第四章 线性方程组习题及答案
- 格式:doc
- 大小:1.88 MB
- 文档页数:23
第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。
当0D ≠时,非齐次线性方程组只有唯一解;B 。
当0D ≠时,非齐次线性方程组有无穷多解;C 。
若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。
2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。
第四章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320;(3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------152********117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------023010********071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000010*******002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x xx x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R < ⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解 ⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001~ 故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1061263111010421112.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;(2) 设⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=132321,433312120B A ,求X 使B XA =. 解 (1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001 ⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X (2) ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛132321433312120B A 初等列变换~⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---474112100010001 ⎪⎪⎭⎫ ⎝⎛---==∴-4741121BA X .。
线性代数第四章练习题答案第一篇:线性代数第四章练习题答案第四章二次型练习4、11、写出下列二次型的矩阵2(1)f(x1,x2,x3)=2x12-x2+4x1x3-2x2x3;(2)f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4。
解:(1)因为⎛2f(x1,x2,x3)=(x1,x2,x3) 0 2⎝⎛2 所以二次型f(x1,x2,x3)的矩阵为: 0 2⎝0-1-10-1-12⎫⎪-1⎪0⎪⎭⎛x1 x2 x⎝3⎫⎪⎪, ⎪⎭2⎫⎪-1⎪。
0⎪⎭(2)因为⎛0 f(x1,x2,x3,x4)=(x1,x2,x3,x4) 1 1⎝⎛0 1所以二次型f(x1,x2,x3,x4)的矩阵为: 1 1⎝***11⎫⎪0⎪1⎪⎪0⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪,⎪⎪⎭1⎫⎪0⎪。
⎪1⎪0⎪⎭2、写出下列对称矩阵所对应的二次型:⎛1 1(1) -2 1 ⎝212⎛01⎫⎪2⎪1 -2⎪;(2)2 ⎪-1⎪2⎪⎭0⎝12-11212-112012⎫0⎪⎪1⎪2⎪。
1⎪⎪2⎪1⎪⎪⎭-0-2T解:(1)设X=(x1,x2,x3),则⎛1 f(x1,x2,x3)=XTAX=(x1,x2,x3) -2 1 ⎝2-120-21⎫⎪2⎪-2⎪⎪⎪2⎪⎭⎛x1 x2 x⎝3⎫⎪⎪⎪⎭=x12+2x32-x1x2+x1x3-4x2x3。
(2)设X=(x1,x2,x3,x4)T,则⎛0 1f(x1,x2,x3,x4)=XTAX=(x1,x2,x3,x4)2 -1 0⎝12-11212-11201 2⎫0⎪⎪1⎪2⎪1⎪⎪2⎪1⎪⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪⎪⎪⎭2=-x2+x4+x1x2-2x1x3+x2x3+x2x4+x3x4。
练习4、21、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。
22(1)f(x1,x2,x3)=2x1+x2-4x1x2-4x2x3;(2)f(x1,x2,x3)=2x1x2-2x2x3;222(3)f(x1,x2,x3)=x1+2x2+3x3-4x1x2-4x2x3。
考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强烈推荐)习题部分一.填空(每题2分)1.设方程组22112122x x kx x kx x 有非零解,则k。
2.线性方程组960654032321321321x x x x x x x x x 有非零解,则。
3.方程组211111111321x x x aa a有无穷多解,则a。
4.非齐次线性方程组b AX(A 为m n 矩阵)有惟一解的的充分必要条件是____________。
5.设A 是n 阶方阵,21,是齐次线性方程组O AX 的两个不同的解向量,则A。
6.设A 为三阶方阵,秩2A r ,321,,是线性方程组b b AX 的解,已知10131321,,则线性方程组b AX 的通解为。
7.三元线性方程组b AX的系数矩阵的秩2A r ,已知该方程组的两个解分别为1111,1112,则b AX 的全部解可表为。
8.设1686493436227521a A,欲使线性齐次方程组O AX 的基础解系有两个解向量,则a =。
9.当a时,线性方程组233321321321321x ax x ax x x x x x 无解。
10.方程组321011032x x x =0的基础解系所含向量个数是___ ______。
11.若5元线性方程组b AX的基础解系中含有2个线性无关的解向量,则Ar 。
12.设线性方程组414343232121a x x a x x a x x a x x 有解,则4321a ,a ,a ,a 应满足条件。
13.设齐次线性方程组为021nx x x ,则它的基础解系中所包含的向量个数为。
14.设21,是非齐次线性方程组b AX 的解向量,则21是方程组的解向量.15.设s,,,21为非齐次线性方程组b AX 的一组解,如果ssc c c 2211也是该方程组的一个解,则sc c c 21。
16.设矩阵1111110A ,则齐次线性方程组O X A E 的一个基础解系为。
第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。
矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。
第四章习题课线性代数第四章向量组的线性相关性6.设21,a a 线性无关, b a b a ++21,线性相关,求向量b 用21,a a 线性表示的表示式.解由于b a b a ++21,线性相关, 所以存在不全为零的数21,k k ,使得2211212211)(0)()(a k a k b k k b a k b a k --=+?=+++.由于21,a a 线性无关,故021≠+k k ,否则由上式得, 00212211==?=+k k a k a k , 这与21,k k 不全为零矛盾.所以由221121)(a k a k b k k --=+得,.0,,,212122121211≠+∈+-+-=k k R k k a k k k a k k k b8.举例说明下列各命题是错误的:(1) 若向量组m a a a ,,,21 是线性相关的,则1a 可由m a a ,2线性表示.解设Te a )0,,0,0,1(11 ==, 032====m a a a满足m a a a ,,,21 线性相关, 但1a 不能由m a a ,,2 线性表示.(2) 若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立, 则m a a ,,1 线性相关, m b b ,,1 亦线性相关.解有不全为零的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111 ,其中m e e ,,1 为单位坐标向量,则上式成立,而m a a ,,1 ,m b b ,,1均线性无关.(3) 若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.解由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )得0)()(111=++++m m m b a b a λλ (仅当01===m λλ ) m m ba b a b a +++?,,,2211 线性无关.取021====m a a a ,取m b b ,,1 为线性无关组(例如单位坐标向量m e e ,,1 ),满足以上条件,但不能说m a a a ,,,21 线性无关.(4) 若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立.解 T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2= ?-=?=+-=?=+21221121221134020λλλλλλλλb b a a 021==?λλ与题设矛盾.9.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明设有4321,,,x x x x 使得044332211=+++b x b x b x b x则0)()()()(144433322211=+++++++a a x a a x a a x a a x0)()()()(443332221141=+++++++?a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,使得044332211=+++a k a k a k a k .取141k x x =+;221k x x =+;332k x x =+;443k x x =+; 由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,又044332211=+++b x b x b x b x 所以4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则=+=+=+=+000043322141x x x x x x x x 011000110001110014321=??x x x x 由01100011000111001=知, 此齐次方程存在非零解, 所以有不全为零的4321,,,x x x x 使得044332211=+++b x b x b x b x ,则4321,,,b b b b 线性相关. 综合得证.10.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组 r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故==++=+++000221r r r k k k k k k=??????? ????????? ??0001001101121 r k k k因为0110011011≠= ,故方程组只有零解.则021====r k k k , 所以r b b b ,,,21 线性无关.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组表示.(2)---140113130********211.解---==14011313021512012211),,,,(54321a a a a a A 14132~r r r r --??????? ??------222001512015120122114323~r r r r ?+?---00000222001512012211,所以第1、2、3列321,,a a a 构成一个最大无关组.把A 化成行最简形矩阵),,,,(54321b b b b b B =.~A ??---00000222001512012211--=00000111001301001001~B 由于方程0=Ax 与0=Bx 同解,所以向量54321,,,,a a a a a 之间与向量54321,,,,b b b b b 之间有相同的线性关系.由于3214301000010300010131b b b b -+=-??????? ??+??????? ??=??????? ??-= 325010000100110b b b +-=+??????? ??-=??????-= 所以32143a a a a -+=,325a a a +-=.13.设向量组=131a a ,????? ??=322b a ,????? ??=1213a ,????=1324a的秩为2,求b a ,.解由于43,a a 的对应分量不成比例,所以43,a a 线性无关,其秩为2. 从而4321,,,a a a a 的秩为2?21,a a 可由43,a a 线性表示0),,det(431=a a a 且0),,det(432=a a a . 因为a a a a -=2),,det(431,b a a a -=5),,det(432,所以4321,,,a a a a 的秩为2?2=a ,5=b .14.设n a a a ,,,21 是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21 能由它们线性表示,证明n a a a ,,,21 线性无关.证明由于n 维单位坐标向量n e e e ,,,21 能由n a a a ,,,21 线性表示,不妨设:n nn n n n nn n n a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以 ()()=nn n n n n n n k k kk k k k k k a a a e e e 2122212121112121两边取行列式,得()()==nn nn n n n n k k kk k k k k k a a a e e e E2122212121112121||,由=1||E ()021≠n a a a ,即n 维向量组n a a a ,,,21 所构成矩阵的秩为n ,故n a a a ,,,21 线性无关.15.设n a a a ,,,21 是一组n 维向量,证明它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表示.证明必要性: 设b 为任一n 维向量, 则n 维向量组b a a a n ,,,,21 线性相关(其所含向量个数大于向量维数).因为n a a a ,,,21 线性无关,所以b 能n a a a ,,,21 线性表示.充分性: 因为任一n 维向量可由n a a a ,,,21 线性表示,所以单位坐标向量组n e e e ,,,21 能由n a a a ,,,21 线性表示.则na a a R n a a a R e e e R n n n n =?≤≤=),,,(),,,(),,,(212121 ,所以n a a a ,,,21 线性无关.16. 设向量组m a a a ,,,21 线性相关,且01≠a ,证明存在某个向量)2(m k a k ≤≤,使得k a可由121,,,-k a a a 线性表示.证明反证法,假设结论不成立.设02211=+++m m a k a k a k , )(* 因为m a 不能由121,,,-m a a a 线性表示,所以0=m k .)(*式变为0112211=+++--m m a k a k a k .因为1-m a 不能由221,,,-m a a a 线性表示,所以01=-m k .……同理可得, 0232====--k k k m m .所以)(*式变为011=a k . 由于01≠a ,所以01=k .综上可知, 021====m k k k ,所以m a a a ,,,21 线性无关,这与题设矛盾!从而假设不成立,原命题成立.17.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ?矩阵,且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩r K R =)(.证明令),,(),,(11s r a a A b b B ==, 则有AK B =.必要性: 若B 组线性无关,则r B R =)(.由)()}(),(min{)()(K R K R A R AK R B R ≤≤=,故r K R ≥)(. 又K 为r s ?阶矩阵,则r K R ≤)(. 综上知,r K R =)(.充分性: 设r K R =)(.令02211=+++r r b x b x b x ,其中i x 为实数,r i ,,2,1 =.则有0),,,(121=r r x x b b b ,即00=?=AKx Bx .由于s a a a ,,,21 线性无关,所以s A R =)(,从而方程0=Ay 只有零解,故0=Kx .由于r K R =)(,则方程0=Kz 只有零解,所以0=x . 从而021====r x x x . 所以r b b b ,,,21 线性无关.20.求下列齐次线性方程组的基础解系: (3)02)1(121=++-+-n n x x x n nx .解系数矩阵为)1,2,),1(,( -n n ,秩是1,未知数个数是n ,所以基础解系应含有1-n 个解向量. 原方程组即为1212)1(------=n n x x n nx x 取121,,,-n x x x 为自由未知量,令=??????? ??-100,,010,001121 n x x x 得n x n -=,1+-n , ,2-.所以基础解系为-+--=-21100010001),,,(121n n n ξξξ.21.设--=82593122A ,求一个24?矩阵B,使O AB =,且2)(=B R .解由于A 有2阶非零子式,故2)(=A R ,所以齐次线性方程组0=Ax 的基础解系中应含有2个向量.设24?矩阵B 为),(21ξξ=B ,其中21,ξξ是4维列向量.O AB =,且2)(=B R01=ξA ,02=ξA ,且21,ξξ线性无关21,ξξ是齐次线性方程组0=Ax 的基础解系.对A 实施初等行变换化为行最简形矩阵:--=82593122A ~?---8118510818101令=???? ??10,0143x x ,得-?????? ??=???81181,858121x x .所以-=???????? ??=1081181,01858121ξξ.故所求矩阵-=1001811858181B .22.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解显然原方程组的通解为+??????? ??=?01233210214321k k x x x x ,(R k k ∈21,) 即=+=+==1 4213212213223k x k k x k k x k x ,代入3,31241x k x k ==, 消去21,k k 得 ??=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.26.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(2)-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解对增广矩阵实施初等行变换化为行最简形矩阵.--------=00000221711012179016124211635113251~初等行变换B 由于2)()(==B R A R ,所以方程组有解.原方程组等价于??--=++-=2217112179432431x x x x x x . 取43,x x 为自由未知数,令???? ??=???? ??0043x x ,得原方程组的一个解.0021??-=η对应的齐次线性方程组等价于??-=+-=43243121712179x x x x x x . 令,20,0743???? ??????=???? ??x x 得其基础解系.2011,071921??-=??????? ??-=ξξ27.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量.且=54321η,=+432132ηη 求该方程组的通解.解由于系数矩阵的秩为3=r ,134=-=-r n .