第八章 热力学第一定律
- 格式:ppt
- 大小:2.53 MB
- 文档页数:5
第八章热力学定律本章学习提要1.理解热力学第一定律,知道热力学第一定律反映了系统内能的变化和系统通过做功及传热过程与外界交换的能量之间的关系。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
2.知道热力学第二定律的表述。
知道熵是描写系统无序程度的物理量。
热力学的两个基本定律是能量守恒定律和热力学第一定律。
热力学第二定律表述了热力学过程的不可逆性,即孤立系统自发地朝着热力学平衡方向——最大熵状态——演化。
这两个定律都是通过对自然界和生活、生产实际的观察、思考、分析、实验而得到的,这也是我们学习这两条基本定律应采取的方法。
人类的进步是与对蕴藏在物质内部能量的认识和利用密切相关的。
热力学定律为更好地设计和制造热机、更好地开发和利用能源指明了方向。
随着生产和科学实践的发展,人们逐步领悟到有效利用能源的意义,懂得遵循科学规律的重要性,从而更自觉地抵制违背科学规律的行为。
A 热力学第一定律一、学习要求理解热力学第一定律。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
我们应聚焦于热力学第一定律的构建过程,理解它既包括内能的转换,也遵循能量守恒定律。
这一定律是通过对自然界以及生活和生产实际的深入观察、思考、分析和实验而得出的自然界中最基本、最普遍的定律之一。
通过学习热力学第一定律,我们能体会到它在科学史上的重要地位,并感受到它对技术进步和社会发展的巨大影响。
二、要点辨析1.热力学第一定律的含义和表式热力学第一定律涉及到能量的转化和能量守恒两个方面。
内能是物质内部大量微观粒子无序热运动所具有的能量形式。
一个物质系统的内能变化是由它与外部环境进行能量交换的结果,而这种能量交换可以通过两种方式实现:做功和热传递。
热力学第一定律揭示了系统内能变化(ΔU)与系统与外部环境交换的功(W)和热量(Q)之间的定量关系。
ΔU=Q+W。
2.应用热力学第一定律解题时,要注意各物理量正、负号的含义当热力学第一定律表示为ΔU=Q+W时,ΔU为正值,表示系统内能增加;负值表示系统内能减小。
⼤学物理答案8.第⼋章第⼋章热⼒学第⼀和第⼆定律思考题8-13 强光照射物体,可以使物体的温度上升,导致物体内能的改变。
试问这⼀过程属于热量传递还是⼴义的做功。
8-14 储⽓瓶中的⼆氧化碳急速喷出,瓶⼝处会出现固态的⼆氧化碳----⼲冰。
为什么?8-15 ⽇常⽣活中有“摩擦⽣热”的提法,从物理上讲正确的表述是什么?8-16 有⼈说:只有温度改变时,才有吸热或放热现象。
这种说法正确吗?试举例说明之。
8-17 微元dW、dQ和dU与具体微元过程有关吗?微元dQT呢?8-18 参考§8.4关于开尔⽂表述与克劳修斯表述等价性的证明,试⽤反证法证明卡诺循环与克劳修斯表述的等价性。
8-19 等温膨胀过程的熵变⼤于零,有⼈说这表明此过程是不可逆的过程。
这种说法正确吗?8-20 基于克劳修斯表述证明两条绝热线不可能相交。
8-21 定义状态量焓H=U+pV。
对准静态且只有压强做功的过程,证明dH=Tds+Vdp,并说明该量在等压过程中的物理意义。
8-22报载,⼀⼩孩在夏季午睡时,由于长时间压着⼀个⼀次性打⽕机,导致打⽕机破裂,其⽪肤轻度冻伤。
试思考其中的物理原因。
8-23 ⼀般来说,物体吸热(放热)温度上升(下降),其热容量为正值。
但是对于⾃引⼒系统,热容量可能取负值。
试以第七章例7.3为例说明之。
习题8-1 某⼀定量氧⽓原处于压强P1=120atm 、体积V1=1.0L 、温度t1=27摄⽒度的状态,经(1)绝热膨胀,(2)等温膨胀,(3)⾃由膨胀,体积增⾄V2=5.0L 。
求这三个过程中⽓体对外做功及末状态压⼒值。
解:112120, 1.0,300 5.0p atm V l T K V l====氧⽓的775225p vC R R C γ=== (1)绝热膨胀:111611122212() 1.2810a V p V p V p p P V ---===? 1412[1()] 1.44101V pVW J V γγ-=-=?- (2)等温过程:111611122212() 1.2810a V p V p V p p P V ---=∴==? 1412[1()] 1.44101V pVW J V γγ-=-=?- (3)⾃由膨胀,T 不变 622.4310a p P =? W=08-2 将418.6J 的热量传给标准态下的5.00×10-3kg 的氢⽓[Cv,m=20.331J/(mol.k)] (1) 若体积不变,这热量变为什么?氢⽓的温度变为多少? (2) 若温度不变,这热量变为什么?