统计学概念
- 格式:ppt
- 大小:455.00 KB
- 文档页数:15
一 统计学的几个概念 1、总体和个体:在统计学中,研究对象的全体称为总体;组成总体的每个单位,即每个研究对象称为个体;总体中所包含的个体的数量------总体容量;容量有限-----有限总体; 容量无限-------无限总体 2、样本:从总体中抽出的部分个体组成的集合称为称为来自总体的样本。
通常样本是相互独立且与总体同分布;样本中所含个体的数量称为样本容量。
一般地:设X 是一个随机变量,n X X X ,,,21 是一组相互独立且与X 同分布的随机变量,则称X 是总体,n X X X ,,,21 为来自总体X 的简单随机样本,简称:样本,n 为样本容量。
3、统计量定义:设n X X X ,,,21 为来自总体X 的简单随机样本,),,,(21n X X X g 是一个关于n X X X ,,,21 的连续函数,若g 中不含 任何未知参数,则称),,,(21n X X X g 是一统计量. 常见的统计量有:①样本平均值: X = ∑=ni i X n 11②样本方差:212)(11∑=--=ni i X X n S 备注: 212)(1∑=-=ni i X X n S 叫做未修正的样本方差;2S 称为修正的样本方差,平时若未特别标明,样本方差均指修正的2S2S 有较简单的计算公式: )(111222∑=--=n i i X n X n S证明:③样本标准差:21)(11∑=--=ni i X X n S ④样本k 阶原点矩:∑==n i ki k X n A 11 ,2,1=k⑤样本k 阶中心矩:∑=-=n i ki k X X n A 1)(1 ,2,1=k二、抽样分布统计量的分布叫做抽样分布. 1.样本均值的分布:由中心极限定理可知: 只要n X X X ,,,21 是相互独立且同分布的(设i i DX EX ,μ==2σ),则 当n 充分大时,X 就可近似的服从正态分布.即X ~ ),(2nN σμ应用举例:设X ~],[b a U ,5021,,,X X X 是来自X 的一个样本, X 是样本均值,求)(X E 和)(X D解: 因为X ~],[b a U ,所以2ba EX +=, 12)(2ab DX -=故)(X E =2ba EX +=,)(X D =600)(12ab DX n -=设总体X ~),(2σμN ,n X X X ,,,21 是一个样本, X 是样本均值,,求①设25=n ,求}2.02.0{σμσμ+<<-X P②要使05.0}1.0{≤>-σμX P ,n 至少应等于多少? 解:设X 与Y 相互独立,而且都服从)9,30(N ,2021,,,X X X 和2521,,,Y Y Y 是分别来自X 与Y 的样本,求4.0>-Y X 的概率?解:结论:若(n X X X ,,,21 )是来自总体2~(,)X N μσ的一个样本,X 为样本均值,则①~X ),(2nN σμ②X 与2S 相互独立。
1.统计学是收集,处理,分析,解释数据并且从数据中得到结论的科学。
2数据分析:描述统计研究数据收集,处理,汇总,图表描述,概括与分析等的统计方法;推断统计研究如何利用样本数据来推断总体特征的统计方法。
3.统计数据类型:分类数据,顺序数据,数值型数据。
4.参数是用来描述总体特征的概括性数字度量,他是研究者想了解的总体的特征值。
5.统计量是用来描述样本的特征的概括性的数字度量。
6概率抽样是遵循随机原则进行的抽样,总体中的与每个单位都要一定的机会被选入样本。
7非概率抽样指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
8.抽样误差是由于抽样的随机性引进的样本结果与总体真值之间的误差。
9.非样本误差指除了样本误差之外的,由于其他原因引起的样本的观察结果与总体真值之间的差异。
10.条形图是用宽度相同的条形的高度或长短来表示数据多少的图形。
11.饼图是用圆形及圆内扇形的角度来表示数值的大小的图形。
12.茎叶图是反映原始数据分布的图形,它是由茎和叶两部分构成的,其图形是有数子组成的,通过茎叶图,可以看出数据的分布形状及数据的离散状况。
13.集中趋势指一组数据向某一中心靠拢的程度,它反映了一组数据中心的位置所在。
14.众数是一组数据中出现次数最多的变量值。
众数主要用于测度分类数据的集中趋势,也可用于作为顺序数据以及数值型数据集中趋势的测度值。
15.平均数也称为均数,它是一组数据相加后除以数据的个数得到的结果。
16异中比率指非众数数组的频数占总频数的比例。