故其对应的齐次线性方程组的基础解系含有一个向量.由于321,,ηηη均为方程组的解,由非齐次线性方程组解的结构性质得齐次解齐次解齐次解=??=-+-=+-6543)()()()()(23121321ηηηηηηη 为其基础解系向量,故此方程组的通解:+??????? ??=54326543k x ,)(R k ∈.30.设矩阵),,,(4321a a a a A =,其中432,,a a a 线性无关, 3212a a a -=,向量4321a a a a b +++=,求方程b Ax =的通解.解由于432,,a a a 线性无关,所以3)(≥A R .由3212a a a -=知321,,a a a 线性相关,故4321,,,a a a a 线性相关,从而3)(≤A R .综上可知, 3)(=A R .所以齐次方程0=Ax 的基础解系含有4-3=1个向量.022321321=+-?-=a a a a a a ,所以-=0121ξ是0=Ax 的一个非零解,从而构成其基础解系.又4321a a a a b +++=,故=1111η是b Ax =的一个解.所以方程b Ax =的通解是.,11110121R c c c x ∈+??????? ??-=+=ηξ31.设*η是非齐次线性方程组b Ax =的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1) r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关. 证明(1) 设有关系式:0110=+++--*r n r n C C C ξξη (1)由于*η为特解,r n -ξξ,,1 为基础解系,故得C A C C C C A r n r n 00110)(==+++*--*ηξξη而由(1)式可得0)(110=+++--*r n r n C C C A ξξη ,故00=b C .而该方程组为非齐次线性方程组,得0≠b ,所以00=C . 代入(1)式得.011=++--r n r n C C ξξ由于r n -ξξ,,1 是基础解系从而线性无关,故.01===-r n C C 所以010====-r n C C C , 故r n -*ξξη,,,1 线性无关.(2) 设有关系式:0)()(110=+++++-*-**r n r n C C C ξηξηη (2)即0)(1110=++++++--*-r n r n r n C C C C C ξξη .由题(1)知, r n -*ξξη,,,1 线性无关,故2110=====+++--r n r n C C C C C C 0210=====?-r n C C C C ,所以r n -***++ξηξηη,,,1 线性无关.32. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .证明s s k k k x ηηη+++= 2211也是它的解.证明由于s ηη,,1 是非齐次线性方程组b Ax =的s 个解. 故有 ),,1(s i b A i ==η 而s s s s A k A k A k k k k A ηηηηηη+++=+++ 22112211)(b k k b s =++=)(1所以s s k k k x ηηη+++= 2211也是方程b Ax =的解.33.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题31知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n kk ).证明设x 为b Ax =的任一解.由题设知:121,,,+-r n ηηη 线性无关且均为b Ax =的解.取11132121,,,ηηξηηξηηξ-=-=-=+--r n r n ,则它们均为0=Ax 的解.用反证法证明:r n -ξξξ,,,21 线性无关.假设它们线性相关,则存在不全为零的数r n l l l -,,,21 ,使得02211=+++--r n r n l l l ξξξ .即0)()()(11132121=-++-+-+--ηηηηηηr n r n l l l0)(13221121=+++++++-+---r n r n r n l l l l l l ηηηη由121,,,+-r n ηηη 线性无关知0)(2121=====+++---r n r n l l l l l l与r n l l l -,,,21 不全为零矛盾! 故假设不成立. r n -∴ξξξ,,,21 线性无关.由于b Ax =的系数矩阵的秩为r ,故齐次方程0=Ax 的基础解系应含有r n -个向量.r n -∴ξξξ,,,21 构成0=Ax 的基础解系.由于1,ηx 均为b Ax =的解,所以1η-x 为0=Ax 的解1η-?x 可由r n -ξξξ,,,21 线性表示.r n r n k k k x ---+++=-ξξξη123121)()()(111133122ηηηηηη-++-+-=+-+-r n r n k k k1133221321)1(+-+-+-++++----=r n r n r n k k k k k k x ηηηη令13211+-----=r n k k k k ,则11321=+++++-r n k k k k ,且112211+-+-+++=r n r n k k k x ηηη .34.设}0,,),,,({211211=+++∈==n n T n x x x R x x x x x x V 满足}1,,),,,({211212=+++∈==n n T n x x x R x x x x x x V 满足问21,V V 是不是向量空间?为什么?证明非空向量集V 成为向量空间只需满足条件:若V V ∈∈βα,,则V ∈+βα; 若R V ∈∈λα,,则V ∈λα.1V 是向量空间.由1)0,,0,0(V T∈ 知1V 非空.设121),,,(V T n ∈=αααα ,121),,,(V Tn ∈=ββββ ,R ∈λ. 则021=+++n ααα ,021=+++n βββ .由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++ 0)()(2121=+++++++=n n βββααα故1V ∈+βα.又T n ),,,(21λαλαλαλα =且00)(2121=?=+++=+++λαααλλαλαλαn n故1V ∈λα.2V 不是向量空间.若221),,,(V T n ∈=αααα ,221),,,(V Tn ∈=ββββ , 则121=+++n ααα ,121=+++n βββ . 由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++211)()(2121=+=+++++++=n n βββααα 故2V ?+βα. 又T n ),,,(21λαλαλαλα =且λλαααλλαλαλα=?=+++=+++1)(2121n n故当1≠λ时,2V ?λα.35.试证:由T T T a a a )0,1,1(,)1,0,1(,)1,1,0(321===所生成的向量空间就是3R .证明设),,(321a a a A =.11101110,,321==a a a A 02≠=于是3)(=A R ,故321,,a a a 线性无关.由于321,,a a a 均为三维向量,且秩为3,所以321,,a a a 是三维向量空间3R 的一组基, 故由321,,a a a 所生成的向量空间就是3R .36.由T T a a )1,1,0,1(,)0,0,1,1(21==所生成的向量空间记作1L ,由T T b b )1,1,1,0(,)3,3,1,2(21--=-=所生成的向量空间记作2L ,试证21L L =.证明因为21,a a 的对应分量不成比例,所以21,a a 线性无关,故2),(21=a a R .因为21,b b 的对应分量不成比例,所以21,b b 线性无关,故2),(21=b b R .---=1310131011010211),,,(2121b b a a ~--0000000013100211 所以2),,,(2121=b b a a R ,从而),,,(),(),(21212121b b a a R b b R a a R ==. 所以21,a a 与21,b b 等价,因此21L L =.37.验证T T T a a a )2,1,3(,)3,1,2(,)0,1,1(321==-=为3R 的一个基,并把T T v v )13,8,9(,)7,0,5(21---==用这个基线性表示.解设),,(321a a a A =,),(21v v V =.对),(V A 实施初等行变换化为行最简形矩阵.----=1372308011195321),(V A ~---211003301032001由于A ~E ,所以3),,(321=a a a R ,故321,,a a a 线性无关,则321,,a a a 为3R 的一个基. 因为---==-213332),,(),,(),(321132121a a a V A a a a v v所以321132a a a v -+=, 3212233a a a v --=.38.已知3R 的两个基为=1111a ,-=1012a , ??=1013a 及 ????? ??=1211b , ????? ??=4322b , ????? ??=3433b , 求由基321,,a a a 到基321,,b b b 的过度矩阵P .解设),,(321a a a A =, ),,(321b b b B =.因为321,,a a a 与321,,b b b 是3R 的基,所以B A ,是3阶可逆矩阵.B A P P a a a b b b 1321321),,(),,(-=?=.对),(B A 实施初等行变换化为行最简形矩阵.-=341111432001321111),(B A ~---101100010010432001 所以---==-1010104321B A P .。
1习题4.1(线性方程组解的结构)一、下列齐次线性方程组是否有非零解?分析:n 阶方阵A ,AX=0有非零解0()A R A n ⇔=⇔<;仅有零解0()A R A n ⇔≠⇔=(1)123412341234123442020372031260x x x x x x x x x x x x x x x x -+-=⎧⎪--+=⎪⎨++-=⎪⎪--+=⎩ ;解:11421112317213126A ----=---213241311420054045402168r r r r r r ---=-------21054054544544004016821682168r r -=---=-=-≠--------仅有零解。
(2)12451234123453020426340x x x x x x x x x x x x x +--=⎧⎪-+-=⎨⎪-++-=⎩ .分析:n 元齐次线性方程组有非零解()R A n ⇔≤;仅有零解()R A n ⇔= 解:()35R A n ≤<=,有非零解(即有无穷多解)。
二、求齐次线性方程组12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩的一个基础解系。
解:322112314123512110121101201036130004000010051015000400000r r r r r r r r r A --------=--→-→--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以原方程组等价于1243200x x x x +-=⎧⎨=⎩(24,x x 可取任意实数)原方程组的通解为1122134220x k k x k xx k =-+⎧⎪=⎪⎨=⎪⎪=⎩(12,k k R ∈)2改写为11221211123422222101000000001x k k k k x k k x k k x x k k -+--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(12,k k R ∈)因此齐次线性方程组的基础解系为1221100001ξξ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,三、设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且()12345Tη=,()231234Tηη=+, 求该方程组的通解。
第四章 向量组的线性相关性1 设v1(1 1 0)T v2(0 1 1)T v3(3 4 0)T求v1v2及3v12v2v3解v1v2(1 1 0)T(0 1 1)T(10 11 01)T(1 0 1)T3v12v2v33(1 1 0)T 2(0 1 1)T (3 4 0)T(31203 31214 30210)T(0 1 2)T2 设3(a1a)2(a2a)5(a3a) 求a其中a1(2 5 1 3)Ta2(10 1 5 10)T a3(4 1 1 1)T解由3(a1a)2(a2a)5(a3a)整理得(1 2 3 4)T3 已知向量组A a1(0 1 2 3)T a2(3 0 1 2)T a3(2 3 0 1)TB b1(2 1 1 2)T b2(0 2 1 1)T b3(4 4 1 3)T证明B组能由A组线性表示但A组不能由B组线性表示证明由知R(A)R(A B)3 所以B组能由A组线性表示由知R(B)2 因为R(B)R(B A) 所以A组不能由B组线性表示4 已知向量组A a1(0 1 1)T a2(1 1 0)TB b1(1 0 1)T b2(1 2 1)T b3(3 2 1)T证明A组与B组等价证明由知R(B)R(B A)2 显然在A中有二阶非零子式故R(A)2 又R(A)R(B A)2 所以R(A)2 从而R(A)R(B)R(A B) 因此A组与B组等价5 已知R(a1a2a3)2 R(a2a3a4)3 证明(1) a1能由a2a3线性表示(2) a4不能由a1a2a3线性表示证明 (1)由R(a2a3a4)3知a2a3a4线性无关故a2a3也线性无关又由R(a1 a2a3)2知a1a2a3线性相关故a1能由a2a3线性表示(2)假如a4能由a1a2a3线性表示则因为a1能由a2a3线性表示故a4能由a2a3线性表示从而a2a3a4线性相关矛盾因此a4不能由a1a2a3线性表示6 判定下列向量组是线性相关还是线性无关(1) (1 3 1)T (2 1 0)T (1 4 1)T(2) (2 3 0)T (1 4 0)T (0 0 2)T解 (1)以所给向量为列向量的矩阵记为A因为所以R(A)2小于向量的个数从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B因为所以R(B)3等于向量的个数从而所给向量组线性相无关7 问a取什么值时下列向量组线性相关?a1(a 1 1)T a2(1 a 1)T a3(1 1 a)T解以所给向量为列向量的矩阵记为A由如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a1a2线性无关a1b a2b线性相关求向量b用a1a2线性表示的表示式解因为a1b a2b线性相关故存在不全为零的数12使(a1b)2(a2b)01由此得设则b c a1(1c)a2c R9 设a1a2线性相关b1b2也线性相关问a1b1a2b2是否一定线性相关?试举例说明之(也可看书后答案)解不一定例如当a1(1 2)T, a2(2 4)T, b1(1 1)T, b2(0 0)T时有a1b1(1 2)T b1(0 1)T, a2b2(2 4)T(0 0)T(2 4)T而a1b1a2b2的对应分量不成比例是线性无关的10 举例说明下列各命题是错误的(1)若向量组a1a2a m是线性相关的则a1可由a2a m线性表示解设a1e1(1 0 0 0) a2a3a m0则a1a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m 1b1m b m01原式可化为(a1b1) m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1 a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2) m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m0 1b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210 与题设矛盾1211 设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2b3b4线性相关证明由已知条件得a1b1a2a2b2a3 a3b3a4 a4b4a1于是a1 b1b2a3b1b2b3a4b1b2b3b4a1从而b1b2b3b40这说明向量组b1b2b3b4线性相关12 设b1a1b2a1a2b r a1a2 a r且向量组a1a2a r线性无关证明向量组b1b2b r线性无关证明已知的r个等式可以写成上式记为BAK因为|K|10 K可逆所以R(B)R(A)r从而向量组b1b2b r线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a1(1 2 1 4)T a2(9 100 10 4)T a3(2 4 2 8)T解 由知R(a1a2a3)2 因为向量a1与a2的分量不成比例故a1a2线性无关所以a1 a2是一个最大无关组(2)a1T(1 2 1 3) a2T(4 1 5 6) a3T(1 3 4 7)解由知R(a1T a2T a3T)R(a1a2 a3)2 因为向量a1T与a2T的分量不成比例故a1T a2T 线性无关所以a1T a2T是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)解因为所以第1、2、3列构成一个最大无关组.(2)解因为所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a 3 1)T (2 b 3)T(1 2 1)T (2 3 1)T的秩为2 求a b解设a1(a 3 1)T a2(2 b 3)T a3(1 2 1)T a4(2 3 1)T因为而R(a1a2a3a4)2 所以a2 b516 设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n) E(e1e2e n) 由已知条件知存在矩阵K使EAK两边取行列式得|E||A||K|可见|A|0 所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17 设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a 是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1 e2e n能由a1a2a n线性表示于是有nR(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18 设向量组a1a2a m线性相关且a10证明存在某个向量a k (2km) 使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12m使a12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10 矛盾因此存在k(2km) 使0 k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k能由a1a2a k1线性表示19 设向量组B b1b r能由向量组A a1a s线性表示为(b1b r)(a1a s)K其中K为sr矩阵且A组线性无关证明B组线性无关的充分必要条件是矩阵K的秩R(K)r证明 令B(b1b r) A(a1a s) 则有BAK必要性设向量组B线性无关由向量组B线性无关及矩阵秩的性质有rR(B)R(AK)min{R(A) R(K)}R(K)及R(K)min{r s}r因此R(K)r充分性因为R(K)r所以存在可逆矩阵C使为K的标准形于是(b1b r)C( a1a s)KC(a1a r)因为C可逆所以R(b1b r)R(a1a r)r从而b1b r线性无关20 设证明向量组12n与向量组12n等价证明将已知关系写成将上式记为BAK因为所以K可逆故有ABK1由BAK和ABK1可知向量组12n与向量组12n可相互线性表示因此向量组12n与向量组12n等价21 已知3阶矩阵A与3维列向量x满足A3x3A x A2x且向量组x A x A2x线性无关(1)记P(x A x A2x) 求3阶矩阵B使APPB解因为APA(x A x A2x)(A x A2x A3x)(A x A2x 3A x A2x)所以(2)求|A|解由A3x3A x A2x得A(3x A x A2x)0因为x A x A2x线性无关故3x A x A2x0即方程A x0有非零解所以R(A)3 |A|0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。