氢⽓的压强及体积变为多少? (3) 若压强不变,这热量变为什么?氢⽓的温度和体积变为多少?解:(1)V 不变5131416.8, 1.01310,273.15 510Q W U Q J P Pa T K M Kg-?=+?∴?==?==?50, 8.05522M QW Q U R T T KM R µµ?=?=?=∴?== 273.158.05281.2()T K ∴=+=(2)T 不变12211123111111 0, 1.0775.610QMRT V VMU Q W RT Ln e V V MRT MPV RT V m P µµµµ-===∴===∴==?223112225.610 1.0776.0310() 9.4110 ( )PV V m P Pa V --∴=??=?==? (3)P 不变22321212221211111 , 5.85(),72273.15 5.7279.0()5.7210P MQQ C T T K M R T K V V T MRTT MRT V V m T T T PT P µµµµ??===∴=+======?1125()121.6 299.02M W P V V J U R T J µ=-=?== 计算结果Q U W ?≠?+是因为Cp 和Cv 近似取值,若取实验值20.331,28.646v p C C ==可得:25.845,279.0,297.1T K T K U J ?==?=8-3有20.0L 的氢⽓,温度为27摄⽒度,压强为P=1.25105pa 。
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =—p ΔV =-Δ(pV ),ΔU = Q —Δ(pV ) → ΔH = Q p 恒容+绝热(W '=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV )典型例题:3.11思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温:或或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等. C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:3。
18思考题第2,3,4题书2。
18、2.19三、 凝聚态物质的ΔU 和ΔH 只和温度有关或 典型例题:书2.15四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)U ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
101.325 kPa 及其对应温度下的相变可以查表。
ΔU = n C V , m d T T 2T 1∫ ΔH = n C p, md T T 2 T1∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = nC p, m d T T 2T 1∫ΔU ≈ ΔH = nC p, m (T 2-T 1)ΔH = Q p = n Δ H m αβ其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m计算。
第1章热力学第一定律1.1 重要概念1.状态函数与过程量这是两类完全不同的物理量。
状态函数是系统的性质,如温度(T),压力(p),体积(V),内能(U),焓(H)和定压热容(C V)等,而过程量是指功(W)和热(Q),它们是过程的属性。
状态函数与过程量主要区别如下:(1)状态函数决定于系统的状态,而过程量取决于过程。
所以状态函数用来描述系统状态,而过程量用于描述过程。
(2)当系统中发生变化时,状态函数的变化只取决于系统的初末状态,而与变化的具体方式(过程)无关。
因而在计算状态函数变化时,若给定过程不能或不易求得,可通过设计途径进行计算,与此相反,过程量则不可以设计途径进行计算,因为对于不同途径,它们的值可能不同。
过程量,即功和热是在系统和环境之间的两种能量传递方式,在系统内部不能讨论功和热。
可见在计算W和Q时,首先要明确系统是什么,其次要搞清过程的特点。
(3)若y代表某个状态函数,任意一个过程的状态函数变为∆Y,功和热为W和Q。
假设该过程在相反方向进行时上述各量分别为∆Y逆、W逆和Q逆,则必有∆ Y=一∆Y逆一般W ≠一W逆Q≠一Q逆2.等温过程环境温度恒定不变的情况下,系统初态和末态温度相同且等于环境温度的过程,即T l=T2=T环=常数所谓等温过程,是指上式中三个等号同时成立的过程。
有人认为等温过程是系统温度始终不变的过程,这是一种误解。
诚然,在某一过程中如果系统温度始终不变,则过程必是等温过程,因为该过程服从上式。
