1.含字母系数一元二次方程复习题
- 格式:doc
- 大小:71.50 KB
- 文档页数:2
一元二次方程专题讲练一、知识点归纳及题型:概念——解法——实际应用——根的判别式、根系关系——二次函数 (一)概念:)0(02≠=++a c bx ax 叫一元二次方程。
相关题型:1、判断一个方程是否是一元二次方程;2、求一个一元二次方程中相关字母的值。
例:○1、下列方程中,不是一元二次方程的是_________.[ ] A .2x 2+7=0 B .2x 2+23x +1=0 C .5x 2+x1+4=0 D .3x 2+(1+x ) 2+1=0 小结:判断一个方程是否是一元二次方程的条件是:○1是整式方程;○2未知数的指数为2;○3二次项系数不等于0,即a ≠0。
○2、若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是_________. 判断a 的取值范围需要把方程整理为一般形式后才进行解答。
(二)解法:1、 直接开平方法:方程有根的前提:A ≥02、 配方法:(适用所有方程,但方程易化成022=++C kx x 的形式)3、 公式法:02=++c bx ax 有根的前提⊿≥0,aac b b x 2422,1-±-=一元二次方程根02=++c bx ax 的判别式:⊿另外:⊿≥0时,方程有实数根;4、因式分解法:提公因式法、公式法(完全平方公式、平方差公式)、十字相乘法、5、换元法解方程解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,它可以化高次为低次、化分式为整式。
换元法体现了数学中的转化思想。
6、解含绝对值的方程。
相关题型:1、解方程;2、利用配方法求代数式的最值或证明恒为正(负);3、利用根的判别式判断根的几种情况或相关字母的取值范围;4、用换元法解方程。
5、解含绝对值的方程 例:1、请你选择最恰当的方法解下列一元二次方程ac b 42-=1、3x ² -1=02、x (2x +3)=5(2x +3)3、x ² - 3 x +2=04、2 x ² -5x+1=0小结:○1、形如(x-k )²=h 的方程可以用直接开平方法求解○2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式,因为这样能把方程的一个跟丢失了,要利用因式分解法求解。
《一元二次方程》单元复习题1.下列是一元二次方程的是( )A .x 2+3=0B .xy +3x -4=0C .2x -3+y =0 D. 1x+2x -6=0 2.若关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,则a 的值是( )A .2B .-2C .0D .不等于2的任意实数3.若关于x 的方程(a -1)x1+a 2=1是一元二次方程,则a 的值是________.4.若m 是方程2x 2-3x -1=0的一个根,则6m 2-9m +2017的值为________.5.用直接开平方法解下列方程:(1)(x +1)2-49=0; (2)4(x -2)2-36=0.(3)x 2+6x +9=25; (4)4(3x -1)2-9(3x +1)2=0.6.用配方法解下列方程:(1)x 2-32x -3=0; (2)2x 2-4x -5=0.(3)2x 2+7x -4=0; (4)x(x +4)=6x +12.7.用公式法解下列方程:(1)2x 2-3x +1=0; (3)12x 2-3x +1=0.8.用因式分解法解下列方程:(1)x 2-32x =0; (2)x 2-12x +36=0.(3)(2x +1)2-(x +2)2=0; (4)x 2-1=3x +3;(5)x 2-4x -5=0; (6)x 2-3x =(2-x)(x -3).(7)4(x -3)2-25(x -2)2=0; (8)5(x -3)2=x 2-9;9.已知实数a ,b 满足(a 2+b 2)2-2(a 2+b 2)=8,则a 2+b 2的值为( )A .-2B .4C .4或-2D .-4或210.若(a +b )(a +b -2)-8=0,则a +b 的值为( )A .-4或2B .3或-32C .-2或4D .3或-211.不解方程,求下列方程两个根x 1,x 2的和与积:(1)x 2+3x +1=0; (2)3x 2-2x -1=0; (3)-2x 2+3=0; (4)2x 2+5x =0.12.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1) x 1+x 2; (2) x 1x 2; (3) x 12+x 22; (4)1x 1+1x 2.13.已知关于x 的一元二次方程x 2+3x +m -1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0,求m 的值.14.已知关于x 的方程x 2-(2k +1)x +4(k -12)=0. 求证:无论k 取何值,这个方程总有实数根.15.已知关于x 的一元二次方程12mx 2+mx +m -1=0有两个相等的实数根.求m 的值;16.已知关于x 的一元二次方程x 2-3x +k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且关于x 的一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,求此时m 的值.17.已知关于x 的方程x 2+mx +m -2=0.求证:不论m 取何实数,此方程都有两个不相等的实数根.18.已知关于x 的方程x 2-(2m +1)x +m(m +1)=0.求证:方程总有两个不相等的实数根;19.已知关于x 的一元二次方程mx 2-(m +2)x +2=0.(1)证明:除0外,不论m 为何值,方程总有实数根;(2)当m 为何整数时,方程有两个不相等的正整数根?20. 已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.21. 已知关于的方程. (1)为何值时,此方程是一元一次方程?(2)为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