《线性代数》单元自测题答案第四章 线性方程组一、填空题:1、1-=a ;2、⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛321011k ;3、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--32012011k (k 为常数). 二、选择题:1、C ;2、B ;3、C 。
三、计算题:1、求齐次线性方程组⎪⎩⎪⎨⎧=+++=-++=+++054202320322432143214321x x x x x x x x x x x x 的一个基础解系,并用基础解系表示它的全部解。
解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-00005100130212510051003221215422321322123211312r r r r r r r r同解方程组为⎩⎨⎧=-=++05013243421x x x x x ,即⎩⎨⎧=--=434215132x x x x x 。
取⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛10,0142x x ,则方程组的基础解系为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00121α,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=150132α, 所以,方程组的全部解是2211ααk k +(21,k k 是任意常数)。
2、求线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=-+-=+--04112210234432134321432143214321x x x x x x x x x x x x x x x x 的全部解。
解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=225006615002250011311240411221023443121111311),(141312 r r r r r r b A ⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---+-00000000005252100113115100000000002250011311322423 r r r r r⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---+0000000000525210051151011321r r原方程组的同解方程组为⎪⎩⎪⎨⎧=-=--52525115143421x x x x x ,即⎪⎩⎪⎨⎧+=++=43421525251511x x x x x 。
基本教学要求:1.理解非齐次线性方程组有解的充分必要条件,理解齐次线性方程组有非零解的充分必要条件.2.理解齐次线性方程组的基础解系及通解等概念.3.理解非齐次线性方程组解的结构及通解等概念.4.掌握用线性方程组的初等变换求通解的方法.第四章 线性方程组一、线性方程组1. 线性方程组的表示形式(1)代数形式 11112121n n 12112222n n 2m11m22mn n m a x a x a x b ,a x a x a x b ,a x a x a x b .+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (4.1)记()11121n 21222n 12n m1m2mn a a a a a a A ,,,a a a ∆⎛⎫ ⎪ ⎪==ααα ⎪⎪⎝⎭()()11121n 121222n 212n m1m2mnm a a a b A a a a b B ,,,,a a a b ∆⎛⎫⎧β⎪⎪⎪==⎨ ⎪⎪αααβ⎪⎩⎝⎭(2)矩阵形式Ax =β. (4.2)(3)向量形式1122n n x x x α+α++α=β. (4.3)2. 基本概念非齐次线性方程组——当(4.1)式中的12m b ,b ,,b 不全为零. 齐次线性方程组——当(4.1)式中的12m b ,b ,,b 全为零.线性方程组的解(解向量)——使(4.1)式成立的12n x ,x ,,x 的一组取值12n c ,c ,,c (T 12n (c ,c ,,c )).解线性方程组(4.1)是指求解的集合(简称解集合).同解线性方程组——解集合完全相同的线性方程组.系数矩阵/增广矩阵——由变量前的系数构成的矩阵A/由变量前的系数与右端常数构成的矩阵B. 线性方程组的初等变换——互换两个方程的位置;用一个不为零的数乘某个方程; 某个方程的倍数加到另一个方程.二、解线性方程组解线性方程组涉及三个问题:1.解的存在性问题;2.解的数目问题;3.解的结构问题. 1. 解的存在性问题(P 86)注意到,线性方程组经初等变换得到的是同解方程组.即()()C C 0Ax CAx C A CA C ≠=β⇔=βββ可逆一般地,对于增广矩阵(A )β,存在可逆矩阵C ,使C 0(A )(CA C )≠ββ=不妨设r E A OO''β⎛⎫⎪''β⎝⎭, (4.4)1即 12x A x ,Ax .''+=β⎧=β⇔⎨''ο=β⎩ (4.4)2其中T T 11r 2r 1n x (x ,,x ),x (x ,,x )+==.由此可见,若''β=ο,则方程组有解,此时R (A)R (A )=β;若''β≠ο,方程组无解,此时R (A)1R (A )+=β.即有如下结论:定理4.1(解的存在定理) 线性方程组(4.2)有解的充分必要条件是R(A)=R(A β). (定理4.1 P 86)例4.1(例4.1 P 86) 判定线性方程组123123123 x 2x 3x 1,2x 3x 4x 5, x 3x 5x 1+-=⎧⎪+-=⎨⎪+-=-⎩是否有解.解 2131r 2r r r 12311 23 1(A )234501 2313510 122----⎛⎫⎛⎫⎪⎪β=-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭32311 23101 2 30 0 0 1---⎛⎫⎪→- ⎪ ⎪⎝⎭r r r r R(A)=2, R(A β)=3,故无解.2. 解的数目问题方程组(4.2)有解,即同解方程组(4.4)2有解.当r=n 时,由式(4.4)2得同解方程组x '=β,此时方程组有唯一解x '=β. (4.5)1若r<n ,同解方程组为12x A x ''+=β,亦即12x A x ''=β-, (4.5)2其中T T 11r 2r 1n x (x ,,x ),x (x ,,x )+==,此时有无穷多解,称1x 为固定变量,2x 为自由变量.令22x =c ,带入(4.5)2,即得全部解(称为通解)1n r 2x A c,c R x c,-''=β-⎧∈⎨=⎩. (4.6)定理4.2(解的数目定理) n 元线性方程组(4.2)当R(A β)= R(A)=n 时有唯一解;当R(A β)=R(A)<n 时有无穷多个解. (定理4.2 P 88)定理4.3 n 元齐次线性方程组A x =ο,当R(A)=n 时只有零解;当R(A)<n 时有无穷多个解. (定理4.3 P 88)例4.2(例4.2 P 88) λ为何值时,线性方程组123412341234 x 2x 3x x 1,3x 5x 6x 2x 5,2x 3x 3x x +-+=⎧⎪+-+=⎨⎪+-+=λ⎩ 有解?并在有解时求出全部解.解 1231 1(A )3562 52331 -⎛⎫⎪β=- ⎪ ⎪-λ⎝⎭2131r 3r r 2r 1 23 1 1 01 31 2 01 3 1 2λ---⎛⎫ ⎪→-- ⎪ ⎪---⎝⎭12322r 2r r r r (2)10 31 5 013 1 2 00 0 0 4λ+-⨯--⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭所以,当λ=4时,R(A)=R(A β)=2,方程有无穷多解,通解为112212123142x 53c c ,x 23c c ,c ,c R x c ,x c ,=-+⎧⎪=-+-⎪∈⎨=⎪⎪=⎩.例4.3(例4.3 P 88) 齐次线性方程组123123123x x +x 0,x x +x 0,x x +x 0λ+=⎧⎪+λ=⎨⎪+λ=⎩ 是否有非零解?3. 解的结构问题(1)齐次线性方程组解的结构解的性质:记V {x Ax }==ο——解集合(V 是向量空间,见本章第三节).,则有 ①如果12,V ξξ∈,那么12V ξ+ξ∈; ②如果V,k ξ∈为任意常数,那么k V ξ∈.推论 齐次线性方程组的任意有限个解的任意线性组合仍然是它的解(P 89).定义4.1 V 的“极大线性无关组”称为齐次线性方程组A x =ο的基础解系. (定义4.1 P 89)定义4.1表明,当A x =ο有无穷多解,其任意一个解都可由其基础解系线性表示.定理4.4(基础解系存在定理) 对于n 元齐次线性方程组A x =ο,如果R(A)=r<n ,则它有基础解系,且基础解系含n-r 个解向量. (定理4.4 P 90)A x =ο的通解(全部解的一般表达式)为(P 91)1122n r n r c c c --ξ+ξ++ξ, 12n r c ,c ,,c R -∈,其中12n r ,,,-ξξξ为A x =ο的一个基础解系.例4.4(类似例4.4 P 91) 解齐次线性方程组12345123451234512345 x x x x x 0,2x x x x 4x 0,4x 3x x x 6x 0, x 2x 4x 4x x 0.+--+=⎧⎪++++=⎪⎨+--+=⎪⎪+---=⎩ 解 213141r 2r r 4r r r 11111111112111401332A 43116013321244101332-------⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=→⎪ ⎪--- ⎪ ⎪------⎝⎭⎝⎭3212422(1)1111110223013320133200000000000000000000r r r r r r r -++---⎛⎫⎛⎫⎪ ⎪----⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭.R(A)=2<5,故有无穷多解,同解方程组为13452345334455x 2x 2x 3x ,x 3x 3x 2x x x ,x x ,x x .=---⎧⎪=++⎪⎪=⎨⎪=⎪⎪=⎩ 通解为12312345x 223x 332x c 1c 0c 0010x 001x ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,123c ,c ,c R ∈. (其中(-2,3,1,0,0)T , (-2,3,0,1,0)T , (-3,2,0,0,1)T 是一个基础解系.)例4.5(例4.5 P 92) 设4阶矩阵A=(α1,α2,α3,α4),α1,α2线性无关,α1+α2+α3+α4=ο,α1+2α2-α3-2α4=ο,求齐次线性方程组A x =ο的通解.解 分析:求通解的关键是 .已知条件表明 .(2)非齐次线性方程组解的结构 称A x =ο为A x =β的导出组.解的性质:若记C {x Ax }==β——解集合(C 不是向量空间,见本章第三节),则 ①如果12,C ξξ∈,那么12V ξ-ξ∈; ②如果C,V η∈ξ∈,那么C η+ξ∈;③如果0C η∈,那么A x =β的任意一个解η都可以表示为0η=η+ξ,其中V ξ∈.A x =β的通解为(P 93)01122n r n r c c c --η+ξ+ξ++ξ,12n r c ,c ,,c R -∈.其中0η是A x =β的一个解(称为特解),12n r ,,,-ξξξ是A x =ο的一个基础解系.例4.6 解线性方程组123412341234 x 2x 4x 3x 1,3x 5x 6x 4x 1,4x 5x 2x 3x 2.++-=⎧⎪++-=⎨⎪+-+=-⎩ 解 12 431(A )35 641452 32-⎛⎫⎪β=- ⎪ ⎪--⎝⎭213132122r 3r r 4r r 3r r 2r (1)r 1 2 4310165203181561 0873016520 0 00 01 08 730 1 65 20 0 0 0 0---+--⎛⎫⎪→--- ⎪⎪---⎝⎭--⎛⎫⎪→--- ⎪ ⎪⎝⎭--⎛⎫⎪→- ⎪ ⎪⎝⎭R(A β)=R(A)=2<4,有无穷多解,同解方程组为1342343344x 38x 7x ,x 26x 5x ,x x ,x x .=-+-⎧⎪=-+⎪⎨=⎪⎪=⎩ 通解为121234x 387x 265c c x 010001x --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12c ,c R ∈.(其中(-3,2,0,0)T 为特解,(8,-6,1,0)T , (-7,5,0,1)T 为导出组的一个基础解系.)例4.8(例4.7 P 94) 问a,b 为何值时,线性方程组123412341234234 x x x x 0,2x 3x x 4x 1,3x 2x ax x b, 2x 2x ax 2+++=⎧⎪+++=⎪⎨+++=⎪⎪-+=⎩ 无解?有唯一解?有无穷多个解?并在有无穷多个解时,求其通解.解 方法一(cramer 法则)4221313242c c c c c c c c c c 2111110002314211132a 131a 31022a022a 210002100(a 4).31a 4002a 4---+--=------==----所以,当a ≠4时,方程组有唯一解.而当a=4时,11110111102314101121(A )3241b 0112b 1022a202242⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪β=→⎪ ⎪--+ ⎪ ⎪--⎝⎭⎝⎭10211011210000b 100000--⎛⎫⎪- ⎪→ ⎪+ ⎪⎝⎭. 可见,当b ≠-1时,R(A)=2<R(A|β)=3,此时方程组无解;当b=-1时,R(A)=R(A β)=2,方程组有无穷多个解,同解方程组为1342343344x 12x x ,x 1 x 2x ,x x ,x x .=--+⎧⎪=+-⎪⎨=⎪⎪=⎩ 通解为 121234x 12 1x 112c c x 01 000 1x --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12c ,c R ∈.方法二(初等变换法 P 94)例4.9(例4.6 P 93) 设η1=(1,1,1,1)T , η2=(1,2,3,4)T , η3=(1,-1,2,3)T 都是4元非齐次线性方程组的A x =β的解,且R(A)=2,求方程组A x =β的通解.解 分析:三个解η1,η2,η3说明 ,R(A)=2则说明 .三、向量空间什么是向量空间?向量空间是符合一定条件的集合.为什么讲向量空间?当集合为向量空间时,该集合中的任意一个元素都可由该集合中的“极大线性无关组”线性表示.定义4.2 设V 是非空的n 维向量集合,如果V 对向量的加法和数乘运算是封闭的,则称V 是向量空间. (定义4.2 P 95)集合V 对向量的加法和数乘运算是封闭的是指: (1)如果,V αβ∈,那么V α+β∈; (2)如果V,k R α∈∈,那么k V α∈.例如,齐次线性方程组的解集合V 是向量空间,故也称为解空间;非齐次线性方程组的解集合C 不是向量空间.n 维向量集合R n 是向量空间.由向量组α1,α2,…,αm 的任意线性组合组成的集合L(α1,α2,…,αm )={k 1α1+k 2α2+…+k m αm |k 1,k 2,…,k m ∈R}是一个向量空间,称为由向量α1,α2,…,αm 生成的向量空间.例4.10(例4.8 P 96)定义4.3 设V 和U 是向量空间,如果V ⊂U ,则称V 是U 的子空间. (定义4.3 P 96)例如,n 元齐次线性方程组的解空间V 就是n 维向量空间R n 的一个子空间.定义4.4 向量空间V 的“极大无关组”称为V 的基,“极大无关组”的秩r 称为V 的维数,V 则称为r 维向量空间. (定义4.4 P 96)规定:不存在基的向量空间(即仅含零向量的向量空间)的维数为0.正交基——由正交向量组构成的基 规范正交基——由规范正交向量组构成的基例如,n 元齐次线性方程组的解空间V 是n-R(A)维向量空间,基础解系即是V 的基.R n 是n 维向量空间,标准单位向量组ε1,ε2,…,εn 即是R n 的一组规范正交基.生成空间L(α1,α2,…,αm )是R(α1,α2,…,αm )维向量空间,α1,α2,…,αm 的极大线性无关组即是L(α1,α2,…,αm )的基.例如,集合V 1={(0, a 2,…,a n )|a 2,…,a n ∈R}是向量空间,标准单位向量组e 2,…,e n 是V 1的一组规范正交基,V 1是n-1维向量空间.定义4.5 设α1,α2,…,αr 是向量空间V 的一个基,那么V 中向量α可以表示为α=x 1α1+x 2α2+…+x r αr ,称x 1,x 2,…,x r 为向量α在基α1,α2,…,αr 下的坐标. (定义4.5 P 97)例4.11(例4.9 P 97)解 分析:向量组是基的条件 .如果β1,β2,…,βr 是向量空间V 的另一组基,那么存在可逆矩阵C ,使(β1,β2,…,βr )=(α1,α2,…,αr )C . (4.10)C 称为由基α1,α2,…,αr 到基β1,β2,…,βr 的过渡矩阵.式(4.10)称为基变换公式.设向量α在基β1,β2,…,βr 下的坐标为(y 1,y 2,…,y r )T ,那么1122r r112212r 12r r r y y y y y yy (,,,)(,,,)C y y α=β+β++β⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=βββ=ααα ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.于是,α在基α1,α2,…,αr 下的坐标1122r r x y x y C x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (4.11) 式(4.11)称为坐标变换公式.例4.12(例4.10 P 98) 已知向量空间R 3中的两个基:α1=(1,0,0)T ,α2=(-1,1,0)T ,α3=(-1,-1,1)T ,e 1=(1,0,0)T , e 2=(0,1,0)T , e 3=(0,0,1)T ,求由基α1,α2,α3到基e 1,e 2,e 3的过渡矩阵,并求向量β=(1,2,3)T 在基α1,α2,α3下的坐标.解 α1=e 1,α2=-e 1+e 2,α3=-e 1-e 2+e 3,即(α1,α2,α3)=(e 1,e 2,e 3)111011001--⎛⎫ ⎪- ⎪ ⎪⎝⎭.于是由基α1,α2,α3到基e 1,e 2,e 3的过渡矩阵C 为1111112011011001001---⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭C .令β=x 1α1+x 2α2+x 3α3,则β在基α1,α2,α3下的坐标为(x 1,x 2,x 3)T =(α1,α2,α3)-1β=C (e 1,e 2,e 3)-1β= C β=(9,5,3)T .四、习题(P 101)选择题:1.提示:(1,0,1,0)T 是A x =ο的基础解系,则有α1+α3=ο ⇒ 排除A,C与 R(A)=4-1=3 ⇒1234*****A O R(A )1R(A )4R(A),,,1A A O A x 0α⎧≠⇒≥⎪⎧≤-=⎨⎪=⇒⎨⎪=ααα⎪⎩⎩的解都是 ⇒ R(A *)=1 ⇒ 排除B ,选D2. 提示: C 0r 12E A b (A b)(CA Cb)=O O b ≠⎛⎫'→ ⎪⎝⎭不妨 有解表明R(A)=R(A b ),对任意的b 都有解则表明R(A b )=m. 选B3. 选D4. 选C5. 选D6. 提示:|A|=0且A ij ≠0 ⇒ R(A)=n-1 ⇒ 选A7. 选C8. 选C9. 选B10. 选D11. 提示:|A|=0 ⇒ R(A)<nD i ≠0 ⇒ R(A|b )=n 选A12. 选C填空题:1. k=n-r , r=n2. r=n r<n3. 提示:A 是正交矩阵且a 11=1 ⇒ a 12=a 13=a 21=a 31=0⇒ A(1,0,0)T =(a 11,a 21,a 31)T =(1,0,0)T =b4. 提示:AB=O ⇒ B 的列向量都是A x =ο的解B ≠O ⇒ A x =ο有非零解 ⇒ R(A)<m 或 |A|=05. 提示:AB=AC ⇒ A(B-C)=O ⇒ R(A)<n6. a=-2解答题:2.(3) 解 2131r 4r r 3r 11026110264111105172531100041618------⎛⎫⎛⎫ ⎪ ⎪---→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭23223123r 15r 4r r r r r r (5)11026011755001221001101017001210⨯-++-⨯---⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭-⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭R(A)=R(A|β)<4,有无穷多解.