤其适合于具有连续场的非力学问题(如声、电、磁、热)的有限元方程的建立。
虚功原理(或虚位移原理)不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。
最小势能原理仅适用于弹性力学问题。
加权残值法尤其适用于具有连续场的非力学问题的有限元方程的建立。
1-3. 现代工程分析中的数值分析方法主要有有限差分法、有限元法和边界元法。
这些方法本质上是将求解区域进行网格离散化,然后求解方程获得数值结果。
是否可以将求解区域离散成结点群,但是没有网格进行求解?答:可以用无网格方法求解。
有限元法是基于网格的数值方法,它通用、灵活并被作为一种工业标准广泛遵循,但其在分析涉及特大变形(如:加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。
近年来,无网格法得到了迅速发展,它不需要划分网格,克服了有限元法对网格的依赖,在涉及网格畸变、网格移动等问题时显示出明显的优势,同时无网格法的前处理过程也比有限元更为简单。
目前无网格法主要还是处在研究阶段,解决的工程实际问题相对较简单,与有限元的发展还有较大距离。
(无网格方法数值求解的基本思想:在每个节点上构建待求物理量近似值的插值函数,并用加权残量法和该近似函数对微分方程进行离散,形成与待求物理量相关的各节点近似值的离散方程,并求解之。
)第二章2-1. ANSYS软件有哪些功能模块?在GUI方式下的六个窗口有何功能和特点。
有限元课后习题答案1.1有限元法的基本思想和基本步骤是什么首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。
1.2有限元法有哪些优点和缺点优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。
缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。
对无限求解域问题没有较好的处理办法。
1.3有限元法在机械工程中有哪些具体的应用静力学分析模态分析动力学分析热应力分析其他分析2.1杆件结构划分单元的原则是什么?1)杆件的交点一定要取为节点2)阶梯形杆截面变化处一定要取为节点3)支撑点和自由端要取为节点4)集中载荷作用处要取为节点5)欲求位移的点要取为节点6)单元长度不要相差太多2.2简述单元刚度矩阵的性质。
单元刚度矩阵是描述单元节点力与节点位移之间关系的矩阵。
2.3有限元法基本方程中每一项的意义是什么?{Q}---整个结构的节点载荷列阵(包括外载荷、约束力);{}---整个结构的节点位移列阵;[K]---结构的整体刚度矩阵,又称总刚度矩阵。
2.4简述整体刚度矩阵的性质和特点。
对称性奇异性稀疏性主对角上的元素恒为正2.5位移边界条件和载荷边界条件的意义是什么由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。
2.6写出平面刚架问题中单元刚度矩阵的坐标变换式2.7推导平面刚架局部坐标系下的单元刚度矩阵。
2.8简述整体坐标的概念。
单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’O’Y’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。
2 弹性力学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格?答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。
2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗?答:对。
2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。
而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。
2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗?答:能。
矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。
矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。
因此矩形单元旋转一个角度后还能够保持在单元边界上的位移协调。
2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。
计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。
2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。
在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。
若形状相差过大,使结构应力分析困难加大,误差同时也加大。
2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。
2012年某高校度弹性力学与有限元分析复习题及其答案(内部资料)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 .5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。
7、在弹性和小变形下,节点力和节点位移关系是线性关系。
8、弹性力学问题的方程个数有15个,未知量个数有15个。
9、弹性力学平面问题方程个数有8,未知数8个。
10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态16、在进行节点编号时,同一单元的相邻节点的号码差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为__双线性位移模式_19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系21、矩形单元边界上位移是连续变化的1. 诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2. 有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