一、解下列一元二次方程1. 0632=+-y2.02562=-x3. 036)4(22=-+x4. x x 232=5. 04)4(2=-+-x x x6. 22)21()2(x x -=-7. 0)12()14(2=---x x x 8. 021292=+-x x 9. x x x 22)1)(1(=-+ 10. 01.021.009.02=+-x x11. 03832=-+x x12. 1)1)(2(=+-x x13. x xx =+-2322 14. 03522=--x x15、08121212=-+x x16、)(0422是已知数k k x x =--二、用配方法解下列一元二次方程 1.162=+x x2. 02632=+-x x3. 02322=+-x x4. 01242=++-x x5. 04212=--x x6.024232=-+x x 7. 0222=-+p px x 8.024422=--x x三、根据条件,解字母系数一元二次方程1. 已知关于x 的方程0522=--a x x 有两个相等的实数根,求a 的值并求出此时方程的根. 2. 已知关于x 的方程21)5(92-=--m x m x 有两个相等的实数根,求m 的值及此时方程的根.3. 已知关于x 的方程02=++c bx x 有两个相等的实数根,其中b 与c 互为相反数,求c b 、的值并求出此时方程的根. 4..0432的周长的值并计算这个三角形的两个根,求的方程是关于,已知、、长分别设等腰三角形的三条边m m x x x a c b a =+-=四、根的判别式1. 已知关于x 的方程01)1(22=-++-k x k kx 有两个实数根,求k 的取值范围. 2. 已知关于x 的方程0242=++k x x 有两个实数根,求k 的取值范围及k 的非负整数值.3. 试判断关于x 的方程02)3(2=+++m x m x 是否一定有两个实数根,并说明理由. 4. 试判断关于x 的方程0)(22=---n x n m mx 是否一定有两个实数根,并说明理由. 5..101222的实数根,并说明理由是否一定用两个不相等的方程于没有实数根,试判断关的方程已知关于=++=+-+a ax x x a x x x第2题图五、一元二次方程的应用——因式分解 在实数范围内分解因式1. 52-x2. 2274y x -3. 494-x4. 142+-x x5. 1522+-x x6. 2422+-x x7. 242+-x x 8. 3332-+x x9. 412+-x x10. 21222--x x11. 181222+-x x12.1224-+x x 13. 2236y xy x ++14. 2422+-xy y x 15. 2210102y xy x +-16. 34222-+xy y x 17. 二次三项式13)16(32++-+k x k kx 在实数范围内可以分解因式,求k 的取值范围. 18.六、一元二次方程的应用——实际问题1、如图,在一块长55米,宽45米的长方形绿地中间修两条相互垂直宽度为x 米的小路,可建造绿地的面积总共为2000平方米,求小路的宽度。
一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元一次方程;当m 时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b= .4.x2+3x+ =(x+ )2;x2﹣+2=(x )2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ,q= .7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= .9.当t 时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则= .二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m ≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+ =(x+ )2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t ≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则= .【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a 的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值范围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。
一元二次方程练习题及答案一、选择题(每小题3分,共30分)1. 一元二次方程的二次项系数、一次项系数、常数项分别是()A。
3,2,1 B. C. D.2。
用配方法解一元二次方程x2-4x=5时,此方程可变形为()A。
(x+2)2=1 B。
(x-2)2=1C。
(x+2)2=9 D。
(x-2)2=93。
若为方程的解,则的值为()A.12 B。
6 C.9 D.164.若的值为()A。
0 B。
—6 C。
6 D.以上都不对5。
某品牌服装原价为173元,连续两次降价后售价为127元,下面所列方程中正确的是()A。
B.C.D。
6.根据下列表格对应值:判断关于的方程的一个解的范围是( )A。
<3.24 B.3。
24<<3。
25C.3.25<<3。
26 D。
3。
25<<3。
287。
以3,4为两边的三角形的第三边长是方程的根,则这个三角形的周长为( )A。
15或12 B。
12 C。
15 D.以上都不对8。
已知是方程的两个根,则的值为()A. B.2 C. D.9.关于x的方程的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B。
k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种10。
某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是()A。
19%B。
20% C。
21% D.22%二、填空题(每小题3分,共24分)11。
(2013·山东临沂中考)对于实数a,b,定义运算“*”:例如:4*2,因为4>2,所以4*2=42—4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1*x2= 。
12.(2013·山东聊城中考)若x1=-1是关于x的方程x2+mx-5=0的一个根,则此方程的另一个根x2= .13。
一元二次方程及解法经典习题及解析知识技能: 一、填空题:1.下列方程中是一元二次方程的序号是 .42=x ① 522=+y x ② ③01332=-+x x 052=x ④5232=+x x ⑤ 412=+x x⑥ x x x x x x 2)5(0143223-=+=+-。