同解方程组为14243444x x 1,x x 7, x 2x 10,x x .=+⎧⎪=-⎪⎨=+⎪⎪=⎩ 通解为(1,-7,10,0)T +c(1,1,2,1)T , c ∈R .3. 提示:32121r r 2r r 4r 10110141224122614230001---λλ⎛⎫⎛⎫ ⎪ ⎪λ+→λ+ ⎪ ⎪ ⎪ ⎪λ+-λ+⎝⎭⎝⎭4. 提示:向量β能不能由向量组α1,α2,α3线性表示等同于非齐次线性方程组(α1,α2,α3)x =β是否有解.1 1 1 11 1 11 2a 2 b+2 30 a b+4103a a 2b 303a a 2b 311 110a b+4100a+5b+120--⎛⎫⎛⎫ ⎪ ⎪+→ ⎪ ⎪ ⎪ ⎪-+--+-⎝⎭⎝⎭-⎛⎫ ⎪→ ⎪ ⎪⎝⎭(1)当a=0且b ≠-12/5时, 11 1111110a b+4100 1000a+5b+12000 01--⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,有R(A)=2<R(A β)=3,此时β不能由向量组α1,α2,α3线性表示.(1) (2)当a+5b+12=0时,R(A)=R(A β)=2,这时β能由向量组α1,α2,α3线性表示,但表示式不唯一.由(2) 11 11 0a b+4100a+5b+12011 1 1101(b 4)a 1101(b 4)a 1a 01 1 1,a 000 0 000 0 0111 1110(b 5)(b 400 114)00 0 0-⎛⎫ ⎪ ⎪ ⎪⎝⎭---+-⎛⎫⎛⎫ ⎪ ⎪+→-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭→-++⎛⎫ ⎪+→ ⎪ ⎪⎝⎭)001 1(b 4),a 0000 0⎧⎪⎪⎪⎪⎨⎛⎫⎪ ⎪⎪+= ⎪⎪ ⎪⎪⎝⎭⎩有 1211(1)a a β=-α+α 或 13b 51b 4b 4+β=α+α++. (3) (3)当a(a+5b+12)≠0时,R(A)=R(A β)=3,这时β能由向量组α1,α2,α3唯一线性表示.由11 1111 1 1 0a b+4101(b+4)a 1a 00a+5b+12000 1 010011a 010 1a 001 0--⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎛⎫ ⎪→ ⎪ ⎪⎝⎭, (4) 有1211(1)a aβ=-α+α. (5) 5.提示:方程组(Ⅱ)的系数矩阵的秩=增广矩阵的秩=3.因为方程组(Ⅰ)与方程组(Ⅱ)同解,所以它们的解也是方程组[(Ⅰ)+(Ⅱ)]的解,从而方程组[(Ⅰ)+(Ⅱ)]满足:系数矩阵的秩=增广矩阵的秩=3.23123415161425263r 2r r r r r r r 2r r 2r r (a 1)r r r r r 111111006601212010540012100121 1a1110a 100021b 1401b 212223c 1001c 21100660105400121000--------+--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--→ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭---→-53r (b 2)r 5(a 1)4(a 1)00b 242000c 401006601054001210005(a 1)4(a 1)0002(4b)b 4000c 40--⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪-- ⎪ ⎪-⎝⎭-⎛⎫ ⎪- ⎪ ⎪-→ ⎪--- ⎪ ⎪-- ⎪ ⎪-⎝⎭因为系数矩阵的秩=增广矩阵的秩=3,所以a-1=0,b-4=0,c-4=0 ⇒ a=1,b=c=4.6. 提示:BA 的行向量都是方程组P x =ο的解⇒ P(BA)T =P(A T B T )=OB ⇒可逆 PA T =O⇒ A 的行向量也都是方程组P x =ο的解7. 提示: AB=O ⇒ B 的列向量都是方程组A x =ο的解B ≠O ⇒ 方程组A x =ο有非零解 ⇒ R(A)<n ,故|A|=08. 提示:设A=(α1,α2,…,αn ),并取x =e i (i=1,2,…,n),那么由A x =ο即得αi =ο(i=1,2,…,n),所以A=O.9. 提示:由A η=b ⇒ a=c.10. 提示:11a 14(A B)=1a 112a 1122⎛⎫ ⎪- ⎪ ⎪--⎝⎭123r r r a 2a 2a 2001a 112a 1122+++++⎛⎫ ⎪→- ⎪ ⎪--⎝⎭32r 2r a 2a 1a 2a 100000000000000012112121121101021122033060110211100000120000411100140010a 1012a 1a 1a 1002212010a 1a 12100+=-=≠-≠⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→--→--→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎛⎫ ⎪→- ⎪ ⎪-⎝⎭⎛⎫ ⎪→---- ⎪ ⎪---⎝⎭→----2a 1a 1⎧⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎛⎫⎪⎪⎪ ⎪⎨⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪- ⎪⎪--⎪⎝⎭⎩⎩当a=1时,无解;当a ≠-2且a ≠1时,解唯一;当a=-2时,解不唯一.11. 提示:A ηi =β(i=1,2,…,n)⇒ A(k 1η1+k 2η2+…+k s ηs )=(k 1+k 2+…+k s )β=β⇔ k 1+k 2+…+k s =112. 解 A 的各行元素之和都等于零,即A (1,1,…,1)T =οT ,所以(1,1,…,1)T 是A x =ο的解.另因R(A)=n-1,所以(1,1,…,1)T 是基础解系.于是A x =ο的通解为c(1,1,…,1)T ,c ∈R .13. 提示:设B=(β1,β2,…,βs ),则AB=O ⇔ A(β1,β2,…,βs )=O⇔ A βi =ο,i=1,2,…,s ,⇒ B 的各列都是A x =ο解⇒ R(B)≤n-R(A)⇒ R(A)+R(B)≤n14. 提示:n ijlj j 1A 0,a A 0,i,l 1,2,,n,i l ====≠∑()n ijlj j 1T k1k2kn R(A)n,a A 0,i,l 1,2,,n R(A)n,A A ,A ,,A =⇒<==⇒<=ο∑ 又 ()kl k1k2kn R(A)n 1,A 0A ,A ,,A .≥-⎧⎪≠⇒⎨≠ο⎪⎩ 所以R(A)=n-1,且(A k1, A k2, …,A kn )T 是A x =ο的一个基础解系.15. 提示:234123,,R(A)32⇒ααα⎧=⎨α=α-α⎩线性无关T 1232A(1,2,1,0)α=α-α⇒-=ο,T 1234A(1,1,1,1)β=α+α+α+α⇒=β,故A x =β的通解为(1,1,1,1)T + c(1,-2,1,0)T , c ∈R .16. 提示:因为A≠O,AB=O ,所以R(A)≥1, R(A)+R(B)≤3,因此R(B)≤2.于是若k≠9,则R(B)=2,R(A)=1,此时A x =ο的通解为c 1(1,2,3)T +c 2(3,6,k)T , c 1,c 2∈R.若k=9,则R(B)=1.那么(1)当R(A)=2时,A x =ο的通解为c(1,2,3)T , c ∈R ;(2)当R(A)=1时,A x =ο的同解方程为ax+by+cz=0,通解为c 1(b,-a,0)T +c 2(c,0,-a)T , c 1,c 2∈R .17. V 1是n-1维向量空间,一个基为(1,0,…,0,-1)T , (0,1,…,0,-1)T ,…, (0,0,…,1,-1)T .V 2不是.18. 提示:(1) 因为(β1,β2,β3)=(α1,α2,α3)C ,所求过渡矩阵为C=(α1,α2,α3)-1(β1,β2,β3)=…(2) 设α=(α1,α2,α3)x ,则x =(α1,α2,α3)-1α=…19. 提示:设采购前后仓库A,B,C 三件物品的件数分别为x 0,y 0,z 0和x 1,y 1,z 1,则x 1=0.3y 0+0.5z 0+x 0, y 1=0.3x 0+y 0, z 1=0.6y 0+z 0,即x 0+0.3y 0+0.5z 0 =290,0.3x 0+ y 0 =330,0.6y 0+ z 0=380.五、计算实践实践指导:(1)了解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充要条件.(2)理解齐次线性方程组的基础解系及通解等概念.(3)理解非齐次线性方程组解的结构及通解等概念.(4)掌握用行初等变换求线性方程组通解的方法.例4.1 a,b 为何值时,线性方程组123123123123(1a)x x x 1, 2x (2a)x 2x 2, 3x 3x (3a)x 3,4x 4x 4x (4a).+++=⎧⎪+++=⎪⎨+++=⎪⎪++=+⎩ 无解,有解?并在有解时求其解.解 ()1a 11122a 22A 333a 34444a +⎛⎫ ⎪+ ⎪β= ⎪+ ⎪+⎝⎭10a 10a 10a 10a 22a 22333a 34444a ++++⎛⎫ ⎪+ ⎪→ ⎪+ ⎪+⎝⎭. 当a≠-10时,111122a 22(A )333a 34444a ⎛⎫ ⎪+ ⎪β→ ⎪+ ⎪+⎝⎭11111,a 0111111a a 1111a 0,a 000⎧⎛⎫⎪ ⎪⎪⎪→≠⎪⎪⎛⎫⎪ ⎪ ⎪⎪⎝⎭ ⎪→⎨ ⎪⎛⎫⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪==⎪⎪ ⎪⎪⎝⎭⎩ ⇒ 当a≠-10且a≠0,无解;当a=0,有无穷多个解,通解为(1,0,0)T +c 1(-1,1,0)T +c 2(-1,0,1)T , c 1,c 2∈R.当a=-10时,()9111010201028221411A 337301510000000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪β→→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭ 14111411012102010320032000000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭ 1011100140101201012002320013400000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭ ⇒ 当a=-10,有唯一解(-1/4,-1/2,-3/4)T .例4.2 证明:*n,R(A)n, R(A )1,R(A)n 1,0,R(A)n 1.=⎧⎪==-⎨⎪<-⎩证 *AA A E = ******ij **ij R(A)n A 0A R(A )nAA O R(A)R(A )n R(A)n 1R(A )1A 0R(A )1R(A)n 1A 0A O R(A )0=⇒≠⇒⇒=⎧=⇒+≤⎪=-⇒⇒=⎨∃≠⇒≥⎪⎩<-⇒∀=⇒⇒=可逆=六、知识扩展1.设A 是m×n 矩阵,B 是n×m 矩阵,则线性方程组AB x =ο[D ].(A)当n>m 时仅有零解;(B)当n>m 必有非零解;(C)当n<m 时仅有零解; (D)当n<m 时必有非零解. (2002 数三)提示:AB 是m×m 矩阵,R(AB)≤min{ R(A), R(B)}⇒ 当m≤n ,R(AB)≤m ,由此推不出R(AB)=m 或必≠m ⇒ 排除A,B ;当n≤m ,R(AB)≤n ⇒ AB x =ο有非零解 ⇒ 排除C ,故选D.2.设A 是m×n 矩阵,A x =ο是A x =β的导出组,则下列结论正确的是[D ].(A)若A x =ο仅有零解,则A x =β有唯一解;(B)若A x =ο有非零解,则A x =β有无穷多个解;(C)若A x =β有无穷多个解,则A x =ο仅有零解;(D)若A x =β有无穷多个解,则A x =ο有非零解.提示:由(A)、(B)推不出R(A)=R(A β);由(C)、(D)可推出R(A)<n ,故选(D).3.非齐次线性方程组A x =β中未知量个数为n ,方程个数为m ,系数矩阵的秩为r ,则[A ].(A) 当r=m 时, 则A x =β有解;(B) 当r=n 时, 则A x =β有唯一解;(C) 当n=m 时, 则A x =β有唯一解;(D) 当r<n 时, 则A x =β有无穷多个解.(1997 数四)提示:由(B)、(C)、(D)推不出R(A)=R(A β),而由(A)可推出R(A)=R(A β)= m ,故选(A).4.设n 阶矩阵A 的伴随矩阵A *≠O ,若η1,η2,η3,η4是非齐次方程组A x =β的互不相等的解,则对应的齐次方程组A x =ο的基础解系[B ].(A)不存在;(B )仅含一个非零解向量;(C)含有两个线性无关的解向量;(D)含有三个线性无关的解向量.提示:A *≠O ⇒ R(A)≥n -1η1,η2,η3,η4是互不相等的解 ⇒ R(A)<n⇒ R(A)=n-1 ⇒ A x =ο的基础解系仅含一个非零解向量,故选D.5.已知非齐次线性方程组123412341234 x x x x 14x 3x 5x x 1ax x 3x bx 1+++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解,(1)证明方程组系数矩阵A 的秩R(A)=2;(2)求a,b 的值及方程组的通解.提示:(1)非齐次线性方程组有3个线性无关的解, 所以其导出组至少有两个解,因此R(A)≤2.又()21321r 4r r 1a r ar 11111(A )43511a 13b 111111011530042a b 4a 542a -+---⎛⎫ ⎪β=-- ⎪ ⎪-⎝⎭-⎛⎫ ⎪→-- ⎪ ⎪--+--⎝⎭⇒ R(A)≥2 ⇒ R(A)=2(2) R(A)=R(A β)=2 ⇒42a 0a 2b 4a 50b 3-==⎧⎧⇒⎨⎨-+-==-⎩⎩1111112064(A )43511011532133100000--⎛⎫⎛⎫ ⎪ ⎪β=--→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是通解为(-4,0,3,0)T +c 1(-2,1,1,0)T +c 2(-6,0,5,1)T , c 1,c 2∈R.6.已知四元齐次线性方程组(Ⅰ) 12312342x 3x x 0 x 2x x x 0+-=⎧⎨++-=⎩和另一个四元齐次线性方程组(Ⅱ)的一个基础解系α1=(2,-1,a+2,1)T , α2=(-1,2,4,a+8)T ,(1)求方程组(Ⅰ)的一个基础解系;(2)当a 为何值时,方程组(Ⅰ) 与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解. (2002 数四)提示:(1) (Ⅰ)的一个基础解系为β1=(5,-3,1,0)T , β2=(-3,2,0,1)T .(2) 设方程组(Ⅰ)与(Ⅱ)有非零公共解,于是将(Ⅱ)的通解k 1α1+k 2α2代入(Ⅰ)中,得()()()112a 1k 0a 1k a 1k 0+=⎧⎪⎨+-+=⎪⎩ 当a≠-1时,k 1=k 2=0,则(Ⅰ)与(Ⅱ)无非零公共解;当a=-1时,k 1,k 2任意,故此时(Ⅰ)与(Ⅱ)有非零公共解,且全部非零公共解为k 1α1+k 2α2,k 1,k 2为不全为零的任意实数.7.已知向量组β1=(0,1,-1)T ,β2=(a,2,1)T ,β3=(b,1,0)T 与向量组α1=(1,2,-3)T ,α2=(3,0,1)T ,α3=(9,6,-7)T 有相同的秩,且β3可由α1,α2,α3线性表示,求a,b 的值. (2000 数二) (答案:a=15,b=5)提示:()123123αααβββ1390ab 206121317110⎛⎫ ⎪→ ⎪ ⎪---⎝⎭ 11103122130124220002a 13b 5⎛⎫ ⎪⎪ ⎪→ ⎪ ⎪--- ⎪ ⎪⎝⎭⇒ R(A)=2因β3可由α1,α2,α3线性表示,故b-5=0,即b=5.()123123αααβββb 51100310a 150=-⎛⎫ ⎪→ ⎪ ⎪-⎝⎭ 因为R(A)=R(B)=2,故a-15=0,即a=15.8.设A 是实方阵,证明:线性方程组A x =ο与A T A x =ο是同解方程组. (2000数三) 提示:显然A x =ο的解是A T A x =ο的解;反之,若x 是A T A x =ο的解,则x T A T A x =0 ⇔ |A x =ο|=0 ⇔ A x =ο,故x 也是A x =ο的解.9.设向量组(α1,α2,…,αt )是齐次线性方程组A x =ο的一个基础解系,向量β不是方程组A x =ο的解.证明:向量组β,β+α1,β+α2,…,β+αt 线性无关.提示:方法一由α1,α2,…,αt 是齐次线性方程组A x =ο的一个基础解系,β不是方程组A x =ο的解,知β,α1,α2,…,αt 线性无关.令k 0β+k 1(β+α1)+k 2(β+α2)+…+k t (β+αt )=ο即(k 0+k 1 +k 2+…+k t )β+k 1α1+k 2α2+…+k t αt =ο01t 011t t k k k 0k 0 k 0k 0k 0k 0+++==⎧⎧⎪⎪==⎪⎪⇒⇒⎨⎨⎪⎪⎪⎪==⎩⎩ 故向量组β,β+α1,β+α2,…,β+αt 线性无关.方法二由α1,α2,…,αt 是齐次线性方程组A x =ο的一个基础解系,β不是方程组A x =ο的解,知β,α1,α2,…,αt 线性无关.另有()()()()12t 12t t 1t 1 ,,,,111010,,,,BK 001∆+⨯+ββ+αβ+αβ+α⎛⎫ ⎪ ⎪=βααα= ⎪ ⎪⎝⎭ 而K 可逆,故β,β+α1,β+α2,…,β+αt 线性无关.10. 设A 是n 阶矩阵,α是n 维列向量,若秩T AR R(A)α⎛⎫= ⎪αο⎝⎭,则线性方程组[D ].(A) A x =α必有无穷多个解;(B) A x =α必有唯一解;(C) T Ax y α⎛⎫⎛⎫=ο ⎪⎪αο⎝⎭⎝⎭仅有零解; (D) T Ax y α⎛⎫⎛⎫=ο ⎪⎪αο⎝⎭⎝⎭必有非零解. (2001 数三) 提示:T AR R(A)α⎛⎫= ⎪αο⎝⎭ ⇒ T A R n 1α⎛⎫<+ ⎪αο⎝⎭ ⇒ 排除C ,选D 此外,由T AR R(A )R(A)α⎛⎫≥α≥ ⎪αο⎝⎭⇒ R(A α)= R(A) ⇒ A x =α有解,但不能确定是有唯一解,还是有无穷多个解,故排除A,B .11. 设α=(1,2,1)T ,β=(1,1/2,0)T ,γ=(0,0,8)T ,A=αβT ,B=βT α,求解方程2B 2A 2x =A 4x +B 4x +γ. 提示:241120A 210,B 2,A 2A,A 8A 1120⎛⎫ ⎪==== ⎪ ⎪⎝⎭方程化简为8(A-2E)x =γ,解之得x =(1/2,1,0)T +c(1,2,1)T , c ∈R.12.设11a A 010,b 1111λ⎛⎫⎛⎫ ⎪ ⎪=λ-= ⎪ ⎪ ⎪ ⎪λ⎝⎭⎝⎭,已知线性方程组A x =b 存在2个不同的解,(Ⅰ)求λ和a ;(Ⅱ)求方程组A x =b 的通解. (2010(一)(二)(三))13.设矩阵222a 1a 2a A 1a 2a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,现矩阵A 满足方程A x =b ,其中x =(x 1,x 2,…x n )T ,b=(1,0,…,0)T , (1)求证|A|=(n+1)a n ; (2)a 为何值时,方程组有唯一解?求x 1;(3)a 为何值时,方程组有无穷多解?求通解. (2008(一)(二)(三))提示:(1)2222n2a12a130a1a2a2Aa2a11a2aa2a 2a130a124(n1)a.a31n10an====++或22n n-1n-22n2n n-1n-1n-221n222nnn2a1a2aD2aD a D1a2aD aD a(D aD)a(D aD)a(3a2a)aD(n1)a.--==-⇒-=-=-=-=⇒=+(2)当a≠0时,方程组有唯一解,根据Cramer法则,得n1n11nnD na nxD(n1)a(n1)a--===++.(3)当a=0时,方程有无穷多解,通解为x=(0,1,0,…,0)T+c(1,0,0,…,0)T, c∈R.。
