流体力学例题解答.
- 格式:ppt
- 大小:850.50 KB
- 文档页数:23
第一章习题简答1-3 为防止水温升高时,体积膨胀将水管胀裂,通常在水暖系统顶部设有膨胀水箱,若系统内水的总体积为10m 3,加温前后温差为50°С,在其温度范围内水的体积膨胀系数αv=0.0005/℃。
求膨胀水箱的最小容积V min 。
题1-3图解:由液体的热胀系数公式dTdVV 1V =α , 据题意, αv =0.0005/℃,V=10m 3,dT=50°С 故膨胀水箱的最小容积325.050100005.0m VdT dV V =⨯⨯==α1-5 如图,在相距δ=40mm 的两平行平板间充满动力粘度μ=0.7Pa·s 的液体,液体中有一长为a =60mm 的薄平板以u =15m/s 的速度水平向右移动。
假定平板运动引起液体流动的速度分布是线性分布。
当h =10mm 时,求薄平板单位宽度上受到的阻力。
解:平板受到上下两侧黏滞切力T 1和T 2作用,由dyduAT μ=可得 12U 1515T T T AA 0.70.06840.040.010.01U N h h μμδ⎛⎫=+=+=⨯⨯+= ⎪--⎝⎭(方向与u 相反)1-7 温度为20°С的空气,在直径为2.5cm 的管中流动,距管壁上1mm 处的空气速度为3cm/s 。
求作用于单位长度管壁上的黏滞切力为多少?解:温度为20°С的空气的黏度为18.3×10-6 Pa·s 如图建立坐标系,且设u=ay 2+c 由题意可得方程组⎪⎩⎪⎨⎧+-=+=ca ca 22)001.00125.0(03.00125.00 解得a = -1250,c =0.195 则 u=-1250y 2+0.195则y dy y d dy du 2500)195.01250(2-=+-= Pa dyduAT 561048.4)0125.02500(1025.0103.18--⨯-=⨯-⨯⨯⨯⨯⨯==∴πμ (与课本后的答案不一样。
第二章例1:用复式水银压差计测量密封容器内水面的相对压强,如下列图。
:水面高程z 0=3m,压差计各水银面的高程分别为z 1=, z 2=, z 3=m, z 4=m, 水银密度 3/13600m kg ρ=',水的密度3/1000m kg ρ= 。
试求水面的相对压强p 0。
解:ap z z γz z γz z γp =-----+)(')(')(3412100)()('1034120z z γz z z z γp ---+-=∴例2:用如下列图的倾斜微压计测量两条同高程水管的压差。
该微压计是一个水平倾角为θ的Π形管。
测压计两侧斜液柱读数的差值为L=30mm ,倾角θ=30∘,试求压强差p 1 – p 2 。
解: 224131)()(p z z γz z γp =-+-- θL γz z γp p sin )(4321=-=-∴例3:用复式压差计测量两条气体管道的压差〔如下列图〕。
两个U 形管的工作液体为水银,密度为ρ2 ,其连接收充以酒精,密度为ρ1 。
如果水银面的高度读数为z 1 、 z 2 、 z 3、z 4 ,试求压强差p A – p B 。
解: 点1 的压强 :p A )(21222z z γp p A --=的压强:点)()(33211223z z γz z γp p A -+--=的压强:点 B A p z z γz z γz z γp p =---+--=)()()(3423211224 )()(32134122z z γz z z z γp p B A ---+-=-∴例4:用离心铸造机铸造车轮。
求A-A 面上的液体总压力。
解: C gz r p +⎪⎭⎫ ⎝⎛-=2221ωρ a p gz r p +⎪⎭⎫ ⎝⎛-=∴2221ωρ在界面A-A 上:Z = - ha p gh r p +⎪⎭⎫⎝⎛+=∴2221ωρ⎪⎭⎫⎝⎛+=-=∴⎰2420218122)(ghR R rdr p p F a Rωπρπ例5:在一直径d= 300mm ,而高度H=500mm 的园柱形容器中注水至高度h 1 = 300mm ,使容器绕垂直轴作等角速度旋转。
《流体力学》试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项不属于流体力学的三大基本方程?A. 连续性方程B. 动量方程C. 能量方程D. 牛顿第二定律答案:D2. 在不可压缩流体中,流速和压力之间的关系可以用下列哪个方程表示?A. 伯努利方程B. 欧拉方程C. 纳维-斯托克斯方程D. 帕斯卡方程答案:A3. 下列哪个现象表明流体具有粘性?A. 流体流动时产生涡旋B. 流体流动时产生湍流C. 流体流动时产生层流D. 流体流动时产生摩擦力答案:D4. 在下列哪种情况下,流体的动能和势能相等?A. 静止流体B. 均匀流动的流体C. 垂直下落的流体D. 水平流动的流体答案:C5. 下列哪个因素不会影响流体的临界雷诺数?A. 流体的粘度B. 流体的密度C. 流体的流速D. 流体的温度答案:D二、填空题(每题5分,共25分)6. 流体力学是研究______在力的作用下运动规律的科学。