3. 有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。
有限元分析及应用习题答案有限元分析及应用习题答案有限元分析是一种广泛应用于工程领域的数值计算方法,可以用来解决各种结构力学问题。
在学习有限元分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高应用能力。
本文将给出一些有限元分析及应用的习题答案,希望对读者有所帮助。
1. 什么是有限元分析?有限元分析的基本步骤是什么?有限元分析是一种通过将结构划分为有限数量的子域,然后对每个子域进行数值计算,最终得到整个结构的应力、应变等力学参数的方法。
其基本步骤包括:建立有限元模型、选择适当的数学模型、进行数值计算、分析计算结果。
2. 有限元分析的优点是什么?有限元分析具有以下优点:- 可以处理任意形状的结构,适用范围广。
- 可以考虑材料非线性、几何非线性等复杂情况。
- 可以对结构进行优化设计,提高结构的性能。
- 可以得到结构的应力、应变等力学参数分布,为工程实际应用提供参考。
3. 有限元分析中的单元是什么?常见的有哪些类型?有限元分析中的单元是指将结构划分为有限数量的子域,每个子域称为一个单元。
常见的单元类型有:- 一维单元:如梁单元、杆单元等,适用于解决一维结构问题。
- 二维单元:如三角形单元、四边形单元等,适用于解决平面或轴对称问题。
- 三维单元:如四面体单元、六面体单元等,适用于解决立体结构问题。
4. 如何选择适当的单元类型?选择适当的单元类型需要考虑结构的几何形状、边界条件、材料性质等因素。
一般来说,对于简单的结构,可以选择较简单的单元类型;对于复杂的结构,需要选择更复杂的单元类型。
此外,还需要根据具体问题的要求和计算资源的限制进行选择。
5. 有限元分析中的边界条件有哪些类型?有限元分析中的边界条件包括:- 位移边界条件:指定某些节点的位移或位移的导数。
- 力边界条件:施加在结构上的外力或力矩。
- 约束边界条件:限制某些节点的位移或位移的导数为零。
6. 有限元分析中的材料模型有哪些?有限元分析中常用的材料模型有:- 线性弹性模型:假设材料的应力与应变之间存在线性关系。
有限元法理论及应用大作业1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:有限元分析的主要步骤主要有:(1)结构的离散化,即单元的划分;(2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程;(3)等效节点载荷计算;(4)整体分析,建立整体刚度方程;(5)引入约束,求解整体平衡方程。
2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。
题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。
有限元划分网格的基本原则:1.拓扑正确性原则。
即单元间是靠单元顶点、或单元边、或单元面连接2.几何保持原则。
即网络划分后,单元的集合为原结构近似3.特性一致原则。
即材料相同,厚度相同4.单元形状优良原则。
单元边、角相差尽可能小5.密度可控原则。
即在保证一定精度的前提下,网格尽可能的稀疏一些。
(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。
(c)中没有考虑对称性,单元边差很大。
3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度。
(b )划分为平面梁单元,8个节点,15个自由度。
(c )平面四节点四边形单元,8个节点,13个自由度。
(d )平面三角形单元,29个节点,38个自由度。
4、什么是等参数单元?。
答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。
5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。
《有限元剖析与应用》详尽例题试题 1:图示无穷长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元剖析,并对以下几种计算方案进行比较:1)分别采纳同样单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采纳不一样数目的三节点常应变单元计算;3)入选常应变三角单元时,分别采纳不一样区分方案计算。
一.问题描绘及数学建模无穷长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无穷长的地基看着平面三角形的底边受固定支座拘束的作用,受力面的受力简化为受均布载荷的作用。
二.建模及计算过程1.分别采纳同样单元数目的三节点常应变单元和六节点三角形单元计算下边简述三节点常应变单元有限元建模过程(其余种类的建模过程近似):进入 ANSYS【开始】→【程序】→ANSYS → ANSYS Product Launcher → change the working directory→ Job Name: shiti1 → Run设置计算种类ANSYS Main Menu: Preferences → select Structural→ OK元型元是三节点常应变单元,能够用 4 节点退化表示。
ANSYS Main Menu: Preprocessor→ Element Type→ Add/Edit/Delete→ Add→ select Solid Quad 4 node 42 →OK (back to Element Types window)→Options ⋯→ select K3: Plane Strain →OK→ Close (the Element Type window)定资料参数资料,可找的参数并在有限元中定,此中性模量E=210Gpa,泊松比 v=。