第四章 线性方程组1.设齐次方程组1231231230030x ax x ax x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 有非零解,求a 及其通解.解:因为此方程组有非零解,故系数矩阵的行列式为零.2211||1131********a aa a a a ==-+--+=-=-A所以,21a =,即1a =±(1)当1a =时,对此方程组的系数矩阵进行行变换111111120111000011113022000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A原方程组等价于1223200x x x x +=⎧⎨-=⎩, 即 12322x x x x =-⎧⎨=⎩. 取21x =,得1211-⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ为方程组的基础解系. 则方程组的通解为1(2,1,1),k k k ==-∈X ξTR .(2)当1a =-时,111111110111001001113000000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭A原方程组等价于1230x x x -=⎧⎨=⎩取21x =,得()T21,1,0=ξ为方程组的基础解系.故通解为2(1,1,0),TR k k k ==∈X ξ.2.解齐次方程组(1)12341234123420222020x x x x x x x x x x x x ++-=⎧⎪+++=⎨⎪++-=⎩ (2)12341234123412342350327043602470x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩(3)12341234123420510503630x x x x x x x x x x x x ++-=⎧⎪++-=⎨⎪+--=⎩ (4)12341234123412343457041113160723023320x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++=⎪⎪-+-=⎩(1)解:对此线性方程组的系数矩阵进行初等行变换211111211010221201310103112100340034---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→--→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭A原方程组等价于 132434030340x x x x x x -=⎧⎪+=⎨⎪-=⎩即 1323439434x x x x x x ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩取34x =,得()T4,9,4,3=-ξ为原方程组的基础解系. 故通解为 ,R k k =∈X ξ.(2)解:对线性方程组的系数矩阵进行初等行变换2315231531271231241361051312471247--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭A 123121231207729011746028250015015000327----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭故 ||0≠A ,所以此方程组只有零解,即 T(0,0,0,0)=X .(3)解:对线性方程组的系数矩阵进行初等行变换1211120151015001036130000--⎛⎫⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A原方程组等价于142320x x x x =-⎧⎨=⎩ 取 2410,.01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT122,1,0,0,1,0,0,1=-=ξξ为方程组的基础解系.所以,原方程组的通解为 112212(,)R k k k k =+∈X ξξ.(4)解:对方程组的系数矩阵进行初等行变换,34571789411131617897213017192023322332--⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪----⎝⎭⎝⎭A 1789017192000000000-⎛⎫ ⎪-- ⎪→ ⎪ ⎪⎝⎭原方程组等价于123423478901719200x x x x x x x +-+=⎧⎨-+-=⎩ 即 134234313171719201717x x x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩取 34170,017x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT123,19,17,0,13,20,0,17==--ξξ为方程组的基础解系.故通解为 112212,,k k k k =+∈X ξξR .3.解非齐次方程组(1)1231231232104221138x x x x x x x x -+=⎧⎪+-=⎨⎪+=⎩ (2)12312312312323438213496245x x x x x x x x x x x x ++=⎧⎪+-=⎪⎨-+=-⎪⎪-+=-⎩ (3)1234123412342133344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩(1)解:对此方程组的增广矩阵进行初等行变换3121031210()42121338113081332--⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A b 133801011340006--⎛⎫⎪→- ⎪ ⎪-⎝⎭因为 ()23()r r =≠=A A b所以,此方程组无解.(2)解:对此方程组的增广矩阵进行初等行变换231412453821307714()41960141428124507714--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪--- ⎪ ⎪---⎝⎭⎝⎭A b 12451021011201120000000000000000---⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭原方程组等价于 1323212x x x x +=-⎧⎨-=⎩此方程组对应的导出组的基础解系为()T2,1,1=-ξ此方程组的特解为 ()T01,2,0=-η 故方程组的通解为 0k k =+∈X ξηR .(3)解:对此方程组的增广矩阵进行初等行变换2111114352()331340759514352015101810---⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭A b 143520759501000--⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭103520100000595--⎛⎫ ⎪→ ⎪ ⎪-⎝⎭原方程组等价于 1342343520595x x x x x x -+=-⎧⎪=⎨⎪-=⎩即 142342150915x x x x x ⎧=+⎪⎪=⎨⎪⎪=+⎩此方程组对应导出组的基础解系为 ()T2,0,9,5=ξ特解为 ()T01,0,1,0=η 故通解为 0k k =+∈X ξηR .4.求解非齐次方程组(1)1234523451234512345226323054332x x x x x a x x x x b x x x x x x x x x x ++++=⎧⎪+++=⎪⎨+++-=⎪⎪+++-=⎩ (2)1234123412341234230264132716x x x x x x x x x x px x x x x x t+-+=⎧⎪+-+=-⎪⎨+++=-⎪⎪---=⎩(1)解:对此非齐次线性方程组的增广矩阵进行初等行变换111111111101226012263211300122635433120122625a ab b a a ⎛⎫⎛⎫⎪⎪⎪ ⎪→ ⎪ ⎪------ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 111111111101226012260000030000030000025000001a a b b b a b b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪+--⎝⎭⎝⎭①当1a ≠,或3b ≠时,方程组无解; ②当1a =且3b =,方程组有无穷多解; 此时方程组等价于 12345234512263x x x x x x x x x ++++=⎧⎨+++=⎩即 13452345522263x x x x x x x x =++-⎧⎨=---+⎩取 3451000,1,0001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得对应的导出组的基础解系()T 11,2,1,0,0=-ξ,()T 21,2,0,1,0=-ξ,()T35,6,0,0,1=-ξ,()T02,3,0,0,0=-η为特解.故通解为1122330k k k =+++X ξξξη, 123,,k k k ∈R . (2)解:对方程组的增广矩阵进行初等行变换1123011230216410122132710162111610244P P t t --⎛⎫⎛⎫ ⎪ ⎪------⎪ ⎪→ ⎪ ⎪--+-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭11230012210080000002P t -⎛⎫⎪ ⎪→ ⎪+ ⎪ ⎪+⎝⎭①当2t ≠-时,方程组无解.②当2t =-,8P =-时,方程组有无穷多解.此时,原方程组等价于1234234230221x x x x x x x +-+=⎧⎨++=⎩即 13423441221x x x x x x =--⎧⎨=--+⎩则 ()T14,2,1,0=-ξ,()T21,2,0,1=--ξ为导出组的基础解系()T01,1,0,0=-η为方程组的一个特解,故通解为1122012,,k k k k =++∈X ξξηR .③ 2t =-,8P ≠-时,方程组有无穷多解 此时,原方程组等价于12342343230220(8)0x x x x x x x P x +-+=⎧⎪++=⎨⎪+=⎩即 142431210x x x x x =--⎧⎪=-+⎨⎪=⎩则 ()T1,2,0,1=--ξ为导出组的基础解系, ()T01,1,0,0=-η为方程组的一个特解. 故方程组的通解为0k k =+∈X ξηR .5.讨论方程组的解,并求解123123123(3)2(1)23(1)(3)3a x x x a ax a x x aa x ax a x +++=-⎧⎪+-+=⎨⎪++++=⎩解:线性方程组的系数矩阵的行列式为312132132||111112323(1)3333333a a a a a a aa a a aa aa a a a a +++=-=-=-----++++++A21320033a aa a a +=----+221120(1)03a a a a a a a +=-=---+令||0=A ,则0a =或1a =(1)0a =时. 线性方程组的增广矩阵为31203120()0110011030330113⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A b 312001100003⎛⎫⎪→- ⎪ ⎪⎝⎭因为()23()r r =≠=A Ab所以,此时方程组无解;(2)当1a =时, 41211012()1012012961430000-⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b方程组等价于1323229x x x x =-+⎧⎨=-⎩,()T1,2,1=-ξ为导出组的基础解系,()T02,9,0=-η为方程组的一个特解. 故通解为0k k =+∈X ξηR .(3)当0a ≠且1a ≠时,方程组有唯一解.2129a x a +=-,222339a a x a ++=,3239a x a +=. 6.设T T11012,,0,,2180⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭αβγA αβB βα,其中T β是β的转置,求解方程22442=++B A x A x B x γ. 解:将TT T ,,2===A αβB βαβα代入下式得22T TTT4T222=⋅B A x βαβααβαβx αβx = 4TTTT3T2=⋅⋅⋅=A x αβαβαβαβx αβx 442=B x x 由 22442=++B A x A x B x γ 得4T 3T 4222=++x x x γαβαβ3T T32(22)--=αβαβE x γ 3T32(2)-=αβE x γ又 T1101212(10)210211102⎛⎫ ⎪⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭αβ所以 3110222101122⎛⎫- ⎪ ⎪-= ⎪ ⎪- ⎪⎝⎭x γ即 12384001680084168-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭x x x对线性方程组的增广矩阵进行初等行变换84002100202216800012201228416800000000----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组等价于 1323122+=-⎧⎨-=⎩x x x x ,即1323122x x x x =--⎧⎨=+⎩,121-⎛⎫⎪= ⎪ ⎪⎝⎭ξ为导出组的基础解系.0120-⎛⎫ ⎪= ⎪ ⎪⎝⎭η为方程组的一个特解. 故通解为 0R k k =+∈X ξη. 7.已知向量组12301,2,1110a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭βββ与向量组1231392,0,6317⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ααα具有相同的秩,且3β可由123,,ααα线性表示,求,a b 的值. 解:因为3β可以由123,,ααα线性表示 所以,1233(,,)=X αααβ有解.即 1231233(,,)(,,)r r =ααααααβ1233(,,)αααβ13913920610612123170010203b b b b ⎛⎫⎛⎫ ⎪ ⎪=→--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭139210126500030b b b ⎛⎫ ⎪ ⎪- ⎪→ ⎪ ⎪- ⎪ ⎪⎝⎭ 因为 1231233(,,)(,,)r r =ααααααβ所以 1231233(,,)(,,)2r r ==ααααααβ 故50,530bb -==又 123(,,)βββ01101101210310311100003a b a b a b ⎛⎫⎪--⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭- ⎪⎝⎭ 因为 123123(,,)(,,)r r =αααβββ所以 03ab -= 315a b ==.8.设向量组12311111,1,1,11111λλλ+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ讨论λ取可值时,β不能由123,,ααα线性表示. λ取何值时,β可由123,,ααα唯一线性表示. λ取何值时,β可由123,,ααα线性表示,且有无穷多种表示形式.解:β是否能由123,,ααα线性表示,也即是 非齐次线性方程组123(,,)=αααX β是否有解.321(,,)αααβ211111111111100111101(1)λλλλλλλλλ++⎛⎫⎛⎫ ⎪ ⎪=+−−→- ⎪ ⎪ ⎪ ⎪+--+-⎝⎭⎝⎭行2111100003λλλλλλ+⎛⎫ ⎪−−→- ⎪ ⎪---⎝⎭行(1)当0λ=时,123123(,,)(,,)2r r ==ααααααβ,则123(,,)=αααX β有无穷多解. 也即β可由123,,ααα线性表示,并且有无穷多表示方法. 121122312(1),k k k k k k =--++∈βαααR ;(2)3λ=-时,123123(,,)23(,,)r r =≠=ααααααβ,故方程组123(,,)=αααX β无解,也即β不能由123,,ααα线性表示;(3)0,3λλ≠≠-时,123123(,,)(,,)r r =ααααααβ,则方程组123(,,)=αααX β有唯一解. 即β可由123,,ααα唯一线性表示.13λ=+β123(,,)ααα. 9.设四阶方阵A 的秩为2,且(1,2,3,4)i i ==A ηb ,其中122334112112,,012002⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ηηηηηη 求非齐次方程组=AX b 的通解.解:因为()2r =A ,故非齐次线性方程组=AX b 的导出组的基础解系含有2个向量又 1231202()()10⎛⎫ ⎪- ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη,2342313()()12⎛⎫ ⎪ ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη为=AX b 对应导出组的2个线性无关的解向量,即12,ξξ是=AX b 导出组的基础解系0121()2=+ηηη是=AX b 的一个解.故=AX b 的通解为1122012,k k k k =++∈X ξξηR . 10.已知方程组(I )的通解为1212(0,1,1,0)(1,2,2,1),k k k k =+-∈X T TR设方程组(II )为 122400x x x x +=⎧⎨-=⎩问方程组(I )、(II )是否有非零公共解,若有,求其所有公共解. 解:由题意,(I )的通解为212121212201212,21201R k k k k k k k k k k --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪=+=∈ ⎪⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X将X 的表达式代入方程组(II )得2121222020k k k k k k -++=⎧⎨+-=⎩ 即 12k k =-所以(I )和(II )有公共解,并且公共解为()()11,,,1,1,1,1k k k k k k =---=---∈X T TR .11.设四元齐次方程组(I )为123123423020x x x x x x x +-=⎧⎨++-=⎩ 且已知另一四元齐次方程组(II )的一个基础解系为T1(2,1,2,1)a =-+α,T 2(1,2,4,8)a =-+α,(1)求方程组(I )的一个基础解系(2)当a 为何值时,方程组(I )与(II )有非零公共解?在有非零公共解时,求出全部非零公共解.解:(1)方程组(I )123123423020x x x x x x x +-=⎧⎨++-=⎩显然,系数矩阵的秩为2. 对(I )的系数阵进行初等行变换2310231012113501--⎛⎫⎛⎫→ ⎪ ⎪--⎝⎭⎝⎭故方程组(I )与1231242335x x x x x x +=⎧⎨+=⎩等价取 1210,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT121,0,2,3,0,1,3,5==ββ为(I )的一个基础解系.(2)若(I )、(II )有非零公共解,即存在不全为0的数1234,,,x x x x ,使11223142x x x x +=+ββαα (*)即 12121234(,,,)0x x x x ⎛⎫⎪ ⎪--= ⎪ ⎪⎝⎭ββαα有非零解 故 1212(,,,)4r --<ββαα. 1212(,,,)ββαα10211021112011223240326351805511a a a a --⎛⎫⎛⎫ ⎪⎪--⎪ ⎪=−−→⎪ ⎪----+- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭行1021011200100001a a -⎛⎫⎪- ⎪−−→⎪+ ⎪⎪+⎝⎭行所以 1a =-时,方程组有非零解此时 1342342020x x x x x x -+=⎧⎨+-=⎩即 13423422x x x x x x =-⎧⎨=-+⎩所以 ()()T T122,1,1,0,1,2,0,1=-=-ξξ为(*)的基础解系.将12,ξξ表示式代入(*)得(I )、(II )的全部解为()()TT122,1,1,11,2,4,7k k =-+-X (12,k k 为不同时为0的常数).12.设112224336⎛⎫⎪= ⎪ ⎪⎝⎭A ,求一秩为2的矩阵B ,使.=AB 0解:先求=AX 0的基础解系112112224000336000⎛⎫⎛⎫⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A故齐次线性方程组=AX 0等价于12320x x x ++= 1232x x x =--得 ()()TT121,1,0,2,0,1=-=-ξξ为=AX 0的一个基础解系令 121001--⎛⎫⎪= ⎪ ⎪⎝⎭B ,()2r =B 并且 =AB 0.13.