实系数一元二次方程的根
- 格式:ppt
- 大小:216.00 KB
- 文档页数:18
一元二次方程根与系数的关系设ax 2+bx+c=0 (a ≠0)的两根为x 1,x 2,则x 1+x 2=-,x 1.x 2=.证明:ax 2+bx+c=0 (a ≠0)的两根为x 1,x 2,一元二次方程根与系数的关系的应用: (一)已知方程,利用根与系数1、不解方程,整体代换求含x 1,x 2的代数式的值例1:设方程x 2+3x+1=0的两根为x 1,x 2,求下列各式的值:(1)x 12+x 22(2)11x +21x (3)(x 1-3)(x 2-3)(4)(x 1-x 2)2(5)|x 1-x 2|2、已知含x 1,x 2的代数式的值,求方程中待定字母系数的值例2:(1)已知方程x 2+kx+k=0有两个实数根,且两根的平方和为3,求k 的值。
解:依题意:△≥0,x 12+x 22=3x 12+x 22=(x 1+x 2)2-2x 1.x 2-k 2-2k=3k 2+2k-3=0(k-1)(k+3)=0 k 1=1 k 2=-3△= k2-4k ,当k 1=1时,△<0,应舍去,当k 2=-3时,△>0,所以k=-3当k=-3时,两根的平方和为3。
归纳小结:△≥0是实系数一元二次方程根与系数关系的前提。
(2)若方程2x 2-mx-4=0的两个实数根x 1,x 2满足11x +21x =2,求m 的值。
(3)已知方程x 2-4x+6k=0有两个实数根的平方差为8,求k 的值。
3、一元二次方程的特殊根及根的分布 (1)一元二次方程的特殊根 ①若方程两根相等,则△=0; ②若方程两根互为倒数,则x 1.x 2=1且△>0;③若方程两根互为相反数,则x 1+x 2=0,即b=0且△>0;④若方程两根绝对值相等,则△=0或b=0且△>0; ⑤若方程有一根为0,则c=0; ⑥若方程有一根为1,则a+b+c=0; ⑦若方程有一根为-1,则a-b+c=0;练习题:(1)已知关于x 的一元二次方程x 2+(m 2-9)x+m-1=0,当两根互为相反数时,m= ,若方程两根互为倒数,m= 。
复数导学案课题:实系数一元二次方程在复数集上的根课型:新授执笔:审核: 使用时间:一、学习目标1、实系数一元二次方程在复数集上的根二、重点难点1、实系数一元二次方程在复数集上的根2、实系数一元二次方程在复数集中的解法三、学习内容1、实系数一元二次方程在复数集C上的根设a是正实数,由可知,.因此,2、一元二次方程ax2+bx+c=0,( a, b, c∈R,a≠0) (16-1-4) 的求根公式为,记判别式∆=b2-4ac.由复数集上负数开方的意义,可以得到如下结论:①②③总之,.四、探究分析1、在复数集内求下列方程的根.(1)x2+16=0;(3)x2+27=0.方法总结:2、判定下列方程根的类型,并求出方程的根.(1)2x2-5x+8=0;(2) x2-7x+4=0;(3)x2-8x+16=0;(4)2(x+1)2=-(x-3)2.方法总结:课堂训练1.把下列各数用虚单位和实数乘积表示.(1)-3的平方根;(2)-14的平方根;(3)-0.5的平方根;(4)-4π的平方根2. 在复数集中讨论下列方程的根.(1) x2-2x+3=0;(2) x2-x+6=0;(3) 2x2+2x+3=0;(4) x2-3x+6=0..课后作业1. 在复数集内,求下列方程的根.(1)x2+9=0;(2) x2+π=0;(3) x2+49=02. 确定下述方程根的类型:(1)x2+2x+6=0;(2)x2-5x+4=0.3. 在复数集中解下列方程:(1)x2+2x+7=0;(2)2x2-3x+5=0.教学后记。
一元二次方程的根与系数的关系一元二次方程是高中数学中的重要内容,它的解也是数学中的基础知识之一。
在本文中,我们将探讨一元二次方程的根与系数之间的关系。
一元二次方程的一般形式为: ax^2 + bx + c = 0 (其中,a、b、c为实数且a ≠ 0)这个方程中的根可以通过求解方程来得到。
一元二次方程的解可以分为三种情况,具体取决于判别式的值(Δ=b^2 - 4ac)。
1. 当Δ > 0时,方程有两个不相等的实根。
这是最常见的情况,我们可以通过求解公式 x = (-b ± √Δ) / (2a) 来找到这两个根。
2. 当Δ = 0时,方程有两个相等的实根。
这被称为方程的重根,解可以通过公式 x = -b / (2a) 求得。
3. 当Δ < 0时,方程没有实根。