ANSYS Main Menu : Preprocessor → Material Props → Material Models→ Structural→ Linear→Elastic → Isotropic→ input EX:, PRXY:→ OK生成几何模型生成特点点ANSYS Main Menu: Preprocessor→Modeling→ Create→Keypoints→ In Active CS→挨次入四个点的坐:input:1(0,0),2(3,0),3(6,0),4(3,5),5(0,10),6(0,5) → OK生成体截面ANSYS Main Menu: Preprocessor→Modeling→ Create→ Areas→ Arbitrary→ Through KPS→挨次接1,2,6;2,3,4;2,4,6;4,5,6 三个特点点→ OK网格区分ANSYS Main Menu : Preprocessor→ Meshing→ Mesh Tool→ (Size Controls) Global: Set→ input NDIV: 1→ OK → (back to the mesh tool window)Mesh: Areas, Shape: Tri, Free → Mesh → Pick All (in Picking Menu) → Close( the Mesh Tool window)模型施加束分下底和直的施加x 和 y 方向的束ANSYS Main Menu: Solution→ Define Loads→ Apply→ Structural→ Displacement→ On lines →底→OK → select:ALL DOF → OK斜施加x 方向的散布荷ANSYS 命令菜: Parameters→ Functions→ Define/Edit→ 1)在下方的下拉列表框内x ,作置的量;2) 在Result窗口中出{X},写入所施加的荷函数:1000*{X} ;3) File>Save(文件展名:func)→返回:Parameters→ Functions→ Read from file:将需要的.func文件翻开,任一个参数名,它表示随之将施加的荷→ OK→ ANSYS Main Menu: Solution→ Define Loads→ Apply→Structural→ Pressure→ On Lines→拾取斜;OK→在下拉列表框中,:Existing table (来自用定的量)→ OK →需要的荷参数名→OK剖析算ANSYS Main Menu: Solution→Solve→ Current LS→OK(to close the solve Current Load Step window)→OK果示确立目前数据最后步的数据ANSYS Main Menu: General Postproc→ Read Result→ Last Set看在外力作用下的形ANSYS Main Menu: General Postproc→ Plot Results → Deformed Shape→select Def + Undeformed→ OK看点位移散布状况Contour Plot→ Nodal Solu⋯→ select: DOF solution→Displacement vctor sum→ Def + Undeformed→OK看点力散布状况Contour Plot→ Nodal Solu⋯→ select: Stress→ XY shear stress→Def + Undeformed → OK退出系ANSYS Utility Menu: File→ Exit ⋯→ Save Everything→ OK三.结果剖析三节点常应变单元( 6 个节点, 4 个单元)几何模型图变形图,节点位移图,节点应力争,节点应变图六节点常应变单元( 6个节点, 4个单元)几何模型图变形图,节点位移图,节点应力争,节点应变图分别采纳同样单元数目的三节点常应变单元和六节点三角形单元计算结果比较单元区分方案变形大小应力大小应变大小值的比较剖析三节点三角形DMX:DMX:DMX: 1.最大变形值小;单元SMX:SMN:2778SMN: 2.最大应力值小;SMX:8749SMX: 3.最大应变值小。
《有限元法及其应用》课后习题目录第1章绪论 (3)第2章有限单元法理论基础 (4)第3章杆系结构单元 (5)第4章平面三角形单元 (7)第5章平面四边形等参数单元 (9)第6章常用有限元软件及其在岩土工程中的应用 (10)第1章绪论1-1试说明有限元法解题的基本思路。
1-2试说明用有限元法解题的主要步骤。
1-3有限元法主要有哪些优点?第2章有限单元法理论基础2-1 何为虚功,虚功原理的具体思路是什么?2-2 虚功原理的适用条件有哪些?2-3 位移模式的概念是什么?2-4 如何构造位移模式?2-5 弹性力学问题的求解需要满足哪些条件?第3章 杆系结构单元3-1 推导横截面积为A 的一维桁架结构的单元刚度矩阵。
3-2 图示(见题图3-1)为一平面超静定桁架结构,在载荷P 作用下,求各杆件的轴力。
此结构可看成由14、24、34三个杆单元组成,每个杆单元的两端为杆单元的结点,各结点的水平、铅直位移分别用u 、v 表示。
题图3-1 平面超静定桁架结构a —平面结构;b —单元组成;c —各结点位移3-3 图示(见题图3-2)刚架中,两杆为尺寸相同的等截面杆件,横截面面积为20.5m A =,截面惯性矩为41m 24I =,弹性模量7310kPa E =⨯,求解此结构。
题图3-2 等截面刚架结构第4章平面三角形单元4-1 按位移求解的有限单元法中:(1)应用了哪些弹性力学的基本方程?(2)应力边界条件及位移边界条件是如何反映的?(3)力的平衡条件是如何满足的?(4)变形协调条件是如何满足的?4-2 在有限单元法中,如何应用虚功原理导出单元内的应力和结点力的关系式,并将外荷载静力等效地变换为结点荷载?4-3 为了保证有限单元法解答的收敛性,平面三角形单元位移模式应满足哪些条件?μ=,记杨氏弹性模4-4 题图4-1所示等腰直角三角形单元,设14量为E,厚度为t,求形函数矩阵[]N、应变矩阵[]B、应力矩阵[]S与单元刚度矩阵[]eK。