⑧⑦ ◆答案:⑤④③①,,,◆解析:判断一个方程是否是一元二次方程,要根据一元二次方程的定义,看是否同时符合条件 ①含有一个未知数;②未知数的最高次数是③;2整式方程.若同时符合这三个条件的就是一元次方程,否则缺一不可.其中方程②含两个未知数,不符合条件①;方程⑥不是整式方程,lil 不符合条件③;方程⑦中未知数的最高次数是3次,不符合条件②;方程⑧经过整理后;次项消掉,也不符合条件②. 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a◆答案:5-=/◆解析:方程12)5(2=-+ax x a 既然是一元二次方程,必符合一元二次方程的定义,所以未知数 的最高次数是2,因此,二次项系数,05=/+a 故.5-=/a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程.◆答案:2±◆解析:方程05)3()4(22=+-+-x k x k 不是关于2的一元二次方程,则二次项系数.042=-k 故.2±=k4.解一元二次方程的一般方法有 , , , ·◆答案:直接开平方法;配方法;公式法;因式分解法 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: .◆答案:◆解析:此题不可漏掉042≥-ac b 的条件.6.(2004·沈阳市)方程0322=--x x 的根是 .◆答案:3.1-◆解析:.4)1(,412,032222=-=+-=--x x x x x 所以.3,121=-=x x7.不解方程,判断一元二次方程022632=+--x x x 的根的情况是 .◆答案:有两个不相等的实数根◆解析:原方程化为,02)26(32=++-x x,04864348234)]26([422>-=-=⨯-+-=-ac b.‘.原方程有两个不相等的实数根.8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 .◆答案:425≤k ◆解析:‘..方程有实根,⋅≤∴≥-=-∴425,045422k k ac b 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根.◆答案:43≥◆解析:..‘方程0)2()12(22=-+++m x m x 有实数根.⋅≥∴≥-=-+-++=--+=-∴43,0152016164144)2(4)12(42.2222m m m m m m m m ac b 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 .◆答案:无实根 ◆解析:,)2(4)44(4162044)4)(1(4)2(422242422222+-=++-=---=++--=-k k k k k k k k k ac b∴<-∴>+∴≥,04,02,0222ac b k k 原方程无实根. 二、选择题:11.(2004·北京市海淀区)若a 的值使得1)2(422-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2◆答案:C◆解析:,341441)2(222++=-++=-+x x x x x a 的值使得,3,341)2(4222=∴++=-+=++a x x x a x x 故C 正确.12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( )3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D◆答案:C ◆解析:方程x x 332-=-化为.0332=-+x x 故.3.3.1-===c b a 故C 正确. 13.方程02=+x x 的解是( )x A .=土1 0.=x B 1,0.21-==x x C 1.=x D◆答案:C◆解析:运用因式分解法得,0)1(=+x x 故.1,021-==x x 故C 正确.14.(2006·广安市)关于X 的一元二次方程有两个不相等的实数根,则k 的取值范围是( )1.->k A 1.>k B 0.=/k C 1.->k D 且0=/k ◆答案:D◆解析:由题意知⎩⎨⎧>+=/.044,0k k 解得1->k 且.0=/k15.(2006·广州市)一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D◆答案:C16.解方程.251212;0)23(3)32(;0179;072222x x x x x x x =+=-+-=--=-④③②① 较简便的方法是( )A .依次为:开平方法、配方法、公式法、因式分解法B .依次为:因式分解法、公式法、配方法、直接开平方法①.C 用直接开平方法,②④用公式法,③用因式分解法 ①.D 用直接开平方法,②用公式法,③④用因式分解法 ◆答案:D17.(2004·云南省)用配方法解一元二次方程.0782=++x x 则方程可变形为( )9)4.(2=-x A 9)4.(2=+x B 16)8.(2=-x C 57)8.(2=+x D ◆答案:B18.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是( )2.>k A 2.<k B 且1=/k 2.<k C 2.>k D 且1=/k◆答案:B◆解析:‘.‘方程有两个不相等的实根4)2(4,22--=-∴ac b(1,048)1()>-=-⨯-k k 2<∴k 且,1=/k 故B 正确.19.下列方程中有两个相等的实数根的方程是( )09124.2=++x x A 032.2=-+x x B 02.2=++x x C 072.2=-+x x D ◆答案:A◆解析:只有A 的判别式的值为零,故A 正确.20.(2004·大连市)一元二次方程0422=++x x 的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆答案:D◆解析:∴<-=⨯-=-,012442422ac b 方程没有实数根,故D 正确 21.下列命题正确的是( )x x A =22.。
第二章 一元二次方程第一节 一元二次方程 第二节 一元二次方程的解法 第三节 一元二次方程的应用 第四节 一元二次方程根与系数的关系 五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。
2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。