在这种情况下,方程的解为复数根,我们可以用公式 x = (-b ± i√|Δ|) / (2a) 求得复数根,其中i是虚数单位。
根据以上三种情况,我们可以看出方程的根与系数之间的关系:1. 根与系数的和:根与系数的和是一个常数,可以通过视方程的一元一次项来确定。
对于一元二次方程ax^2 + bx + c = 0,它的两个实根的和可以表示为 -b / a。
这是因为根的和可以通过展开方程 (x-α)(x-β) =0 和整理可得的公式(α + β) = -b / a 来求得。
2. 根与系数的积:根与系数的积也是一个常数,可以通过方程的常数项来确定。
对于一元二次方程ax^2 + bx + c = 0,它的两个实根的积可以表示为 c / a。
这是因为根的积可以通过展开方程 (x-α)(x-β) = 0 和整理可得的公式(αβ) = c / a 来求得。
3. 系数的平方与根的乘积:系数的平方与根的乘积也是一个常数,它等于方程的常数项除以方程的二次项系数的平方。
即(α + β)(αβ) = c / a^2。
通过以上的分析,我们可以得出一元二次方程的根与系数之间的关系,并利用这些关系来推断方程的性质和求解方程。
一元二次方程的解法求根公式的使用技巧一元二次方程的解法是数学中的基础知识,在解决实际问题时起到了重要的作用。
其中,求根公式是一种常见的解法,它可以帮助我们快速求解一元二次方程的根。
本文将介绍一元二次方程的求根公式的使用技巧。
一、一元二次方程的形式一元二次方程通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c为实数,并且a ≠ 0。
根据这个方程的形式,我们可以使用求根公式来求解方程的根。
二、一元二次方程的求根公式一元二次方程的求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,√表示开方运算。
这个公式中的分子部分可以分为两个部分,分别是-b和√(b^2 - 4ac)。
根据这个公式,我们可以通过将方程中的系数代入公式中,快速求得方程的根。
三、使用技巧在使用一元二次方程的求根公式时,有一些技巧可以帮助我们更加高效地求解方程的根。
1. 化简方程在应用求根公式之前,我们可以先对方程进行化简。
例如,如果方程的系数存在公因子,我们可以将其提取出来,以简化计算过程。
2. 辨别方程的根的性质根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的性质。
- 当Δ>0时,方程有两个不相等的实数根;- 当Δ=0时,方程有两个相等的实数根;- 当Δ<0时,方程没有实数根,但存在两个共轭复数根。
通过辨别方程的根的性质,我们可以在求根过程中有所侧重,提高求解的效率。
3. 使用解根公式的步骤使用一元二次方程的求根公式时,可以按照以下步骤进行:Step 1: 计算判别式Δ的值。
Δ = b^2 - 4acStep 2: 根据Δ的值进行分类讨论。
- 当Δ>0时,应用求根公式计算两个不相等的实数根;- 当Δ=0时,应用求根公式计算两个相等的实数根;- 当Δ<0时,应用求根公式计算两个共轭复数根。
Step 3: 将方程系数代入求根公式,计算出根的近似值。
一元二次方程实数根
一元二次方程实数根是数学中的一个重要概念,它涉及到代数方程解
的求解和实数的性质等知识点。
下面将对此进行详细的介绍。
一、定义
一元二次方程的一般形式为:ax²+bx+c=0,其中a、b、c为实数且a≠0。
当方程存在实数解时,这个方程就叫做一元二次方程实数根。
二、判别式
为了求解一元二次方程实数根,我们需要首先计算出它的判别式,即:Δ=b²-4ac
若Δ>0,则方程有两个不相等的实数根;
若Δ=0,则方程有两个相等的实数根;
若Δ<0,则方程没有实数根,但有复数根。
其中,Δ又被称为二次方程的根号下判别式。
三、求解
如果方程有实数根,那么我们可以使用求根公式来求解:
x1,x2=(-b±√Δ)/2a
其中x1、x2分别是方程的两个实数根,±看判别式的正负号而定。
四、性质
1. 方程的系数a、b、c可以解释为抛物线的形态、位置和大小等性质。
2. 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 方程有两个实数根的条件是Δ>0;有一个实数根的条件是Δ=0;没有实数根的条件是Δ<0。
4. 当Δ>0时,x1和x2是两个不相等的实数,且它们的和等于-b/a,积等于c/a;当Δ=0时,它们相等,等于-b/2a。