17.方差是各变量值与其平均数离差平方的平均数。
18.离散系数也称变异系数,它是一组数据的标准差与其相对应的平均数之比。
19. 概率古典定义:如果某一随机试验的结果有限,而且各个结果出现的可能性相等,则某一事件A发生的概率为该事件所包含的基本事件数m与样本空间中所包含的基本事件数n的比值。
20.概率的统计定义:在相同条件下随机试验n次,某事件A出现m次,则比值m/n称为事件A发生的频率。
统计学的基本概念与原理统计学是一门研究数据收集、分析、解释和预测的学科。
它通过数学和逻辑的方法来帮助我们理解和解释现实世界中的各种现象和问题。
统计学的应用范围广泛,可以在科学研究、商业决策、社会政策和医学等领域中发挥重要作用。
本文将介绍统计学的基本概念和原理。
一、总体与样本统计学中的总体是指我们关心的所有个体或事物的集合,也可以称为总体统计单位。
样本则是从总体中选取的一部分个体或事物,它是总体的一个子集。
通过对样本进行研究和分析,我们可以得出关于总体的结论。
二、描述统计与推论统计描述统计是对数据进行整理、汇总、分析和呈现的技术和方法。
常用的描述统计方法包括测量中心趋势的均值和中位数,描述数据分布的标准差和方差,以及用图表来展示数据。
推论统计是通过从样本中得出结论来推断总体特征的方法。
它基于概率理论,使用抽样方法和统计推断进行分析和预测。
三、概率与概率分布概率是研究随机事件发生可能性的数学工具。
它用来描述事件发生的可能性大小,是一个介于0和1之间的数。
概率分布是描述随机变量所有可能取值及其对应概率的函数或表格。
常见的概率分布包括正态分布、二项分布和泊松分布等。
四、参数估计与假设检验参数估计是通过样本的统计量来估计总体的参数值。
参数是总体的一个数值特征,比如总体均值或总体方差。
常用的参数估计方法有点估计和区间估计。
假设检验是通过对样本数据进行分析,判断总体参数是否满足某个假设条件。
常用的假设检验方法有单样本检验、双样本检验和方差分析等。
五、回归与相关回归分析是研究因变量与一个或多个自变量之间关系的统计方法。
通过建立回归模型,我们可以预测因变量的值,并了解自变量对因变量的影响程度。
相关分析是研究两个或多个变量之间关系的方法。
它通过计算相关系数来判断变量之间的相关程度。
六、抽样与实验设计抽样是从总体中选取样本的过程。
合理的抽样方法可以保证样本的代表性和可信度。
常见的抽样方法有简单随机抽样、分层抽样和系统抽样等。
统计学常见概念及解析 统计学是通过搜索、整理、分析、描述数据等⼿段,以达到推断所测对象的本质,甚⾄预测对象未来的⼀门综合性科学。
统计学常见概念有哪些你知道吗?下⾯是店铺为⼤家带来的统计学常见概念及解析。
欢迎阅读。
统计学常见概念及解析1 (1)⾃由度 d.f. 统计学上的⾃由度是指当以样本的统计量来估计总体的参数时,样本中独⽴或能⾃由变化的⾃变量的个数,称为该统计量的⾃由度。
统计学上的⾃由度包括两⽅⾯的内容: ⾸先,在估计总体的平均数时,由于样本中的 n 个数都是相互独⽴的,从其中抽出任何⼀个数都不影响其他数据,所以其⾃由度为n。
在估计总体的⽅差时,使⽤的是离差平⽅和。
只要n-1个数的离差平⽅和确定了,⽅差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。
这⾥,均值就相当于⼀个限制条件,由于加了这个限制条件,估计总体⽅差的⾃由度为n-1。
例如,有⼀个有4个数据(n=4)的样本,其平均值m等于5,即受到m=5的条件限制,在⾃由确定4、2、5三个数据后,第四个数据只能是9,否则m≠5。
因⽽这⾥的⾃由度υ=n-1=4-1=3。
推⽽⼴之,任何统计量的⾃由度υ=n-k(k为限制条件的个数)。
其次,统计模型的⾃由度等于可⾃由取值的⾃变量的个数。
如在回归⽅程中,如果共有p个参数需要估计,则其中包括了p-1个⾃变量(与截距对应的⾃变量是常量1)。
因此该回归⽅程的⾃由度为p-1。
(2)偏相关 Partial correlation coefficient 在多元回归分析中,在消除其他变量影响的条件下,所计算的某两变量之间的相关系数。
在多元相关分析中,简单相关系数可能不能够真实的反映出变量X和Y之间的相关性,因为变量之间的关系很复杂,它们可能受到不⽌⼀个变量的影响。
这个时候偏相关系数是⼀个更好的选择。
假设我们需要计算X和Y之间的相关性,Z代表其他所有的变量,X和Y的偏相关系数可以认为是X和Z线性回归得到的残差Rx与Y和Z线性回归得到的残差Ry之间的简单相关系数,即pearson相关系数。