有限元分析及其应用-2010思考题:1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的?答:基本思想:几何离散和分片插值。
基本步骤:结构离散、单元分析和整体分析。
离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。
当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。
2、有限元法与经典的差分法、里兹法有何区别?区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低;里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解;有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。
3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试1)建立其受拉伸的微分方程及边界条件;2)构造其泛函形式;3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。
4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。
5、什么是节点力和节点载荷?两者有何区别?答:节点力:单元与单元之间通过节点相互作用节点载荷:作用于节点上的外载6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)?答:单元刚度矩阵:对称性、奇异性、主对角线恒为正整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。
Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。
7、单元的形函数具有什么特点?有哪些性质?答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。
形函数Ni在i节点的值为1,而在其他节点上的值为0;单元内任一点的形函数之和恒等于1;形函数的值在0~1间变化。
有限元分析及应用作业报告目录有限元分析及应用作业报告 (I)目录 (II)试题1 (1)一、问题描述 (1)二、几何建模与分析 (2)三、第1问的有限元建模及计算结果 (2)四、第2问的有限元建模及计算结果 (7)五、第3问的有限元建模及计算结果 (13)六、总结和建议 (16)试题5 (17)一、问题的描述 (17)二、几何建模与分析 (18)三、有限元建模及计算结果分析 (18)四、总结和建议 (26)试题6 (27)一、问题的描述 (27)二、几何建模与分析 (27)三、有限元建模及计算结果分析 (27)五、总结和建议 (35)试题1一、问题描述图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。
图1-1模型示意图及划分方案二、几何建模与分析图1-2力学模型由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。
因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。
假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。
1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。
有限元思考题答案红字为答疑时⽼师给的解答第⼀章思考题1-1 “⽤加权余量法求解微分⽅程,其权函数V和场函数u的选择没有任何限制”,这种说法对吗?答:不对,有连续性要求。
1-2 “加权余量法仅适⽤为传热学问题建⽴基本的有限元⽅程,⽽基于最⼩势能原理的虚功原理仅适合为弹性⼒学问题建⽴基本的有限元⽅程”,这种说法对吗?答:不对。
虚位移原理不仅可以应⽤于弹性⼒学问题,还可以应⽤于⾮线性弹性以及弹塑性等⾮线性问题,虚功原理可以⽤来推导各种⼒学问题的有限元基本⽅法中的基本⽅程。
最⼩势能原理仅适⽤于弹性⼒学问题。
加权残值法尤其适⽤于具有连续场的⾮⼒学问题,如声、电、磁学的有限元⽅程的建⽴。
1-3 现代⼯程分析中的数值分析⽅法主要有有限差分法、有限元法和边界元法。
这些⽅法本质上是将求解区域进⾏⽹格离散化,然后求解⽅程获得数值结果。
是否可以将求解区域离散成结点群,但是没有⽹格进⾏求解?答:可以,⽆⽹格⽅法是近年发展起来的⼀种新的数值计算⽅法。
与基于⽹格的⽅法不同,⽆⽹格⽅法只需要节点的信息,不需要节点的信息⽽不需要节点之间相互联系的信息。
典型⽆⽹格⽅法有配点法、Galerkin⽅法、Petrov-Galerkin⽅法等。
(⽆⽹格⽅法数值求解的基本思想:在每个节点上构建待求物理量近似值的插值函数,并⽤加权残量法和该近似函数对微分⽅程进⾏离散,形成与待求物理量相关的各节点近似值的离散⽅程,并求解之。
)第⼆章思考题2-1 ANSYS软件有哪些模块?在GUI⽅式下的六个窗⼝有何功能特点?主要包括前处理模块,分析计算模块和后处理模块①前处理模块提供了⼀个强⼤的试题建模及⽹格划分⼯具,⽤户可以⽅便地构造有限元②分析计算模块包括结构分析、流体动⼒学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作⽤,具有灵敏度分析及优化分析能⼒③后处理可将计算结果以彩⾊等值线显⽰、梯度显⽰、⽮量显⽰、粒⼦流迹显⽰、⽴体切⽚显⽰、透明及半透明显⽰等图形⽅式显⽰出来,也可将计算记过以图表、曲线形式显⽰或输出。
有限元分析及其应用-2010
思考题:
1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什
么?是如何将无限自由度问题转化为有限自由度问题的?