设T 2122(),(,,,)ij n n n a x x x ⨯==A X ,方程组=AX 0的一个基础解系为T 12,2(,,,),1,2,,i i i n b b b i n =,求方程组 1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的通解.解:将题中所求通解的线性方程组记为=BY 0由题意 1112121121121222212222122122220n n n n n n n n n n n n a a a b b b a a a b b b a a a b b b ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭ 两边取转置1112121121121222212222122122220n n n n n n n n nnn n b b b a a a b b b a a a b b b a a a ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭故T A 的每一列为=BY 0的解向量.又 =AX 0的基础解系含有n 个向量,所以,()2r n n n =-=A ,则A 的行向量组线性无关. 又 ()r n =B ,所以,A 的行向量组为=BY 0的基础解系.14.已知4阶方阵1234(,,,)=A αααα,其中234,,ααα线性无关,1232=-ααα,如果1234=+++βαααα,求线性方程组=AB β的通解.解:因为234,,ααα线性无关,又123420=-+⋅αααα, 则 ()3r =A . 所以,=AX 0的基础解系只含有1个向量.又 1234200+-+⋅=αααα所以 123412(,,,)100⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭αααα 故 ()T1,2,1,0=-ξ为=AX 0的一个基础解系. 又 1234+++=ααααβ则 123411(,,,)11⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααααβ 所以 ()T01,1,1,1=η为=AB β的一个特解 故 =AB β的通解为0R k k =+∈X ξη.15.设()ij m n a ⨯=A 的行向量组是某个齐次线性方程组的基础解系. 证明()ij m n b ⨯=B 的行向量组也是该方程组的基础解系⇔存在可逆阵()ij m m p ⨯=P ,使1,1,2,,,1,2,,mij ik kj k b p a i m j n ====∑.解:设m n ⨯A 的行向量组是=CX 0的基础解系,若m n ⨯B 的行向量组也是=CX 0的基础解系, 则A 的行向量组与B 的行向量组等价 故存在可逆阵P ,使得 =B PA , 所以 1mij ik kjk b P a==∑ 1,2,,i m =,1,2,,j n =.反之,若存在可逆阵,()ij m m P ⨯=P P ,使得1,1,2,,;1,2,,mij ik kj k b P a i m j n ====∑则=B PA ,故A 的行向量组与B 的行向量组等价.又 因为A 的行向量组是=CX 0的基础解系. 所以,B 的行向量组也是=CX 0的基础解系.16.设=AX 0的解都是=BX 0的解,则=AX 0与=BX 0同解()()r r ⇔=A B . 证:必要性.若=AX 0与=BX 0同解,则=AX 0与=BX 0具有相同的解空间, 即()()=N A N B 故 ()()n r n r -=-A B , 所以()()r r =A B .充分性.设1,,n r -ξξ是=AX 0的基础解系,()r r =A ,因为=AX 0的解都是=BX 0的解. 所以,1,,n r -ξξ是=BX 0的n r -个线性无关的解向量.又()()r r =A B ,所以,=BX 0的基础解系所含向量的个数为 ()()n r n r n r -=-=-B A因此,1,,n r -ξξ为=BX 0的一个基础解系. 故=AX 0与=BX 0同解.17.设A 为m p ⨯阵,B 为p n ⨯阵,证明=ABX 0与=BX 0同解()()r r ⇔=AB B证:必要性.因为=ABX 0与=BX 0同解,所以,=ABX 0与=BX 0有相同的解空间, 即()()=N AB N B 因此()()n r n r -=-AB B , 故()()r r =AB B . 充分性.设1X 是=BX 0的解,1=BX 0. 则1==ABX A 00. 所以,=BX 0的解都是=ABX 0的解.设1,,n r -ξξ是=BX 0的基础解系,()r r =B ,则1,,n r -ξξ也是=ABX 0的线性无关解向量. 并且,=ABX 0的基础解系所含向量的个数为()()n r n r n r -=-=-AB B所以 1,,n r -ξξ为=ABX 0的基础解系,故=ABX 0与=BX 0同解.18.设A 为m n ⨯阵,B 为m p ⨯阵,证明=AX B 有解()()r r ⇔=A B A证:必要性.A 为m n ⨯阵,B 为m p ⨯阵,=AX B ,则X 为n p ⨯阵 令 1(,,)p =X X X ,1(,,)p =B b b因为 =AX B 所以 1122,,,p p ===AX b AX b AX b 故 12()()()()p r r r r ===A b A b A b A即矩阵B 的列向量组可以由A 的列向量组线性表示 所以 ()()r r =A B A 充分性.若 ()()r r =A B A ,又由1(,,)p =B b b有 ()()()()1,,i r r r r i p ≤≤==A A b A B A所以 ()()1,,i r r i p ==A b A故 12,,,p ===AX b AX b AX b 有解. 设解分别为12,,,p X X X 1212(,,,)(,,,)p p =A X X X b b b即 =AX B 有解.19.设A 为m n ⨯阵,B 为l n ⨯阵,则=AX 0与=BX 0同解⇔()()r r r ⎛⎫== ⎪⎝⎭A AB B证:若=AX 0与=BX 0同解,则⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解.又 ⎛⎫= ⎪⎝⎭A XB 0的解一定是=AX 0的解.由题16, ()r r ⎛⎫= ⎪⎝⎭A A B同理, ()r r ⎛⎫= ⎪⎝⎭A B B故 ()()r r r ⎛⎫== ⎪⎝⎭A A B B .反之,若 ()()r r r ⎛⎫== ⎪⎝⎭A AB B .因为,⎛⎫=⎪⎝⎭A X B 0的解都是=AX 0的解. 所以,由题16,⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解. 又因为⎛⎫= ⎪⎝⎭A X B 0的解都是=BX 0的解,所以 ⎛⎫= ⎪⎝⎭A XB 0与=BX 0同解,故,=AX 0与=BX 0同解.20.设T (),0ij n n a ⨯⎛⎫==⎪⎝⎭Ab A B b ,其中T 12(,,,)n =b b b b ,若()()r r =A B ,则=AX b 有解.证:因为 ()()()()r r r r ≤≤=A A b B A 所以, ()()r r =A b A故 =AX b 有解.21.设A 为(1)n n ⨯-阵,,()n∈=b R B A b ,若b =AX 有解,则||=B 0. 又当()1r n =-A 时,b =AX 有解||⇔=B 0.证:(1)因为A 为(1)n n ⨯-阵,所以()1n ≤-R A .故()()1r r n n =≤-<A b A又 ()=B A b 为n n ⨯阵,故 ||=B 0.(2)若()1r n =-A ,=AX b 有解,则()()1r r n ==-A b A所以||0=B .反之,若||,()1r n ==-B A 0. 故 ()1r n =-B即 ()()()1r r r n ===-A A b B 所以=AX b 有解.22.若方阵A 的行列式为0,则A 的伴随阵*A 各行成比例. 证:因为||0=A ,所以()1r n ≤-A . (1)若()1r n =-A ,则*()1r =A .故*A 的行向量组的秩为1,不妨设第一行1α为行向量的极大无关组,则剩余行向量均可以由1α线性表示,故各行成比例.(2)若()1r n <-A ,则*()0r =A ,即*=A 0,显然各行成比例.23.设(1)(),()ij n n a r n ⨯+==A A ,则方程组0=AX 的任意两解成比例. 证:因为A 为(1)n n ⨯+阵,()r n =A所以,=AX 0的基础解系所含向量个数为(1)1n n +-=. 设ξ为=AX 0的一个基础解系. 则任意解,R k k =∈X ξ. 所以,任意两解成比例.24.设()ij n n a ⨯=A ,且10,1,2,,nijj ai n ===∑,则A 不可逆.证:由于10nijj a==∑故 111⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A 0. 所以,()T1,1,,1=X 是=AX 0的解.即 齐次线性方程组=AX 0有非零解,故||0=A .25.设A 为n n ⨯实矩阵,若对任意n 维非零列向量X ,均有T0>X AX ,则||0.≠A 证:反证,若||0=A则 =AX 0有非零解设1X 是=AX 0的一个非零解,则1=AX 0T T 11100=⋅=X AX X此与对任意 ≠X 0,T0>X AX 矛盾.26.设A 为(实)反对称阵,D 为对角元全大于0的对角阵,则||0+≠A D ,且还有||0.+>A D证:(1)反证,若||0.+=A D 则 ()+=A D X 0有非零解,设为1X1()+=A D X 0进而 T11()0+=X A D XT T 11110+=X AX X DX因为A 为反对称阵,所以 T110=X AX 故 T110=X DX但 1diag(,,),0n i a a a =>D所T110>X DX ,此为矛盾所以, ||0+≠A D . (2)令()||[0,1]f x x x =+∈A D假设 ||0+<A D .因为 (0)||0f =>D ,(1)||0f =+<A D . 由介值定理 存在0(0,1)x ∈使得00()||0f x x =+=A D0001||||0x x x +=+=D A D A 0x D 为对角元全大于0的对角阵. 但由第(1)步 0||0x +≠DA 矛盾. 故||0+>A D . 27.求出平面上n 点(,)(1,2,,(3))i i x y i n n =≥位于一条直线上的充要条件.证:设n 点所共直线为y kx b =+,则关于,k b 的方程组i i y kx b =+ (1,,)i n =有解,从而矩阵12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与1122111n n x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等,故11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ ,反之,若 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ (1)若12n x x x ==,则此n 点共线.(2)否则,121121n x x r x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,但11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 故 11221121nn x y x y r x y ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 从而 12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 1122111nn x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 方程组(未知量为,k b )1122n nkx b y kx b y kx b y +=⎧⎪+=⎪⎨⎪⎪+=⎩ 有解,于是n 点共线,故平面上n 点(,)1,,;1,,i i x y i n y n ==共线的充要条件是 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 即 11221131n n x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭. 28.求出平面内n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充分必要条件. 证:若平面内n 条直线0i i i a x b y c ++=(1,2,,)i n =共点,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,故矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 反之,若矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭秩相等,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,即n 条直线共点.故n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充要条件是 矩阵1122nn a b a b a b ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭的秩相等. 29.设T12(,,,)(1,2,,;)i i i in a a a i r r n ==<α是n 维实向量,且12,,,r ααα线性无关,已知T 12(,,,)n b b b ==β是线性方程组11112212122221122000n n n nr r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的非零解向量,试判断向量组12,,,r ααα,β的线性相关性. 解:设有一组数12,,,,r k k k k 使得11220r r k k k k ++++=αααβ成立,因为T 12(,,,)n b b b ==β是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解,且0≠β,故有T(1,2,,)i i r ==αβ即 T(1,2,,)i i r ==βα于是,由1122T T T T 0r r k k k k ++++=βαβαβαββ得 T0k =ββ,但T0≠ββ,故0k =.从而 11220r r k k k +++=ααα由于向量组12,,,r ααα线性无关,所以有120r k k k ====因此,向量组12,,,,r αααβ线性无关.30.已知向量()()()TTT1231,1,0,2,2,1,1,4,4,5,3,11=-=-=-ηηη,是方程组112334411223442122344324335a x x a x a x d x b x x b x d x c x x c x d ⎧+++=⎪+++=⎨⎪+++=⎩ 的三个解. 求该方程组的通解.解:由已知有()()TT21311,2,1,2,3,6,3,9-=--=-ηηηη是相应的齐次方程组的两个线性无关解.所以,系数矩阵的秩2≤,(因为4()2r -≥A ).又 系数矩阵134242424335a a ab b cc ⎛⎫⎪⎪ ⎪⎝⎭有二阶子式43035≠所以,系数矩阵的秩2≥. 于是,系数矩阵的秩为2.故齐次方程组的基础解系包含2个向量,即2131,--ηηηη是齐次方程组的基础解系. 因此,该方程组的通解为121231112()()(,)R k k k k -+-+∈ηηηηη.31.设12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关.证:设有一组01,,,t k k k 得01112()()()0t t k k k k +++++++=ββαβαβα得 0121122()0t t t k k k k k k k ++++++++=βααα (1)由于12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,所以β不能表为1,,t αα的线性组合,所以010t k k k +++=因此(1)式变为 11220t t k k k +++=ααα由于1,,t αα线性无关,所以 120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.32.已知齐次方程组(I )124213224000x x x ax a x ax a x ++=⎧⎪+=⎨⎪+=⎩的解都满足方程1230x x x ++=,求a 和方程组(I )的通解.解:(I )的解都满足1230x x x ++=的充要条件是(I )与方程组1242132241230000x x x ax a x ax a x x xx ++=⎧⎪+=⎪⎨+=⎪⎪++=⎩同解,于是该方程组系数矩阵的秩等于方程组(I )的秩,即22110100001110a a a a ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭B 与 2211010000a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭A的秩相等,对,A B 都施以行变换得222110100aa a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 2211010000110002a a a a ⎛⎫⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 因此,当0a =时,秩()1=≠A 秩()2=B 不满足题意当0a ≠时 1101010001a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 1101010001100021a a ⎛⎫ ⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 使秩()=A 秩()3=B 的充要条件是12a =,此即12a =为题意所求.把12a =代入方程组(I )得系数矩阵110011012111000102421100110024⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪=→ ⎪⎪ ⎪ ⎪- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭A 所以 14243411,,22x x x x x x =-=-=方程组(I )的基础解系为 T11(,,1,1)22=--α通解 为()R k k =∈X α. 33.设121201101t t t ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,且方程组0=AX 的基础解系中含有两个解向量,求0=AX 的通解.解:因为4,()2n n r =-=A ,所以()2r =A 对A 施行初等行变换得1112121201011010211t t t t t t ⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A 2212120100(1)(1)t t t t ⎛⎫⎪→ ⎪ ⎪----⎝⎭221012220100(1)(1)tt t t t t --⎛⎫ ⎪→ ⎪ ⎪----⎝⎭要使()2r =A ,则必有1t =,此时与0=AX 同解的方程组为13234x x x x x =⎧⎨=--⎩ 得基础解系 ()()TT121,1,1,0,0,1,0,1=-=-ξξ方程组的通解为 112212(,)R k k k k =+∈X ξξ.34.讨论三个平面11111:a x b y c z d π++=,22222:a x b y c z d π++=,33333:a x b y c z d π++=的位置关系解:设111222333a b c a b c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,111122223333a b c d a b c d a b c d ⎛⎫ ⎪= ⎪ ⎪⎝⎭A(1)若()()3r r ==A A ,则三平面交于一点,因为三平面的联立方程组仅有唯一解.(2)若()3,()2r r ==A A ,则三平面不相交,因为此时三平面的联立方程组无解. 由()2r =A ,知A 的3个行向量123,,ααα线性相关,故存在3个不全为零的数,123,,k k k 使得1122330k k k ++=ααα,当123,,k k k 都不为零时,三平面中任意两平面的交线与另一平面平行;当123,,k k k 中有一个为零时,三平面中有两平面平行,另一平面与这两平面相交.(3)若()()2r r ==A A ,则三平面相交于一直线,因为此时三平面联立方程组有无穷多解.由于()2r =A ,则A 的3个行向量123,,βββ线性相关. 故存在3个不全为零的数123,,k k k ,使得1122330k k k ++=βββ,当123,,k k k 均不为零时,三平面互异;当123,,k k k 中有一个为零时,三平面中有两平面相重合.(4)若()2r =A ,()1r =A ,则三平面不交,因为此时三平面的联立方程组无解. 由()1r =A ,故三平面平行,又因为()2r =A ,所以三平面中至少有两个互异. (5)若()()1r r ==A A ,则三平面重合,因为此时三平面的方程实际上是一样的.。