5. 方程的根可以用Vieta公式表示:x1+x2=-b/a,x1x2=c/a。
以上就是对于一元二次方程实数根的介绍,相信大家对此有了更加深入的理解和掌握。
在实际应用中,了解和灵活运用这些知识点可以帮助我们更好地解决实际问题。
第3天一元二次方程的根与系数的关系与解决实际问题【知识回顾】1.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.2.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx xa+=-,12cx xa⋅=.(3)常用根与系数的关系解决以下问题:△不解方程,判断两个数是不是一元二次方程的两个根.△已知方程及方程的一个根,求另1一个根及未知数.△不解方程求关于根的式子的值,如求,x12+x22等等.△判断两根的符号.△求作新方程.△由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.3.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.一.选择题(共10小题)1.(2020·云南一模)若α、β是一元二次方程x2+2x﹣6=0的两根,则11+αβ的值是()A.13-B.13C.﹣3D.3【答案】B【解析】△α、β是一元二次方程x2+2x﹣6=0的两根,△α+β=﹣2,αβ=﹣6,则11+-21 +===-63αβαβαβ,故选B.2.(2020·四川省射洪县射洪中学外国语实验学校期中)下列一元二次方程两实数根和为-42的是()A.2240x x--=B.2440x x-+= C.24100x x++=D.2450x x-=+【答案】D【解析】A中1222 1x x -+=-=,故错误;B中12-44 1x x+=-=,故错误;C中24164024<0b ac∆=-=-=-,故错误;D中124-4 1x x+=-=,故准确;故答案选D.3.(2020·四川省射洪县射洪中学外国语实验学校月考)方程22310m m-+=和方程224m m-=-所有实数根之和为()A.72B.32C.32-D.92【答案】B【解析】34△方程22310m m -+=根的判别式2=(-3)42110∆-⨯⨯=>△方程22310m m -+=有两个实数根△两根之和为32△方程224m m -=-的根的判别式2=(-2)414-120∆-⨯⨯=<△方程224m m -=-无实数根△方程22310m m -+=和方程224m m -=-所有实数根之和为32故选:B 4.(2020·渠县第四中学期中)已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( )A .1B .3C .-1D .-3 【答案】B【解析】由题意知:122x x +=,12-1x x ⋅=,△原式=2-(-1)=3故选B .5.(2020·江苏如东二模)若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .15【答案】C【解析】根据题意得x 1+x 2=3,x 1x 2=﹣2,所以x 1+x 2﹣x 1•x 2=3﹣(﹣2)=5.故选:C .6.(2020·内蒙古海勃湾期末)一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .7【答案】D【解析】 1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .7.(2020·银川市第十五中学一模)已知关于x 的方程x 2-4x +c +1=0有两个相等的实数根,则常数c的值为( )A.-1B.3C.1D.0【答案】B【解析】△方程x2−4x+c+1=0有两个相等的实数根,△△=(−4)2−4(c+1)=12−4c=0,解得:c=3.故答案选B.8.(2019·广东郁南月考)某中学要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排21场比赛,求参加的球队支数,如果设参加的球队支数为x,则可列方程为()A.12x(x+1)=21B.x(x+1)=21C.12x(x﹣1)=21D.x(x﹣1)=21【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得:12x(x-1)=21,故选:C.9.