答:基本思想:几何离散和分片插值。
基本步骤:结构离散、单元分析和整体分析。
离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。
当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。
2、有限元法与经典的差分法、里兹法有何区别?
区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低;
里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解;
有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。
3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试
1)建立其受拉伸的微分方程及边界条件;
2)构造其泛函形式;
3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。
4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩
阵)。
5、什么是节点力和节点载荷?两者有何区别?
答:节点力:单元与单元之间通过节点相互作用
节点载荷:作用于节点上的外载
6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自
由度和节点解释)?
答:单元刚度矩阵:对称性、奇异性、主对角线恒为正
整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。
Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。
7、单元的形函数具有什么特点?有哪些性质?
答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。
形函数Ni在i节点的值为1,而在其他节点上的值为0;
单元内任一点的形函数之和恒等于1;
形函数的值在0~1间变化。
8、描述弹性体的基本变量是什么?基本方程有哪些组成?
答:基本变量:外力、应力、应变、位移
基本方程:平衡方程、几何方程、物理方程、几何条件
9、何谓应力、应变、位移的概念?应力与强度是什么关系?
答:应力:lim△Q/△A=S △A→0
应变:物体形状的改变
位移:弹性体内质点位置的变化
10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形
式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?
答:强弱的区分在于是否完全满足物理模型的条件。
所谓强形式,是指由于物理模型的复杂性,各种边界条件的限制,使得对于所提出的微分方程,对所需要求得的解的要求太强。
也就是需要满足的条件太复杂。
比如不连续点的跳跃等等。
将微分方程转化为弱形式就是弱化对方程解的要求。
不拘泥于个别特殊点的要求,而放松为一段有限段上需要满足的条件,使解能够以离散的形式存在。
11、以平面微元体为例,考虑弹性力学基本假设,推导微分平衡方程。
12、常见的弹性力学问题解法有哪几类?各有何特点或局限?简述求解思路?
13、何谓平面应力问题?何谓平面应变问题?应力应变状态如何?如何判断?举例说
明?
答:平面应力问题:作用于很薄的板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用
平面应变问题:长柱体的横截面沿长度方向不变,作用于长柱体结构上的载荷平行于横截面且沿纵向方向均与分布,两端面不受力。
14、何谓轴对称问题?如何判断?推导极坐标下的平衡方程和几何方程。
答:轴对称:几何形状、约束情况及所受的外力都对称于空间的某一跟轴,则通过该轴的任何平面都是物体的对称面,物体内的所有应力、应变和位移都关于该轴对称。
15、何谓虚位移原理?推导弹性体虚功方程的矩阵形式,并写出轴对称问题的虚功方
程。
16、什么叫外力势能?什么叫应变能?简述势能变分原理。
试问势能变分原理代表了弹
性力学的那些方程?同时,附加了什么条件?
17、在三维弹性体中,若系统势能对位移变分为零。
试证明一定满足应力平衡方程和应
力边界条件。
18、为了保证有限元解的收敛性,位移函数必须满足那些条件?为什么?
答:1.位移函数应包含刚体位移
2.位移函数应能反映单元的常应变状态
3.位移函数在单元内要连续,在单元边界上要协调。
19、位移函数构造为何按Pascal三角形进行?为什么?
答:选取多项式具有坐标的对称性,保证单元的位移分布不会因为人为选取的方位坐标不同而变化。
20、如何理解有限元解的下限性?简要说明。
21、何谓刚性位移?何谓常量应变?
答:刚性位移就是物体的形状不发生变化产生的位移
变形位移就是考虑物体产生的变形
22、在按位移法求解有限元法中,为什么说应力解的精度低于位移解的精度?