但这并非等温过程的全部,只不过是等温过程的一种特殊情况。
3.等压过程外压(即环境压力)恒定不变的情况下,系统初态和末态的压力相同且等于外压的过程,即p1=p2=p外=常数所谓等压过程,是指式中三个等号同时成立的过程。
有人把等压过程说成是系统压力始终不变的过程,这是一种不全面的理解,因为这只是等压过程的一种特殊情况。
在热力学中会遇到p1=p2的过程,称为初末态压力相等的过程,还会遇到p外=常数的过程,称为恒外压过程,但它们都不是等压过程。
热力学第一定律热力学第一定律,也被称为能量守恒定律,是热力学基本定律之一。
它阐述了能量在物理系统中的守恒原理,即能量不会被创造或消灭,只会在不同形式之间转换或传递。
该定律在许多领域都有广泛的应用,包括工程、物理、化学等。
1. 定律的表述热力学第一定律可从不同的角度进行表述,以下是几种常见的表述方式:1.1 内能变化根据热力学第一定律,一个封闭系统内能的变化等于系统所吸收的热量与系统所做的功的代数和。
数学表达式如下:ΔU = Q + W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统所做的功。
1.2 能量守恒根据能量守恒定律,能量既不能被创造也不能被摧毁,只会在不同形式之间传递或转换。
能量的总量在一个封闭系统中保持不变。
2. 系统内能的变化系统内能的变化是热力学第一定律的核心内容之一。
系统内能的变化是由系统吸收或释放的热量以及系统所做的功决定的。
2.1 系统吸收的热量系统吸收的热量指的是系统从外界获得的热能。
当一个热源与系统接触时,能量会以热量的形式从热源传递到系统中。
系统吸收的热量可以引起系统内能的增加。
2.2 系统所做的功系统所做的功指的是系统对外界做的能量转移。
当系统对外界施加力并移动时,能量会以功的形式从系统传递到外界。
系统所做的功可以引起系统内能的减少。
3. 热力学第一定律的应用3.1 工程应用热力学第一定律在工程领域有着广泛的应用。
例如,在能源系统的设计与优化中,需要根据系统的能量转换过程,计算系统的内能变化和热功效率等参数,以提高能源利用效率。
3.2 物理学应用在物理学研究中,热力学第一定律通常用于分析热力学过程中的能量转化。
例如,在热力学循环中,通过计算各个环节的能量转换情况,可以确定工作物质的热效率,从而评估系统的性能。
3.3 化学反应在化学反应中,热力学第一定律对于研究反应的能量变化和平衡状态具有重要意义。
通过计算反应过程中释放或吸收的热量,可以确定反应的放热性或吸热性,并预测反应的发生与否。
热力学第一定律 公式 解释 备注1V V U T T U U TV d d d ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=系统的热力学能U 可看做温度T 和体积V 的函数,可写作全微分。
热力学能是状态性质,故用U d 以表示它是全微分。
2(微分式)W Q U δδ+=d (积分式)W Q U +=∆ 系统的热力学能变化量U ∆等于系统与环境交换的热Q 和功W 之和。
热和功不是状态性质,故用Q δ和W δ而不是Q d 和W d 以表示它们不是全微分。
规定,系统得到热或得到功时Q 和W 为正,反之系统失去热或对外做功时Q 和W 为负。
3 (微分式)外V p W d -=δ 体积功等于气体膨胀或压缩时抵抗外压所做的功。
负号是因为规定系统对外做功时W 为负。
推导:气体抵抗外压外p 膨胀,使得截面积为A 的理想活塞移动了l d ,可以求出膨胀所做的功为dV p Adl p dl F W 外外外-=-=-=δ。
(向真空膨胀)0=W(恒外压膨胀)外V p W ∆-=(定温定压可逆相变)V p W ∆-= (理气等温可逆膨胀)⎪⎪⎭⎫⎝⎛-=12V V nRT W ln推导:向真空膨胀,0=外p 。
等温可逆膨胀时,内压p 恒比外压外p 大p d ,()⎰⎰--=-=2121d d d V V V V V p p V p W 外,忽略二阶小量V p d d ,并将理想气体方程V nRT p =带入得⎪⎪⎭⎫ ⎝⎛-=-=⎰1221d V V nRT V V nRTW VV ln 。
4 U Q V ∆=恒容过程的热等于热力学能变。
V Q 是状态函数。
推导:V p Q W Q U d d -=+=δδδ,定容条件下0d =V ,可得U Q V d =δ,积分后即为U Q V ∆=5H Q P ∆=恒压过程的热等于焓变。
p Q 也是状态函数。
推导:V p Q W Q U d d -=+=δδδ,定压条件下(21p p =)积分,可得()()H H H V p U V p U V p U Q p ∆=-=+-+=∆+∆=12111222,其中焓H 被定义为pV U H def+==。