第四章 向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61T T T --+==(1, 2, 3, 4)T . 3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式.解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0, 由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=, 设211λλλ+-=c , 则 b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ⋅ ⋅ ⋅, a m 是线性相关的, 则a 1可由a 2, ⋅ ⋅ ⋅, a m 线性表示.解 设a 1=e 1=(1, 0, 0, ⋅ ⋅ ⋅, 0), a 2=a 3= ⋅ ⋅ ⋅ =a m =0, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 但a 1不能由a 2, ⋅ ⋅ ⋅, a m 线性表示. (2)若有不全为0的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关. 解 有不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0,原式可化为λ1(a 1+b 1)+ ⋅ ⋅ ⋅ +λm (a m +b m )=0.取a1=e1=-b1,a2=e2=-b2,⋅⋅⋅,a m=e m=-b m,其中e1,e2,⋅⋅⋅,e m为单位坐标向量,则上式成立,而a1,a2,⋅⋅⋅,a m和b1,b2,⋅⋅⋅,b m均线性无关.(3)若只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0才能成立,则a1,a2,⋅⋅⋅,a m线性无关, b1,b2,⋅⋅⋅,b m亦线性无关.解由于只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式由λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,所以只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)+⋅⋅⋅+λm(a m+b m)=0成立.因此a1+b1,a2+b2,⋅⋅⋅,a m+b m线性无关.取a1=a2=⋅⋅⋅=a m=0,取b1,⋅⋅⋅,b m为线性无关组,则它们满足以上条件,但a1,a2,⋅⋅⋅,a m线性相关.(4)若a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关,则有不全为0的数,λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m=0,λ1b1+⋅⋅⋅+λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0⇒λ1=-2λ2,λ1b1+λ2b2 =0⇒λ1=-(3/4)λ2,⇒λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3, b4线性相关.证明由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7). 解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------22201512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ), E =(e 1, e 2,⋅ ⋅ ⋅, e n ). 由已知条件知, 存在矩阵K , 使E =AK .两边取行列式, 得|E |=|A ||K |.可见|A |≠0, 所以R (A )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法二 因为e 1, e 2,⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 所以R (e 1, e 2,⋅ ⋅ ⋅, e n )≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ),而R (e 1, e 2,⋅ ⋅ ⋅, e n )=n , R (a 1, a 2, ⋅ ⋅ ⋅, a n )≤n , 所以R (a 1, a 2, ⋅ ⋅ ⋅, a n )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.17. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 证明它们线性无关的充分必要条件是: 任一n 维向量都可由它们线性表示.证明 必要性: 设a 为任一n 维向量. 因为a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关,而a1,a2,⋅⋅⋅,a n,a是n+1个n维向量,是线性相关的,所以a能由a1,a2,⋅⋅⋅,a n线性表示,且表示式是唯一的.充分性:已知任一n维向量都可由a1,a2,⋅⋅⋅,a n线性表示,故单位坐标向量组e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,于是有n=R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n)≤n,即R(a1,a2,⋅⋅⋅,a n)=n,所以a1,a2,⋅⋅⋅,a n线性无关.18.设向量组a1,a2,⋅⋅⋅,a m线性相关,且a1≠0,证明存在某个向量a k (2≤k≤m),使a k能由a1,a2,⋅⋅⋅,a k-1线性表示.证明因为a1,a2,⋅⋅⋅,a m线性相关,所以存在不全为零的数λ1,λ2,⋅⋅⋅,λm,使λ1a1+λ2a2+⋅⋅⋅+λm a m=0,而且λ2,λ3,⋅⋅⋅,λm不全为零.这是因为,如若不然,则λ1a1=0,由a1≠0知λ1=0,矛盾.因此存在k(2≤k≤m),使λk≠0,λk+1=λk+2=⋅⋅⋅=λm=0,于是λ1a1+λ2a2+⋅⋅⋅+λk a k=0,a k=-(1/λk)(λ1a1+λ2a2+⋅⋅⋅+λk-1a k-1),即a k能由a1,a2,⋅⋅⋅,a k-1线性表示.19.设向量组B:b1,⋅⋅⋅,b r能由向量组A:a1,⋅⋅⋅,a s线性表示为(b1,⋅⋅⋅,b r)=(a1,⋅⋅⋅,a s)K,其中K为s⨯r矩阵,且A组线性无关.证明B 组线性无关的充分必要条件是矩阵K的秩R(K)=r.证明令B=(b1,⋅⋅⋅,b r),A=(a1,⋅⋅⋅,a s),则有B=AK.必要性: 设向量组B 线性无关.由向量组B 线性无关及矩阵秩的性质, 有 r =R (B )=R (AK )≤min{R (A ), R (K )}≤R (K ), 及 R (K )≤min{r , s }≤r . 因此R (K )=r .充分性: 因为R (K )=r , 所以存在可逆矩阵C , 使⎪⎭⎫⎝⎛=O E KC r 为K 的标准形. 于是(b 1, ⋅ ⋅ ⋅, b r )C =( a 1, ⋅ ⋅ ⋅, a s )KC =(a 1, ⋅ ⋅ ⋅, a r ).因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r )=R (a 1, ⋅ ⋅ ⋅, a r )=r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.20. 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n nn ααααβαααβαααβ, 证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ, 将上式记为B =AK . 因为0)1()1(0111101*********||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n , 所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.(1)记P =(x , A x , A 2x ), 求3阶矩阵B , 使AP =PB ;解 因为AP =A (x , A x , A 2x )=(A x , A 2x , A 3x )=(A x , A 2x , 3A x -A 2x )⎪⎪⎭⎫ ⎝⎛-=110301000) , ,(2x x x A A , 所以⎪⎪⎭⎫ ⎝⎛-=110301000B . (2)求|A |.解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x )=0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )<3, |A |=0. 22. 求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ; 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x . 取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ;取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x . 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x . 取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ;取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T .因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .(3)nx 1 +(n -1)x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0.解 原方程组即为x n =-nx 1-(n -1)x 2- ⋅ ⋅ ⋅ -2x n -1.取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1)=-n +1;⋅ ⋅ ⋅ ;取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2.因此方程组的基础解系为ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n )T ,ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1)T ,⋅ ⋅ ⋅,ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2)T .23. 设⎪⎭⎫ ⎝⎛--=82593122A , 求一个4⨯2矩阵B , 使AB =0, 且 R (B )=2.解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=8/118/5108/18/101 82593122~rA , 所以与方程组AB =0同解方程组为⎩⎨⎧+=-=432431)8/11()8/5()8/1()8/1(x x x x x x . 取(x 3, x 4)T =(8, 0)T , 得(x 1, x 2)T =(1, 5)T ;取(x 3, x 4)T =(0, 8)T , 得(x 1, x 2)T =(-1, 11)T .方程组AB =0的基础解系为ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T .因此所求矩阵为⎪⎪⎪⎭⎫ ⎝⎛-=800811511B .24. 求一个齐次线性方程组, 使它的基础解系为ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .解 显然原方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x , 即⎪⎩⎪⎨⎧=+=+==14213212213223k x k k x k k x k x , (k 1, k 2∈R ), 消去k 1, k 2得⎩⎨⎧=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.25. 设四元齐次线性方程组I : ⎩⎨⎧=-=+004221x x x x , II : ⎩⎨⎧=+-=+-00432321x x x x x x . 求: (1)方程I 与II 的基础解系; (2) I 与II 的公共解.解 (1)由方程I 得⎩⎨⎧=-=4241x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 0)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, 1)T .因此方程I 的基础解系为ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T .由方程II 得⎩⎨⎧-=-=43241x x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 1)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, -1)T .因此方程II 的基础解系为ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T .(2) I 与II 的公共解就是方程III : ⎪⎩⎪⎨⎧=+-=+-=-=+00004323214221x x x x x x x x x x 的解. 因为方程组III 的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000210010101001 1110011110100011~r A , 所以与方程组III 同解的方程组为⎪⎩⎪⎨⎧==-=4342412x x x x x x . 取x 4=1, 得(x 1, x 2, x 3)T =(-1, 1, 2)T , 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .26. 设n 阶矩阵A 满足A 2=A , E 为n 阶单位矩阵, 证明R (A )+R (A -E )=n .证明 因为A (A -E )=A 2-A =A -A =0, 所以R (A )+R (A -E )≤n . 又R (A -E )=R (E -A ), 可知R (A )+R (A -E )=R (A )+R (E -A )≥R (A +E -A )=R (E )=n ,由此R (A )+R (A -E )=n .27. 设A 为n 阶矩阵(n ≥2), A *为A 的伴随阵, 证明⎪⎩⎪⎨⎧-≤-===2)( 01)( 1)( *)(n A R n A R n A R n A R 当当当. 证明 当R (A )=n 时, |A |≠0, 故有|AA *|=||A |E |=|A |≠0, |A *|≠0,所以R (A *)=n .当R (A )=n -1时, |A |=0, 故有AA *=|A |E =0,即A *的列向量都是方程组A x =0的解. 因为R (A )=n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1. 当R (A )≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0.28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ; 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T .与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x .解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .29. 设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1, η2, η3是它的三个解向量. 且η1=(2, 3, 4, 5)T , η2+η3=(1, 2, 3, 4)T ,求该方程组的通解.解 由于方程组中未知数的个数是4, 系数矩阵的秩为3, 所以对应的齐次线性方程组的基础解系含有一个向量, 且由于η1, η2, η3均为方程组的解, 由非齐次线性方程组解的结构性质得2η1-(η2+η3)=(η1-η2)+(η1-η3)= (3, 4, 5, 6)T为其基础解系向量, 故此方程组的通解:x =k (3, 4, 5, 6)T +(2, 3, 4, 5)T , (k ∈R ).30. 设有向量组A : a 1=(α, 2, 10)T , a 2=(-2, 1, 5)T , a 3=(-1, 1, 4)T , 及b =(1, β, -1)T , 问α, β为何值时(1)向量b 不能由向量组A 线性表示;(2)向量b 能由向量组A 线性表示, 且表示式唯一;(3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式.解 ⎪⎪⎭⎫ ⎝⎛---=11054211121) , , ,(123βαb a a a ⎪⎪⎭⎫ ⎝⎛-+++---βαβαα34001110121 ~r . (1)当α=-4, β≠0时, R (A )≠R (A , b ), 此时向量b 不能由向量组A 线性表示.(2)当α≠-4时, R (A )=R (A , b )=3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.(3)当α=-4, β=0时, R (A )=R (A , b )=2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一.当α=-4, β=0时,⎪⎪⎭⎫ ⎝⎛----=1105402111421) , , ,(123b a a a ⎪⎪⎭⎫ ⎝⎛--000013101201 ~r , 方程组(a 3, a 2, a 1)x =b 的解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛c c c c x x x 1312011132321, c ∈R . 因此 b =(2c +1)a 3+(-3c -1)a 2+c a 1,即 b = c a 1+(-3c -1)a 2+(2c +1)a 3, c ∈R .31. 设a =(a 1, a 2, a 3)T , b =(b 1, b 2, b 3)T , c =(c 1, c 2, c 3)T , 证明三直线 l 1: a 1x +b 1y +c 1=0,l 2: a 2x +b 2y +c 2=0, (a i 2+b i 2≠0, i =1, 2, 3)l 3: a 3x +b 3y +c 3=0,相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关.证明 三直线相交于一点的充分必要条件为方程组⎪⎩⎪⎨⎧=++=++=++000333222111c y b x a c y b x a c y b x a , 即⎪⎩⎪⎨⎧-=+-=+-=+333222111c y b x a c y b x a c y b x a 有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关. 32. 设矩阵A =(a 1, a 2, a 3, a 4), 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解.解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解. 由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解. 