(2020·深圳市宝安区北亭实验学校)若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为( )67A .7B .3或7C .15D .11或15【答案】C【解析】x 2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7, 当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.10.(2020·湖南隆回一模)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯8C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D【解析】 设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .二.填空题(共5小题) 11.(2020·江苏高淳期末)一元二次方程x 2+mx+2m=0的两个实根分别为x 1,x 2,若x 1+x 2=1,则x 1x 2=______.【答案】-2.【解析】根据题意得x 1+x 2=-m=1,x 1x 2=2m ,所以m=-1,所以x 1x 2=-2.12.(2020·温州市第二十三中学)已知关于x 的方程260x x a ++=有一个根是-2,则方程的另一个根是___________.【答案】-4【解析】因为已知关于x 的方程260x x a ++=有一个根是-2,9 所以由12b x x a+=-得2226,4x x -+=-∴=-. 故答案为-4. 13.(2020·四川省射洪县射洪中学外国语实验学校期中)若,a b 是方程2220060x x +-=的两根,则23a a b ++= .【答案】2004.【解析】2220060x x +-=的两根△a+b=-2,222006a a +=,△223=2+a =2006-2=2004++++a a b a a b故答案为:200414.(2020·四川省射洪县射洪中学外国语实验学校期中)如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 【答案】4【解析】方程化为一般式为:ax 2-b=0x 1+x 2=m+1+2m -4=0 △x 1·x 2=(m+1)(2m -4)=-b a △10解方程△,得m=1把m=1代入△,得b a=-2×(-2)=4. 故答案为:4.15.(2019·上海交大附中)设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______. 【答案】2003【解析】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=, 221211x x x ∴++++23223122210x x x ++++=, 23662630x x ∴++=.△3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>, 1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 三.解析题(共5小题)1116.(2019·广东郁南月考)关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】(1)△Δ=4(k -1)2-4k 2≥0,△-8k +4≥0,△k ≤12; (2)△x 1+x 2=2(k -1),x 1x 2=k 2,△2(k -1)=1-k 2,△k 1=1,k 2=-3.△k ≤12,△k =-3. 17.(2020·甘肃省庆阳市第五中学期末)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根12,x x .(1)求实数k 的取值范围.(2)是否存在实数k ,使得()22121216x x x x +-=成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)14k ≤;(2)存在这样的实数k ,k 的值为3-. 