流体力学例题解答
- 格式:ppt
- 大小:850.50 KB
- 文档页数:23
2-1 两高度差z =20cm 的水管,与一倒U 形管压差计相连,压差计内的水面高差h =10cm ,试求下列两种情况A 、B 两点的压力差:(1)γ1为空气;(2)γ1为重度9kN/m 3的油。
已已知知::z=20cm ,h=10cm 。
解析:设倒U 型管上部两流体分界点D 处所在的水平面上的压力为p ',BC 间的垂直距离为l ,则有)(A z l h p p +++'=水γ;l h p p 水γγ++'=1B 以上两式相减,得 h z h p p 1B A )(γγ-+=-水(1) 当γ1为空气时,气柱的重量可以忽略不计,则A 、B 两点的压力差为 Pa 2943)2.01.0(9810)(B A =+⨯=+=-z h p p 水γ (2) 当γ1为重度9kN/m 3的油时,A 、B 两点的压力差为Pa 20431.09000)2.01.0(9810)(1B A =⨯-+⨯=-+=-h z h p p γγ水2-2 U 形水银压差计中,已知h 1=0.3m ,h 2=0.2m ,h 3=0.25m 。
A 点的相对压力为p A =24.5kPa ,酒精的比重为0.8,试求B 点空气的相对压力。
已已知知::h 1=0.3m ,h 2=0.2m ,h 3=0.25m 。
p A =24.5kPa ,S=0.8。
解析:因为左右两侧的U 型管,以及中部的倒U 型管中1、2、3点所在的水平面均为等压面,依据题意列静力学方程,得3B 3h p p 汞γ+=, 232h p p 酒精γ-=, 221h p p 汞γ+=, 121A )(p h h p =++水γ 将以上各式整理后,可得到B 点空气的相对压力为Pa10906.2)]25.02.0(6.132.08.0)2.03.0[(9810105.24)()(4332221A B ⨯-=+⨯-⨯++⨯+⨯=+-+++=h h h h h p p 汞酒精水γγγ 以mH 2O 表示为 O mH 96.2981010906.224B-=⨯-==水γp h2-3 如图所示,一洒水车等加速度a=0.98m/s2向前平驶,求水车内自由表面与水平面间的夹角a ;若B点在运动前位于水面下深为h=1.0m ,距z 轴为xB= -1.5m ,求洒水车加速运动后该点的静水压强。
第二章例1:用复式水银压差计测量密封容器内水面的相对压强,如下列图。
:水面高程z 0=3m,压差计各水银面的高程分别为z 1=, z 2=, z 3=m, z 4=m, 水银密度 3/13600m kg ρ=',水的密度3/1000m kg ρ= 。
试求水面的相对压强p 0。
解:ap z z γz z γz z γp =-----+)(')(')(3412100)()('1034120z z γz z z z γp ---+-=∴例2:用如下列图的倾斜微压计测量两条同高程水管的压差。
该微压计是一个水平倾角为θ的Π形管。
测压计两侧斜液柱读数的差值为L=30mm ,倾角θ=30∘,试求压强差p 1 – p 2 。
解: 224131)()(p z z γz z γp =-+-- θL γz z γp p sin )(4321=-=-∴例3:用复式压差计测量两条气体管道的压差〔如下列图〕。
两个U 形管的工作液体为水银,密度为ρ2 ,其连接收充以酒精,密度为ρ1 。
如果水银面的高度读数为z 1 、 z 2 、 z 3、z 4 ,试求压强差p A – p B 。
解: 点1 的压强 :p A )(21222z z γp p A --=的压强:点)()(33211223z z γz z γp p A -+--=的压强:点 B A p z z γz z γz z γp p =---+--=)()()(3423211224 )()(32134122z z γz z z z γp p B A ---+-=-∴例4:用离心铸造机铸造车轮。
求A-A 面上的液体总压力。
解: C gz r p +⎪⎭⎫ ⎝⎛-=2221ωρ a p gz r p +⎪⎭⎫ ⎝⎛-=∴2221ωρ在界面A-A 上:Z = - ha p gh r p +⎪⎭⎫⎝⎛+=∴2221ωρ⎪⎭⎫⎝⎛+=-=∴⎰2420218122)(ghR R rdr p p F a Rωπρπ例5:在一直径d= 300mm ,而高度H=500mm 的园柱形容器中注水至高度h 1 = 300mm ,使容器绕垂直轴作等角速度旋转。
流体⼒学习题解答第⼀章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分⼦;(b )流体内的固体颗粒;(c )⼏何的点;(d )⼏何尺⼨同流动空间相⽐是极⼩量,⼜含有⼤量分⼦的微元体。
1.2 作⽤于流体的质量⼒包括:(c )(a )压⼒;(b )摩擦阻⼒;(c )重⼒;(d )表⾯张⼒。
1.3 单位质量⼒的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与⽜顿内摩擦定律直接有关的因素是:(b )(a )剪应⼒和压强;(b )剪应⼒和剪应变率;(c )剪应⼒和剪应变;(d )剪应⼒和流速。
1.5 ⽔的动⼒黏度µ随温度的升⾼:(b )(a )增⼤;(b )减⼩;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。