答案:流体7. 不可压缩流体的连续性方程可以表示为______。
答案:ρV = 常数8. 在恒定流场中,流体质点的速度矢量对时间的导数称为______。
答案:加速度矢量9. 伯努利方程是______方程在不可压缩流体中的应用。
答案:能量10. 流体的湍流流动特点为______、______和______。
答案:随机性、三维性、非线性三、计算题(每题25分,共50分)11. 一个直径为10cm的管道,流体的流速为2m/s,流体的密度为800kg/m³,求管道中流体的流量。
解:流量Q = ρvA其中,ρ为流体密度,v为流速,A为管道截面积。
A = π(d/2)² = π(0.05)² = 0.00785m²Q = 800kg/m³ 2m/s 0.00785m² = 12.44 kg/s答案:管道中流体的流量为12.44 kg/s。
12. 一个直径为20cm的圆柱形储罐,储罐内充满水,水面高度为1m。
典 型 例 题 1 基本概念及方程【1-1】底面积A =0.2m ×0.2m 的水容器,水面上有一块无重密封盖板,板上面放置一个重量为G 1=3000N 的铁块,测得水深h =0.5m ,如图所示。
如果将铁块加重为G 2=8000N ,试求盖板下降的高度Δh 。
【解】:利用体积弹性系数计算体积压缩率:E p v v //∆=∆ )/(00B p p np E +=p 为绝对压强。
当地大气压未知,用标准大气压Pa p 501001325.1⨯=代替。
Pa A G p p 51011076325.1/⨯=+=Pa A G p p 52021001325.3/⨯=+=因 01/p p 和 02/p p 不是很大,可选用其中任何一个,例如,选用02/p p 来计算体积弹性系数:Pa B p p np E 9020101299.2)/(⨯=+=在工程实际中,当压强不太高时,可取 Pa E 9101.2⨯=512104827.6/)(///-⨯=-=∆=∆=∆E p p E p v v h hm h h 55102413.310604827--⨯=⨯=∆【2-2】用如图所示的气压式液面计测量封闭油箱中液面高程h 。
打开阀门1,调整压缩空气的压强,使气泡开始在油箱中逸出,记下U 形水银压差计的读数Δh 1=150mm ,然后关闭阀门1,打开阀门2,同样操作,测得Δh 2=210mm 。
已知a =1m ,求深度h 及油的密度ρ。
【解】水银密度记为ρ1。
打开阀门1时,设压缩空气压强为p 1,考虑水银压差计两边液面的压差,以及油箱液面和排气口的压差,有同样,打开阀门2时,两式相减并化简得代入已知数据,得所以有2 基本概念及参数【1-3】测压管用玻璃管制成。
水的表面张力系数σ=0.0728N/m ,接触角θ=8º,如果要求毛细水柱高度不超过5mm ,玻璃管的内径应为多少? 【解】由于因此【1-4】高速水流的压强很低,水容易汽化成气泡,对水工建筑物产生气蚀。
第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
流体力学答案解析题目:一不可压缩流体在水平管道内作稳定流动,管道截面由圆形逐渐扩大为方形,入口直径为d,出口边长为a。
已知入口流速为v1,入口处的压力为p1,求出口处的流速v2和压力p2。
解析:首先,根据连续性方程,流体在管道内的流速和截面积之间存在以下关系:A1v1 = A2v2其中,A1和A2分别为入口和出口的截面积。
由于管道截面由圆形变为方形,我们可以分别计算两个截面的面积。
入口截面积A1 = π(d/2)^2出口截面积 A2 = a^2将上述面积代入连续性方程,得到:π(d/2)^2 v1 = a^2 v2解得:v2 = (π(d/2)^2 v1) / a^2接下来,我们应用伯努利方程,该方程描述了流体在流动过程中速度、压力和高度之间的关系。
在水平管道中,高度不变,因此伯努利方程简化为:p1/ρ + v1^2/2 = p2/ρ + v2^2/2其中,ρ为流体的密度。
将v2的表达式代入伯努利方程,得到:p1/ρ + v1^2/2 = p2/ρ + (π(d/2)^2 v1)^2 /(2a^2ρ)化简得到:p2 = p1 + ρ(v1^2 - v2^2)/2将v2的表达式代入上式,得到:p2 = p1 + ρ(v1^2 - (π(d/2)^2 v1)^2 /(2a^2ρ))/2化简得到:p2 = p1 + (ρ/2)(v1^2 - (π(d/2)^4 v1^2) / (2a^2))进一步化简得到:p2 = p1 + (ρ/2)(v1^2(1 - (π(d/2)^4) / (2a^2)))至此,我们已经求得了出口处的流速v2和压力p2。
以下是对解题过程的详细解析:1. 连续性方程的应用:连续性方程是流体力学中的一个基本原理,描述了流体在流动过程中质量守恒的关系。
在本题中,由于流体是不可压缩的,因此在流动过程中质量守恒。
根据连续性方程,我们可以求出出口处的流速v2。
2. 伯努利方程的应用:伯努利方程是流体力学中的一个重要方程,描述了流体在流动过程中速度、压力和高度之间的关系。