【解析】(1)由题意得:方程的根的判别式[]22(21)4(2)0k k k ∆=-+-+≥,12 解得14k ≤; (2)由一元二次方程根与系数的关系得:2121221,2x x k x x k k +=+=+,则()()2222121211221223x x x x x x x x x x +-=++-, ()212123x x x x =+-, ()()222132k k k =+-+, 221k k =-+,当()22121216x x x x +-=时,22116k k -+=, 即22150k k --=,因式分解得:(3)(5)0k k +-=,解得3k =-或154k =>(不符题意,舍去), 故存在这样的实数k ,k 的值为3-.18.(2020·四川南充月考)关于x 的方程2220x mx m m -+-=有两个不相等的实数根12,x x .(1)求m 的取值范围.(2)若221212x x +=,求211214x x x x +-的值.13【答案】(1)0m >;(3)0【解析】(1)△1a =,2b m =-,2c m m =-,△()()2224241b ac m m m =-=--⨯⨯- 40m =>△0m >;(2)由根与系数的关系,得:212122x x m x x m m +==-,,△221212x x +=,△()21212212x x x x +-=,△()224212m m m --=, △2+60m m -=,解得2m =或3m =-(舍去),△原方程为2420x x -+=,△212112420x x x x =-+=,,△211214220x x x x +-=-+=.19.(2020·湖南茶陵期末)已知关于x 的一元二次方程240x x m -+=.14(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两个实根为12,x x ,且满足12326x x +=,求实数m 的值.【答案】(1)4m ≤;(2)12=-m .【解析】(1)△原方程有实数根,△方程的根的判别式1640m ∆=-≥,解得4m ≤;(2)由一元二次方程的根与系数的关系得:12441x x -+=-=, 又121211322()246x x x x x x +=++=⨯+=,12x ∴=-,将12x =-代入原方程得:2(2)4(2)0m --⨯-+=,解得12=-m .20.(2020·渠县第四中学期中)某商场试销一件成本为60元的服装,规定试销期间销售单价不低于成本单价,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求y 与x 的函数关系式;(2)若该商场想获得利润500元,求销售单价.【答案】(1)y =-x +120(60≤x≤120);(2)销售单价为70元或110元.【解析】解:(1)根据题意,得6555 7545k bk b+=⎧⎨+=⎩解得1120 kb=-⎧⎨=⎩△一次函数关系式为y=-x+120(60≤x≤120).(2)(-x+120)(x-60)=500,整理得x2-180x+7700=0.解得x1=70,x2=110,答:当销售单价为70元或110元时,该商场获得500元利润.15。
一元二次方程的实数根与系数的关系一元二次方程,听起来像是数学老师的专属词汇,其实它在我们生活中也常常出现。
比如,咱们在街头看到的一个漂亮的拐角,或者是手机屏幕上滑动的那一瞬间,都是有数学原理在背后默默支撑着。
今天就来聊聊这个一元二次方程的实数根和系数之间那点儿关系,听起来高大上,其实说白了就是个有趣的故事。
让我们把焦点放在一元二次方程上。
简单来说,它的形式就是 (ax^2 + bx + c = 0)。
在这儿,(a)、(b)、(c) 是系数,而(x) 是我们要找的根。
要是没有这几个小家伙的配合,方程就成了无本之木,空中楼阁。
想想看,系数就像是调料,少了盐就没滋味,多了糖又显得腻味。
说到底,数学也需要点儿人情味嘛。
我们来聊聊什么叫实数根。
简单说,就是方程的解,能够给我们带来真实的、能触摸到的结果。
咱们常说“鱼和熊掌不可兼得”,这在一元二次方程中可不一定。
只要系数们的配合得当,根就能如期而至。
不过,假如 (b^2 4ac) 小于零,哎呀,那就麻烦了,方程就没有实数根,仿佛在说:“我不想跟你见面。
”这个时候,数学就像个小孩子,心情不好就不想和你玩。
说到这里,不妨想象一下,如果 (b^2 4ac) 大于零,那就意味着方程有两个不同的实数根,简直就像是双胞胎兄弟,活泼又有趣,随时都能给你带来惊喜。
再如果这个值等于零,哎,那就成了一对恋人,甜蜜而单一,只有一个实数根。
实数根的出现真是让人捉摸不定,有时像个谜题,有时又像个明信片,带着期待送到我们手中。