答:实际结构本来是具有无限个自由度,当用有限元求解时,结构被离散为有限个单元的集合,便只有有限个自由度了,限制了结构变形能力,从而导致结构的刚度增大、计算的位移减少,所以有限元求得的位移近似解小于精确解。
23、何为单元的协调性和完备性条件?为什么要满足这些条件?平面问题三节点三角
形单元是如何满足这些条件?矩形四节点单元是否满足?
答:完备性准则:如果在能量泛函中所出现的位移函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元函数至少是m阶的完全多项式。
24、何为协调单元?何为非协调单元?为什么有时非协调单元的计算精度还高于协调
单元?
答:协调性准则:如果在能力泛函中的位移函数出现最高阶导数是m阶,则位移函数
在单元边界上必须具有m-1阶的连续导数。
网格划分不一样
25、何为常应变单元?其位移、应变、应力在单元内、单元边界上有何特性?
答:常应变单元:单元的应变分量均为常量。
位移函数在单元内部线性函数,内部连续。
公共边界处位移协调。
单元的应力应变为常量,在相邻单元边界处,应变应力不连续,有突变。
26、假设平面三节点三角形单元的的位移模式为:
U=a1x2+a2xy+a3y2
V=a4x2+a5xy+a6y2
试计算该单元的形函数矩阵、单元刚度矩阵,并讨论该单元的特性。
答:
27、平面矩形单元的位移、应力在单元内、单元边界上有何特性?试说明矩形单元刚度
矩阵的计算与坐标原点位置无关。
答:常数项和线性项的系数反映了单元的刚体位移和常应变,满足收敛性的必要条件;
在单元边界上,由于u,v分别仅为x或y的线性函数,则这样的单元的位移函数是双线性函数,这说明单元边界上的两点能唯一确定变形后的边界,而对于相邻的单元公共边界,它们具有公共节点,则不论按哪个单元确定公共边界上的位移,都能保证公共边界上具有相同的位移,即单元边界处位移具有连续性,满足协调性要求。
28、何谓面积坐标?其特点是什么?
答:Li=Ai/A;Lj=Aj/A;Lm=Am/A特点:只有两个坐标是独立的:Ai+Aj+Am=1
29、试分析以下几种平面单元的位移在单元公共边界上的连续性:1)常应变三角形单
元;2)四节点矩形单元;3)六节点三角形单元;4)四节点直线边界四边形等参单元;
5)八节点曲线边界四边形等参单元。
答:常应变三角形单元:形函数只与节点坐标有关;单元应变分量均为常量;
收敛性:位移函数含单元常量应变;反应单元刚体位移;单元内部位移连续;相邻公共边界连续协调。
四节点矩形单元:位移函数满足收敛性条件,为协调单元;较常应变单元有更高的计算精度。
六节点三角形单元:比常应变三角形单元精度高
30、非节点载荷等效的基本原则是什么?
答:能量等效原则和圣维南原理。
31、试计算三节点三角形边界上不同线性分布载荷的等效节点载荷。
(参考教材P58面)
答:1.均质材料单元所受体力等效,只需将单元外载荷均匀等分至各个节点即可
2.边界受均匀分布力等效,只需将单元边界上的分布载荷之和平均分配至受力的连个节点
3.边界受三角形分布面力等效,总力ql/2,分布力ql/6;ql/3
4.边界受梯形分布面力的等效,叠加原理,
32、何谓等参单元?等参单元具有哪些特点?使用等参单元应注意什么?在等参单元
计算中,数值积分阶次是否越高越好呢?为什么?
答:定义:以规则形状单元的位移函数相同阶次函数为单元几何边界的变换函数,通过坐标变换所获得的单元。
特点:单元几何边界的变换函数与规则单元位移函数具有相同的节点参数。
注意:单元为凸
不是,阶次提高,单元自由度相应增加,计算更加复杂,积分更困难。
33、平面三角形单元能否看成等参数单元,如能,其母元(标准元)为何?按等参单
元定义进行解释。
答:能;直角等腰三角形;以三角形单元的位移函数相同阶次函数为单元几何边界的变换函数,通过坐标变换所获得的单元。
34、杆梁单元如何区分?各有何特点?应用时如何选择?
答:杆:承受轴力和扭矩的杆件;梁:承受横向力和弯矩的杆件。
杆:节点数2,节点自由度1;梁:节点数2,节点自由度2。
根据受力情况进行选择。