1.7 ⽆黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )⽆黏性;(d )符合RT p=ρ。
1.8 当⽔的压强增加1个⼤⽓压时,⽔的密度增⼤约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d)1/2000。
1.9 ⽔的密度为10003kg/m ,2L ⽔的质量和重量是多少?解:10000.0022m V ρ==?=(kg )29.80719.614G mg ==?=(N )答:2L ⽔的质量是2kg ,重量是。
体积为3m 的油料,重量为4410N ,试求该油料的密度是多少?解:44109.807899.3580.5m G g V V ρ====(kg/m 3)答:该油料的密度是m 3。
1.11 某液体的动⼒黏度为Pa s ?,其密度为8503/kg m ,试求其运动黏度。
解:60.005 5.88210850µνρ-===?(m 2/s )答:其运动黏度为65.88210-?m 2/s 。
C (c) 盛有不同种类溶液的连通器DC D水油BB (b) 连通器被隔断AA(a) 连通容器1. 等压面是水平面的条件是什么?2. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面?哪个不是等压面?为什么?3 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。
试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。
4. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。
求A 、B 两点的静水压强。
速?答:与流线正交的断面叫过流断面。
过流断面上点流速的平均值为断面平均流速。
引入断面平均流速的概念是为了在工程应用中简化计算。
8.如图所示,水流通过由两段等截面及一段变截面组成的管道,试问:(1)当阀门开度一定,上游水位保持不变,各段管中,是恒定流还是非恒定流?是均匀流还是非均匀流?(2)当阀门开度一定,上游水位随时间下降,这时管中是恒定流还是非恒定流?(3)恒定流情况下,当判别第II 段管中是渐变流还是急变流时,与该段管长有无关系?9 水流从水箱经管径分别为cmd cm d cm d 5.2,5,10321===的管道流出,出口流速sm V /13=,如图所示。
求流量及其它管道的断面平均流速。
解:应用连续性方程(1)流量:==33A v Q 4.91s l /103-⨯(2) 断面平均流速s m v /0625.01=,s m v /25.02= 。
10如图铅直放置的有压管道,已知d 1=200mm ,d 2=100mm ,断面1-1处的流速v 1=1m/s 。
求(1)输水流量Q ;(2)断面2-2处的平均流速v 2;(3)若此管水平放置,输水流量Q 及断面2-2处的速度v 2是否发生变化?(4)图a 中若水自下而上流动,Q 及v 2是否会发生变化?解:应用连续性方程 (1)4.31=Q s l / (2)s m v /42= (3)不变。
第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
流体力学答案解析题目:一不可压缩流体在水平管道内作稳定流动,管道截面由圆形逐渐扩大为方形,入口直径为d,出口边长为a。
已知入口流速为v1,入口处的压力为p1,求出口处的流速v2和压力p2。
解析:首先,根据连续性方程,流体在管道内的流速和截面积之间存在以下关系:A1v1 = A2v2其中,A1和A2分别为入口和出口的截面积。
由于管道截面由圆形变为方形,我们可以分别计算两个截面的面积。
入口截面积A1 = π(d/2)^2出口截面积 A2 = a^2将上述面积代入连续性方程,得到:π(d/2)^2 v1 = a^2 v2解得:v2 = (π(d/2)^2 v1) / a^2接下来,我们应用伯努利方程,该方程描述了流体在流动过程中速度、压力和高度之间的关系。
在水平管道中,高度不变,因此伯努利方程简化为:p1/ρ + v1^2/2 = p2/ρ + v2^2/2其中,ρ为流体的密度。
将v2的表达式代入伯努利方程,得到:p1/ρ + v1^2/2 = p2/ρ + (π(d/2)^2 v1)^2 /(2a^2ρ)化简得到:p2 = p1 + ρ(v1^2 - v2^2)/2将v2的表达式代入上式,得到:p2 = p1 + ρ(v1^2 - (π(d/2)^2 v1)^2 /(2a^2ρ))/2化简得到:p2 = p1 + (ρ/2)(v1^2 - (π(d/2)^4 v1^2) / (2a^2))进一步化简得到:p2 = p1 + (ρ/2)(v1^2(1 - (π(d/2)^4) / (2a^2)))至此,我们已经求得了出口处的流速v2和压力p2。
以下是对解题过程的详细解析:1. 连续性方程的应用:连续性方程是流体力学中的一个基本原理,描述了流体在流动过程中质量守恒的关系。
在本题中,由于流体是不可压缩的,因此在流动过程中质量守恒。
根据连续性方程,我们可以求出出口处的流速v2。
2. 伯努利方程的应用:伯努利方程是流体力学中的一个重要方程,描述了流体在流动过程中速度、压力和高度之间的关系。