再看看系数们的故事,(a) 是领导,得稳重,不能太小,太小就像一棵苗,根基不稳。
可是,(a) 太大了,又会让我们觉得沉重,像是背着一座大山。
接着是 (b),它就像是我们生活的调味剂,过于酸涩或甜腻都会让人觉得难受,正好得掌握个平衡。
而 (c)像是情感的积累,带着过去的故事,轻描淡写却意义非凡。
每个系数都有自己的个性,彼此之间的互动又让这个方程充满了戏剧性。
其实啊,数学的美在于它的对称。
此文发表在《中学数学杂志》2012年第6期(总第272期、教研版)上浅谈一元二次方程的整数根问题在各级各类的初中数学竞赛中,一元二次方程的整数根问题备受命题者的青睐,本文介绍几种求一元二次方程的整数根的方法以及与此有关的问题的解法.1、整系数一元二次方程整数根的求法:➊利用判别式:整系数一元二次方程有整数解时,判别式是完全平方数,利用这条性质可以确定整参数的值,但需验证这些值是否使方程的根为整数。
例1、设m 是整数,4<m<40,方程x 2-2(2m-3)x+4m 2-14m+8=0有两个整数根,求m 的值。
解:已知方程的判别式⊿=4(2m+1),它是一个完全平方数,所以2m+1也是一个完全平方数。
又∵4<m<40,∴9<2m+1<81,从而2m+1=25或49, ∴m=12或者24。
代入已知方程,得:x=16,26或x=38,52.综上所述,所求m 的值为12,24。
➋利用韦达定理:利用韦达定理处理二次方程有两整数根,其思路是由x 1+x 2=-b a ,x 1x 2=c a消去其中的参数,得整数根x 1,x 2的一个不定方程,解这个不定方程可求得其整数根,从而可确定方程中参数的值,最后需验证所求的参数值满足⊿≥0。
例2、求一切实数k,使得关于x 的方程:5x 2-5kx+66k-1=0的两根均为正整数。
解:设x 1,x 2是方程的正整数解,则⎩⎨⎧x 1+x 2=kx 1x 2=66k-15消去k,得:5x 1x 2=66(x 1+x 2)-1 ∴(5x 1-66)(5x 2-66)=4351=19×229不妨设x 1≤x 2,则 ⎩⎨⎧5x 1-66=195x 2-66=229∴x 1=17, x 2=59. ∴k=x 1+x 2=76 又⊿=25k 2-20(66k-1)=25×762-20×(66×76-1)=2102>0∴k=76为所求。
c语言求一元二次方方程的所有根(实根和复根)文章标题:深度剖析:C 语言求解一元二次方程的所有根一、引言在实际的编程开发中,求解一元二次方程是一个常见的需求。
无论是对于数学和物理计算的模拟,还是在工程技术的应用中,我们都需要一个高效、精确地求解一元二次方程的方法。
在本文中,我们将重点探讨如何利用C 语言来求解一元二次方程的全部根,包括实根和复根。
二、一元二次方程的一般形式一元二次方程的一般形式可以表示为:ax^2 + bx + c = 0其中,a、b、c 分别为方程的系数,x 表示未知数。
在实际编程中,我们需要根据给定的系数来求解方程的根。
三、求解实根1. 判断判别式我们需要计算一元二次方程的判别式Δ,判别式可以根据系数 a、b、c 计算得出:Δ = b^2 - 4ac2. 根据判别式的不同情况进行分类讨论- 当Δ > 0 时,方程有两个不相等的实根,可以通过以下公式求解: x1 = (-b + √(Δ)) / (2a)x2 = (-b - √(Δ)) / (2a)- 当Δ = 0 时,方程有两个相等的实根,可以通过以下公式求解: x = -b / (2a)- 当Δ < 0 时,方程没有实根,但是可以求得一对共轭复根,可以通过以下公式求解:实部 Re = -b / (2a)虚部Im = √(|Δ|) / (2a)四、求解复根1. 使用复数的数据类型在 C 语言中,我们可以使用复数的数据类型来表示和求解复根。
C 语言中复数的表示形式为“_Imaginary”。
2. 求解共轭复根当一元二次方程的判别式Δ < 0 时,我们需要求解一对共轭复根。
可以使用以下公式来求解:z1 = Re + Im * Iz2 = Re - Im * I五、总结与回顾通过对 C 语言求解一元二次方程实根和复根的分析,我们可以得出以下结论:- 利用 C 语言的数学库函数和复数数据类型,可以精确、高效地求解一元二次方程的全部根;- 对于不同情况下的判别式,我们可以灵活地应用不同的求根公式,得到实根或者共轭复根;- 在实际的编程开发中,我们需要考虑对参数的检验和异常处理,以保证程序的稳定性和准确性。