胡海岩机械振动基础课后习题解答第1章习题
- 格式:ppt
- 大小:844.55 KB
- 文档页数:25
机械振动课后习题答案机械振动是力学中的一个重要分支,研究物体在受到外力作用后的振动特性。
在学习机械振动的过程中,课后习题是巩固知识、提高能力的重要途径。
本文将为大家提供一些机械振动课后习题的答案,希望能够帮助大家更好地理解和掌握这一知识。
1. 一个质量为m的弹簧振子在无阻尼情况下振动,其振动方程为mx'' + kx = 0,其中x为振子的位移,k为弹簧的劲度系数。
试求振动的周期。
解答:根据振动方程可知,振子的振动是简谐振动,其周期T与振子的质量m和弹簧的劲度系数k有关。
根据简谐振动的周期公式T = 2π√(m/k),可得振动的周期为T = 2π√(m/k)。
2. 一个质量为m的弹簧振子在受到外力F(t)的作用下振动,其振动方程为mx''+ kx = F(t),其中F(t) = F0cos(ωt)。
试求振动的解析解。
解答:根据振动方程可知,振子的振动是受迫振动,其解析解可以通过求解齐次方程和非齐次方程得到。
首先求解齐次方程mx'' + kx = 0的解xh(t),得到振子在无外力作用下的自由振动解。
然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。
将特解xp(t)代入非齐次方程,求解得到A和φ的值。
最后,振动的解析解为x(t) = xh(t) + xp(t)。
3. 一个质量为m的弹簧振子在受到阻尼力和外力的作用下振动,其振动方程为mx'' + bx' + kx = F(t),其中b为阻尼系数。
试求振动的稳定解。
解答:根据振动方程可知,振子的振动是受到阻尼力和外力的作用,其稳定解可以通过求解齐次方程和非齐次方程得到。
首先求解齐次方程mx'' + bx' + kx = 0的解xh(t),得到振子在无外力和阻尼作用下的自由振动解。
然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。
《机械振动噪声学》习题集1-1 阐明下列概念,必要时可用插图。
(a) 振动;(b) 周期振动和周期;(c) 简谐振动。
振幅、频率和相位角。
1-2 一简谐运动,振幅为0.20 cm,周期为0.15 s,求最大的速度和加速度。
1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。
1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、周期和最大加速度。
1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。
即:A cos ωn t +B cos (ωn t + φ) =C cos (ωn t + φ' ),并讨论φ=0、π/2 和π三种特例。
1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大?1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。
其中ε << ω。
如发生拍的现象,求其振幅和拍频。
1-8 将下列复数写成指数A e i θ形式:(a) 1 + i3(b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i )2(f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8]2-1 钢结构桌子的周期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。
已知周期的变化∆τ=0.1 s。
求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。
2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。
2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O用刚度为k的弹簧相连,求系统的振动微分方程。
图2-1 图2-2 图2-32-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分方程。
胡海岩主编---机械振动基础课后习题解答_第2章习题第2章习题含答案习题2-1 定常力作用下的单自由度系统1. 一个单自由度系统的质量m=2kg,刚度k=1000N/m,阻尼系数c=10N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(1000/2) ≈ 22.36 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 10/(2√(2×1000)) ≈ 0.158振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
2. 一个单自由度系统的质量m=5kg,刚度k=500N/m,阻尼系数c=20N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(500/5) = 10 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 20/(2√(5×500)) ≈ 0.141振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
习题2-2 强迫振动的幅值和相位1. 一个单自由度系统的质量m=3kg,刚度k=2000N/m,阻尼系数c=30N·s/m。
给定的外力F(t) = 10sin(5t)N。
试求该系统在稳态时的振动幅值和相位。
解:首先求解系统的强迫响应,即对外力F(t)进行拉氏变换:F(s) = L{F(t)} = L{10sin(5t)} = 10L{sin(5t)} = 10×(5/(s^2+25))根据公式,系统的强迫响应可计算为:X(s) = F(s)/((s^2+ωn^2)+2ξωns)其中,ωn=√(k/m)为系统的固有频率,ξ=c/(2√(mk))为系统的阻尼比。
机械振动一章习题解答习题12—1 把单摆摆球从平衡位置向位移正方向拉开,使单摆与竖直方向成一微小角度θ,然后由静止位置放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ ] (A) θ。
(B) π。
(C) 0。
(D) 2π。
解:单摆的振动满足角谐振动方程,这里所给的θ是初始角位移,也是角振幅,而非初位相。
由旋转矢量法容易判断该单摆振动的初位相为“0”,因此,应当选择答案(C) 。
习题12—2 轻弹簧上端固定,下端系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了x ∆,若将m 2移去,并令其振动,则振动周期为:[ ] (A) gm xm T 122∆=π。
(B) g m x m T 212∆=π。
(C) g m m x m T )(2211+∆=π。
(D) gm m xm T )(2212+∆=π。
解:谐振子的振动周期只与其本身的弹性与惯性有关,即与其倔强系数k 和质量m 有关。
其倔强系数k 可由题设条件求出g m x k 2=∆ 所以xgm k ∆=2 该振子的质量为m 1,故其振动周期为 gm xm k m T 21122∆==ππ应当选择答案(B)。
习题12—3 两倔强系数分别为k 1和k 2的轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧谐振子,则该系统的振动周期为:[ ] (A) 21212)(2k k k k m T +=π。
(B) 212k k mT +=π。
题解12―1 图(C) 2121)(2k k k k m T +=π。
(D) 2122k k mT +=π。
解:两弹簧串联的等效倔强系数为2121k k k k k +=,因此,该系统的振动周期为2121)(22k k k k m k mT +==ππ所以应当选择答案(C)。
习题12—4 一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为:[ ](A) T /4。