其中ax 2是 ,a 是 ,bx 是 ,b 是 ,c是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a-1)x |a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a-1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x-2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。
巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x-1)+1=2x 2C. x 2+3x=2x D. ax 2+bx+c-0 2、已知关于x 的方程mx 2+(m-1)x-1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值 6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b --的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。
一元二次方程专题复习 知识盘点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。
通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。
2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。
(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。
如果n <0,则原方程 。
(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。
3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。
4. 一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。
5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。
含字母系数的一元二次方程一、填空题:1、关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是()A .1B .-1C .1或-1D . 22、若方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值X 围是_____________.3、已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的值为。
4、已知关于x 的一元二次方程(m -2)x 2+3x +m 2-4=0有一个解是0,则 m 的值为.5、已知m 方程220x x --=的一个实数根,则代数式22()(1)m m m m--+的值为. 二、解答题1.若k 为正整数,且关于x 的方程(k 2-1)x 2-6(3k-1)x+72=0有两个不相等的正整数根,求k 的值.解:原方程变形为 (k+1)(k-1)x 2-6(3k-1)x+72=0,[(k+1)x-12][(k-1)x-6]=0,4,7.所以k=2,3使得x 1,x 2同时为正整数,但当k=3时,x 1=x 2=3,与题目不符,所以,只有k=2为所求.2、求k 的值,使得两个一元二次方程x 2+kx-1=0,x 2+x+(k-2)=0有相同的根,并求两个方程的根.解:设a 是这两个方程相同的根,由方程根的定义有a 2+ka-1=0,①a 2+a+(k-2)=0.②①-②有 ka-1-a-(k-2)=0,即 (k-1)(a-1)=0, 所以k=1,或a=1.(1)当k=1时,两个方程都变为x2+x-1=0,所以两个方程有两个相同的根没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x2-1=0,x2+x-2=0.解这两个方程,x2-1=0的根为x1=1,x2=-1;x2+x-2=0的根为x1=1,x2=-2.x=1为两个方程的相同的根.3、已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.解:∵方程有两个实数根,∴△解这个不等式,得≤0设方程两根为则,∵∴∴整理得:解得:又∵,∴6、已知关于的一元二次方程(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。
含字母系数一元二次方程复习题
1. 已知:关于x 的方程a x 2-(3a +1)x +2a +1=0(a 为常数).
(1)若该有两个不相等的实数根,求a 的值;
(2)若该方程的两个实数根为x 1,x 2,并且满足x 2-x 1=2.求a 的值
2.已知: 关于x 的方程0)2(2=+++-n m x n m mx ①.(n ≠0)
(1)求证: 方程①必有实数根;
(2)若2=+n m ,m 为正整数且方程①有两个不相等的整数根时,确定关于x 的二次函数
n m x n m mx y +++-=)2(2的解析式;
3.关于x 的方程()01)2(12
=--+-x m x m (m 为实数) (1)若方程有实数根,求m 的取值范围;
(2)求证:无论m 取何值,方程()01)2(12
=--+-x m x m 总有一个固定的根,并把这个根求出来;
4.已知关于x 的方程01442=++-k kx kx
(1)当方程有两个实数根时,求k 的取值范围
(2)如果1x ,2x 是方程的两个实数根,要使
21
221-+x x x x 的值为整数时,求整数k 的值.
答案
1.(1)a 1-≠且a 0≠
(2)()4221212=-=-x x x x 可得由 所以()44212
12=-+x x x x 求出a =1或a =3
1-
2.(1)当m=0时,x=1
当m ≠0时,Δ=02≥n
所以方程①必有实数根
(2)方程可解得 1,221==x m
x 要想方程为整数根,m 只能等于1或2 由于方程有两个不相等的整数根m=2舍 所以m=1
3.(1)当m=1,1-=x
当m ≠1, Δ=0m 2
≥
m 为全体实数
(2)当m=1,1-=x 当m ≠1 ,解得1,1
121-=-=
x m x 所以方程必有一根为1-=x
4.(1)方程有两个实数根 所以k ≠0, Δ= - 16k ≥0 解得k <0
(2)由根与系数关系可得
1
421221+-=-+k x x x x 要想为整数k 只能取-2,-3,-5。