统计学概念统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。
统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域。
统计学是关于数据的一门学问。
所有收集而来的数据都需要经过整理、分析才能得出结论,这就是统计学利用数据解决实际问题的全过程。
但是你会发现,同一个数据可以使用不同的方法进行分析进而得出不同的结论,不同的数据使用同一种方法进行分析也可以得出不同的结论。
如天气预报,不同的预报机构其预报结果不尽相同。
而且,由统计分析得出的结论往往还具有不确定性(uncertainty),因为其描述的往往是某件事发生的机会(opportunity),可以用概率(probability)来衡量。
如天气预报中的降水概率,众所周知,如果降水概率高达90%,那就很可能会下雨,如果降水概率仅为5%,则大家会认为几乎不会下雨。
但是实际情况到底下不下雨,只能等到预报的那一天真正到来才知道。
统计学所关注的是大量可重复事物现象数量特征。
这是因为在某些领域中,有些结论很难像用数学公式或定理那样进行确定性的描述。
比如,父母身高比较高,一般人都会认为其孩子身高也会比较高。
但是当你去观测某一对父母及其小孩的身高时,你会发现,有些身高比较高的父母,其孩子身高并不高。
所以说,身高具有一定的随机性(randomness)。
这种随机性可能跟人的基因、生活环境、后天饮食、生活习惯等各方面的因素都有关系。
但是,从总体上来说,身高比较高的父母,其孩子身高保持有比较高的趋势,该规律早已被英国著名生物学家兼统计学家高尔顿(Francis Galton,1822-1911)于1855年通过试验数据所证实。
一个人的身高可能高矮程度不同,这是随机的。
但是从总体上来说,平均身高的稳定性说明了随机之中存在规律,这种规律就是统计规律。
所以,可以更进一步地说,统计学也是一门找出统计规律的学问。
统计学的概念
统计学是一门涉及众多领域的学科,主要指以数量、比例和分布等方式概括研究对象的特征的研究。
统计学的应用对支持数据分析、决策分析有着重要的意义,被广泛应用于社会、政治、经济、生物、医药、工程、软件、物理、教育等各领域。
统计学的基本原理是“分而治之”,即将一个大的问题分解为多个小问题,由各个小问题无累积地得到解决,从而得出整体问题的解决方案和结果。
统计学的基本操作方法涉及数据获取、信息汇总、计算统计量和描述性统计结果,以及进行分类,分层,回归,概率论,分布规律,抽样等不同类型的分析。
统计学通过处理大量数据来解决难题,从而帮助社会运行的节奏。
从政府的角度,他们可以采用统计学方法对经济发展情况、政策的效果、社会问题的发生率等展开全面的分析,并帮助及时针对社会问题即时制订应对措施,而企业也可以利用统计学方法来优化生产成本,减少生产缺陷等。
统计学是一门研究通过处理数据得出结论的学科,它已经成为社会发展所不可缺少的重要力量。
今天,统计学在决策分析、数据挖掘和网络分析等领域的应用越来越广泛,未来的统计学应用将带来更大的作用。
第二部分数据的整理与抽样一、统计学的基本概念1、统计资料定义:凡是可以推导出某项论断的事实或数字均称为统计资料。
统计资料是进行分析、推断、预测的基础。
要根据研究的目的、要求,有计划地收集统计资料。
统计资料原始资料(初级):未经过加工处理的第一手统计调查资料。
次级资料:经过加工处理的数据(有权威性的公开发表的:统计年鉴、行业协会公布的报告等等)。
统计数据度量数据:用数量尺度测量的数据,如年龄、成绩。
品质数据:不用数量尺度测量的数据,如性别,企业类型。
称关于特定问题的统计资料为一个资料集合,其主要特征有:元素:统计资料由各个元素组成。
变量:元素的特征。
有定量的变量与定性的变量。
观测:一次观测指对统计资料中某一元素的所有变量表述的记录。
xxx xxx xxx xxx xxx xxx王五xxx xxx xxx xxx xxx Xxx李四xxx xxx xxx xxx xxx xxx张三…..…..….班级专业学号姓名2、统计资料收集的方法与途径方法间接引用直接收集实验式:设计统计实验,控制某些因素以研究其对变量的影响。
例如确定产品的价格弹性观察式:对变量的影响因素不加任何限制。
根据统计研究的目的和要求收集统计资料。
所收集的资料必须满足准确性、及时性和完整性的要求。
统计报表组织方式专门调查普查重点调查抽样调查典型调查途径直接观察:通过观察对象的活动进行记录获得资料。
