第三讲 有限元分析过程及例题讲解
- 格式:pdf
- 大小:239.58 KB
- 文档页数:42
有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。
本文将以一个实例来介绍有限元分析的基本过程和步骤。
实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。
假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。
我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。
有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。
常用的网格划分方法有三角形划分、四边形单元划分等。
根据具体问题的要求和复杂度,选择合适的划分方法。
单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。
在弯曲问题中,常见的单元模型有梁单元、壳单元等。
在本实例中,我们选择梁单元作为杆件的单元模型。
对于梁单元,我们需要定义每个节点的位移和约束条件。
根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。
材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。
对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。
加载条件可以包括集中力、均布力、弯矩等。
在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。
单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。
常见的方程模型有刚度矩阵方法、位移法等。
根据所选的单元模型,选择合适的方程模型进行计算。
通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。
将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。
结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。
通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。
有限元分析过程有限元分析过程可以分为以下三个阶段:1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。
3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。
首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。
原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据: 包括每个节点的编号、坐标值等;2.单元数据: a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1.分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。
有限元分析原理与步骤
有限元分析是一种数值计算方法,用于解决工程结构的力学问题。
它将任意复杂的结构分割成为若干个简单的子结构,通过数学模型和计算机软件进行力学分析。
有限元分析的步骤如下:
1. 建立几何模型:根据实际结构的几何形状,使用CAD软件
或者手工绘图等方式建立三维或二维模型。
2. 网格划分:将结构模型划分成若干个小单元,如三角形、四边形或六边形等,这些小单元构成了有限元网格。
3. 选择适当的元素类型:根据结构的特性选择合适的元素类型,如杆件元、梁单元、板单元等。
4. 建立整体刚度矩阵:根据每个小单元的几何形状和材料性质,计算每个小单元的刚度矩阵,将其组装成整个结构的刚度矩阵。
5. 施加边界条件:确定结构的边界条件,如固定支座、约束等。
6. 施加荷载:施加力、压力、温度等荷载条件。
7. 求解方程:通过求解结构的刚度方程,得到结构的位移、应力、应变等结果。
8. 后处理结果:根据求解得到的结果,进行结果的可视化及分
析。
通过以上步骤,有限元分析可以提供结构的力学性能分析,如应力、应变、变形等,为工程设计和优化提供参考依据。