优点:资料全面生动,避免由于理解偏差造成的误差。
缺点:耗时、人力,对观察者素质要求高。
访问:与被调查对象直接接触,获得资料问卷调查:设计并发放调查表。
优点:避免调查人对调查对象的直接影响,缺点:返回率低,无法保证调查表的质量。
3、总体与个体(1)定义:凡是客观存在的、具有统一性质的由个别事物组成的集合体,称为统计总体。
构成总体的个别事物称为个体(总体单位)。
(2)总体与个体必须具备的条件客观性:特定的非一般意义上;大量性:包含足够多的个体以避免偶然性;同质性:构成总体的个体在性质上必须是相同的,否则无法反映总体的特征;差异性:构成总体的个体之间存在差异。
总体:是包含所研究的全部个人(数据)的集合,它通常由所研究的一些个体组成,如由多个企业构成的集合,多个居民户构成的集合等等。
通常情况系,统计上的总体是一组观测数据,而不是一群人或者一些物品的集合。
总体根据其所包含的单位数目是否可数可以分为有限总体(总体的范围能够明确确定,而且元素的数目是有限可数的,比如)和无限总体(总体所包括的元素是无限的,不可数的)。
总体划分为有限和无限总体主要是为了判别在抽样中每次抽取是否独立。
对于无限总体,每次抽取一个单位并不影响下次的抽样结果,因此每次收取可以看做是独立的。
对于有限总体,抽取一个单位后,总体元素就会减少一个,前一次的抽样结果往往会影响第二次的抽样结果,因此每次抽取都是不独立的。
参数:是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。
研究者所关心的参数通常有总体平均数、总体标准差、总体比例等。
在统计中,总体参数通常由希腊字母表示,如总体平均数通常用μ来表示,总体标准差用σ来表示,总体比例用π来表示。
由于总体数据通常是不知道的,所以参数是一个未知的参数。
正因为如此,所以才要进行抽样,根据样本计算出某些值去估计总体参数。
统计量:是用来描述样本特征的概括性数字度量。
它是根据样本数据计算出来的一个量,由于抽样是随机的,因此统计量是羊样本的函数。
研究者所关心的统计量主要是样本平均数、样本标准差、样本比例等。
样本统计量通常由英文字母表示,如样本平均数用X表示,样本标准差用s表示,样本比例用p表示等等。
由于样本是已经抽取出来的,所以统计量总是知道的,抽样的目的就是要根据样本统计量去估计总体参数。
如。
数据可以分为哪几类:(1)分类数据:是只能归类一某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字描述的。
例如人口按照性别可以分为男、女两类。
为了便于统计,对于分类数据可以用数字代码来表示各个类别,如用“1”表示男性。
(2)顺序数据:是只能归类与某一有序类别的非数字型数据。
统计学基本概念统计学是一门研究变量(估计、比较或预测)之间联系的研究,在实际应用中被广泛使用。
统计学的基本概念是把复杂的现象抽象成可以探究的数字或变量,然后通过数量化方法来识别现象的规律,以及推断现象的未来发展趋势。
统计学建立在概率论的基础上,探究样本中观察值之间的关系。
概率论侧重于个体发生特定事件的可能性,统计学则是研究样本发生某种特定结果的概率,以及其在整体总结中的可能性。
因此,统计学不仅可以用来测量样本中变量的差异,还可以用来估计某一结果的期望值。
统计学的研究工具包括分类和变量概念、概率分布、“双重重复”抽样和模型拟合。
分类和变量概念指的是将观察数据分类成不同类别,以便更好地描述现象。
概率分布是可以用来估算个体数据的特定概率分布(如正态分布、t-分布、β分布等)。
“双重重复”抽样是指在每个受试者的试验中,做出的决定都被记录下来并被纳入统计计算中。
模型拟合是指把一组变量联系起来,形成一个数学模型,以估计或预测一组数据中某些变量的值。
统计学的重要应用是把研究结果可视化,使其变得更容易理解。
这可以通过绘制图形、做统计计算、绘制参数估计等方式实现。
以上这些方法都可以让研究者更清楚地看到研究结果,从而能够更深入地理解和解释这些结果。
统计学的应用还可以赋予研究者更多的可能性,以更准确地衡量研究结果的质量。
现代研究者可以利用统计学工具来审视自己的研究,并能够更好地确认研究结果的可信度。
同时,统计学还可以帮助研究者在准确性和理解力上做出更好的决策,从而获得有意义的结果。
总的来说,统计学为研究者提供了一个用数字探究现象的统一框架,可以让我们更清楚地理解复杂的现象,用于改进我们的研究方法和提高研究质量。
统计学的基本概念和应用在实验室、学校以及临床研究中都具有极其重要的意义,所以统计学是一个必不可少的研究工具。