由a 2, a 3, a 4线性无关知R (A )=3, 故方程A x =b 所对应的齐次方程A x =0的基础解系中含一个解向量. 因此ξ=(1, -2, 1, 0)T 是方程A x =0的基础解系.方程A x =b 的通解为x =c (1, -2, 1, 0)T +(1, 1, 1, 1)T , c ∈R .33. 设η*是非齐次线性方程组A x =b 的一个解, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r ,是对应的齐次线性方程组的一个基础解系, 证明:(1)η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关;(2)η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r线性无关.证明(1)反证法, 假设η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关.因为ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,而η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关,所以η*可由ξ1,ξ2,⋅⋅⋅,ξn-r 线性表示,且表示式是唯一的,这说明η*也是齐次线性方程组的解,矛盾.(2)显然向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r与向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r可以相互表示,故这两个向量组等价,而由(1)知向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,所以向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r也线性无关.34.设η1,η2,⋅⋅⋅,ηs是非齐次线性方程组A x=b的s个解,k1,k2,⋅⋅⋅,k s 为实数,满足k1+k2+⋅⋅⋅+k s=1. 证明x=k1η1+k2η2+⋅⋅⋅+k sηs也是它的解.证明因为η1,η2,⋅⋅⋅,ηs都是方程组A x=b的解,所以Aηi=b (i=1, 2,⋅⋅⋅,s),从而A(k1η1+k2η2+⋅⋅⋅+k sηs)=k1Aη1+k2Aη2+⋅⋅⋅+k s Aηs=(k1+k2+⋅⋅⋅+k s)b=b.因此x=k1η1+k2η2+⋅⋅⋅+k sηs也是方程的解.35.设非齐次线性方程组A x=b的系数矩阵的秩为r,η1,η2,⋅⋅⋅,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1, (其中k1+k2+⋅⋅⋅+k n-r+1=1).证明因为η1,η2,⋅⋅⋅,ηn-r+1均为A x=b的解,所以ξ1=η2-η1,ξ2=η3-η1,⋅⋅⋅,ξn-r=η n-r+1-η1均为A x=b的解.用反证法证:ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.设它们线性相关,则存在不全为零的数λ1,λ2,⋅⋅⋅,λn-r,使得λ1ξ1+λ2ξ2+⋅⋅⋅+λ n-rξ n-r=0,即λ1(η2-η1)+λ2(η3-η1)+⋅⋅⋅+λ n-r(ηn-r+1-η1)=0,亦即-(λ1+λ2+⋅⋅⋅+λn-r)η1+λ1η2+λ2η3+⋅⋅⋅+λ n-rηn-r+1=0,由η1,η2,⋅⋅⋅,ηn-r+1线性无关知-(λ1+λ2+⋅⋅⋅+λn-r)=λ1=λ2=⋅⋅⋅=λn-r=0,矛盾.因此ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.ξ1,ξ2,⋅⋅⋅,ξn-r为A x=b的一个基础解系.设x为A x=b的任意解,则x-η1为A x=0的解,故x-η1可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表出,设x-η1=k2ξ1+k3ξ2+⋅⋅⋅+k n-r+1ξn-r=k2(η2-η1)+k3(η3-η1)+⋅⋅⋅+k n-r+1(ηn-r+1-η1),x=η1(1-k2-k3⋅⋅⋅-k n-r+1)+k2η2+k3η3+⋅⋅⋅+k n-r+1ηn-r+1.令k1=1-k2-k3⋅⋅⋅-k n-r+1,则k1+k2+k3⋅⋅⋅-k n-r+1=1,于是x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1.36.设V1={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=0},V2={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=1},问V1,V2是不是向量空间?为什么?解V1是向量空间,因为任取α=(a1,a2,⋅ ⋅ ⋅,a n)T∈V1,β=(b1,b2,⋅ ⋅ ⋅,b n)T∈V1,λ∈∈R,有a1+a2+⋅ ⋅ ⋅ +a n=0,b1+b2+⋅ ⋅ ⋅ +b n=0,从而(a1+b1)+(a2+b2)+⋅ ⋅ ⋅ +(a n+b n)=(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=0,λa 1+λa 2+ ⋅ ⋅ ⋅ +λa n =λ(a 1+a 2+ ⋅ ⋅ ⋅ +a n )=0,所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∈V 1,λα=(λa 1, λa 2, ⋅ ⋅ ⋅, λa n )T ∈V 1.V 2不是向量空间, 因为任取α=(a 1, a 2, ⋅ ⋅ ⋅, a n )T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n )T ∈V 1,有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =1,b 1+b 2+ ⋅ ⋅ ⋅ +b n =1,从而 (a 1+b 1)+(a 2+b 2)+ ⋅ ⋅ ⋅ +(a n +b n )=(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=2,所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∉V 1.37. 试证: 由a 1=(0, 1, 1)T , a 2=(1, 0, 1)T , a 3=(1, 1, 0)T 所生成的向量空间就是R 3.证明 设A =(a 1, a 2, a 3), 由02011101110||≠-==A , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3是三维空间R 3的一组基, 因此由a 1, a 2, a 3所生成的向量空间就是R 3.38. 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2. 证明 设A =(a 1, a 2), B =(b 1, b 2). 显然R (A )=R (B )=2, 又由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000000013100211 1310131011010211) ,(~r B A , 知R (A , B )=2, 所以R (A )=R (B )=R (A , B ), 从而向量组a 1, a 2与向量组b 1, b 2等价. 因为向量组a 1, a 2与向量组b 1, b 2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.39. 验证a 1=(1, -1, 0)T , a 2=(2, 1, 3)T , a 3=(3, 1, 2)T 为R 3的一个基, 并把v 1=(5, 0, 7)T , v 2=(-9, -8, -13)T 用这个基线性表示. 解 设A =(a 1, a 2, a 3). 由06230111321|) , ,(|321≠-=-=a a a , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3为R 3的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则⎪⎩⎪⎨⎧=+=++-=++723053232321321x x x x x x x x , 解之得x 1=2, x 2=3, x 3=-1, 故线性表示为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321x x x x x x x x , 解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.40. 已知R 3的两个基为 a 1=(1, 1, 1)T , a 2=(1, 0, -1)T , a 3=(1, 0, 1)T , b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组, 则⎪⎪⎭⎫ ⎝⎛-=111001111) , ,() , ,(321321e e e a a a , 1321321111001111) , ,() , ,(-⎪⎪⎭⎫ ⎝⎛-=a a a e e e , 于是 ⎪⎪⎭⎫ ⎝⎛=341432321) , ,() , ,(321321e e e b b b ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-341432321111001111) , ,(1321a a a , 由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-1010104323414323211110011111P .。
第四章 线性方程组 一、要求:1、理解线性方程组的概念,了解线性方程组的消元法与线性变换法解线性方程组。
2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。
了解线性方程组解的性质。
3、理解齐次线性方程组的基础解系、通解等概念,掌握线性方程组解的结构及通解的概念,会求解线性方程组。
4、掌握克莱姆法则,并由此得到的相关结论。
二、练习(一)、单项选择题1.若齐次线性方程组1231212320200kx x x x kx x x x ++=⎧⎪+=⎨⎪-+=⎩ 有非零解,则k =(A ).A.-2B.2C.0D.-32. 齐次线性方程组123121230 020x x x x x x x x λμμ++=⎧⎪+=⎨⎪++=⎩有非零解的条件是(D ).A.01μλ≠≠且;B.0μ≠;C.1λ≠;D.01μλ==或.3. 设n 元齐次线方程组AX O =的系数矩阵A 的秩为r ,则AX O =有非零解的充要条件是(D ). A.rn = B. r n > C.r n ≥ D. r n <4. 线性方程组AX b =(A 为m n ⨯矩阵,B 为增广矩阵)有唯一解的充分必要条件是(B)A.()()R A R B r ==B. ()()R A R B n ==C. ()()R A R B ≠D. ()()R A R B n =< 5.若方程组AX b =有解,则( C )()A ⨯为m n 矩阵A.()r A r n =≠B.0A ≠C.()() b r A r A =D.0A =(二)、填空1. n 元齐次线性方程组AX O =,当 ()R A <n 时,线性方程组AX O =有基础解系.2. 若AX B =的一个特解为η,AX O =的基础解系为12ξξ、,则AX B =的通解为1122k k ηξξ++.3. n 元齐次线性方程组AX O =只有零解的充分必要条件为0A ≠.4. 设方程组123111111112a x a x a x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多解,则a = 15.设m n n l A B O ⨯⨯=,则()()R A R B + ≤ n .(第三章) (三)、计算1. 求解方程组121232313.x x a x x a x x a -=⎧⎪-=⎨⎪-=⎩,,(310i i a ==∑). 解 对增广矩阵施行初等行变换:31321112223311101101100110110111010000000r r r r i i a a a B a a a a a ++=⎛⎫⎪---⎛⎫⎛⎫ ⎪ ⎪ ⎪=-−−−→-=- ⎪ ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭∑,则()()2R A R B ==,故方程组有解,并有1213222.x x a x x a x a =+⎧⎪=-⎨⎪=⎩,,方程组的通解为11322.x a a x a a x a =+⎧⎪=-⎨⎪=⎩,,(a 为任意实数)2.解方程组1234123412343133445980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩.解 113111*********B=313440407104071159800467100600------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭351001131144717101001044440010000100⎛⎫ ⎪--⎛⎫ ⎪⎪ ⎪ ⎪→--∂-- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭与原方程组及导出组同解的原方程组分别为14142424333530444717044400x x x x x x x x x x ⎧⎧+=+=⎪⎪⎪⎪⎪⎪-=--=⎨⎨⎪⎪==⎪⎪⎪⎪⎩⎩和554411440000ηξ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪--== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则特解为,基础解系为 554411.440000ηξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以原方程组的通解为 X=3. 求解方程组123412341234523115361242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩,,.123412341234523115361242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩,,解 15231115231115231153611028414560284145624216014272800000------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭911011523117211110120127272000000000⎛⎫-⎪--⎛⎫ ⎪⎪ ⎪ ⎪→--→-- ⎪ ⎪⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭对应的线性方程组和对应的齐次线性方程组为1342349117211272x x x x x x ⎧=-++⎪⎪⎨⎪=--⎪⎩,, 13423491721172x x x x x x ⎧=-+⎪⎪⎨⎪=-⎪⎩,, 令3400x x ==,,得特解()1,2,0,0Tη=- 由对应的齐次线性方程组可得令343410;01x x x x ====,,得基础解系为129111,,1,0,,,0,17722T Tξξ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭;所以通解为1122X c c ξξη=++(12c c ,为常数).4.解方程组1234123412343133445980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩解113111131111311313440467104671159800467100000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭93510113112443713710101244244000000000⎛⎫-⎪--⎛⎫ ⎪⎪ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭对应的线性方程组和对应齐次的线性方程组为134234935244371.244x x x x x x ⎧=-++⎪⎪⎨⎪=--⎪⎩, 134234932437.24x x x x x x ⎧=-+⎪⎪⎨⎪=-⎪⎩, 令3400x x ==,,得特解51,,0,044Tη⎛⎫=- ⎪⎝⎭由对应齐次的线性方程组得令343410;01x x x x ====,,得基础解系为129337,,1,0,,,0,12244TTξξ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭;所以通解为1122X c c ξξη=++(12c c ,为常数).5. 已知为方程组1231241150132411ηηη⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,为方程组112334411223442122344324335.a x x a x a x d xb x x b x d xc x x c xd +++=⎧⎪+++=⎨⎪+++=⎩,,的三个解,求该方程组的通解.解 由已知得21311326,1329ηηηη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-=-= ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭为对应的齐次线性方程组0Ax =的两个线性无关的解向量,所以4()2r A -≥,即()2r A ≤.又因为系数矩阵134242424335a a a Ab b cc ⎛⎫⎪= ⎪ ⎪⎝⎭中有二阶子式4311035=≠,所以()2r A ≥,于是()2r A =, 故2131,ηηηη--为对应齐次线性方程组0Ax =的基础解系,于是所求通解为()11212311212113126()(),013229x c c c c c c R ηηηηη⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+-+-=++∈ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(四)、证明题1.已知线性方程组23112131231222322313233323142434.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩,,,试证:若1234a a a a ,,,两两不相等,则此方程组无解. 证明 方程组的系数矩阵为2112222332441111a a a a A a a a a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因为A 为43⨯矩阵,()3r A ≤, 增广矩阵为2311123222233332344411(,)11a a a a a a B A b a a a a a a ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭因为||B 是一个范德蒙行列式,所以213141324243()()()()()()B a a a a a a a a a a a a =------因此当1234a a a a ,,,两两不相等时,有0B ≠,从而()4R B =,于是()()R B R A ≠,故此方程组无解.2. 设12s ηηη ,,,是方程组AX B =的s 个解,2s k k 1k ,,,为实数,满足121s k k k +++= .证明1si i i x k η==∑也是它的解.证明 1111s ss s i i i i i i i i i i Ax A k k A k B B k B ηη====⎛⎫===== ⎪⎝⎭∑∑∑∑,所以1si i i x k η==∑也是它的解.3. 设有齐次线性方程组0Ax =和0Bx =,其中,A B 均为m n ⨯矩阵.证明:若0Ax =的解均是0Bx =的解,则()()R A R B ≥.证明 因为0Ax =的解均是0Bx =的解,所以0Ax =的基础解系也是0Bx =的解,因此0Bx =至少有()n R A -个线性无关的解,于是0Bx =的基础解系所含向量个数不少于()n R A -个,即()()n R B n R A -≥-,故()()R A R B ≥.4.设12ηη,为线性方程组AX B =的解,证明12ηη-为线性方程组0AX =的解. 证明 因为12ηη,为线性方程组AX B =的解, 所以12,A B A B ηη==,故()12-0A B B ηη-== 则12ηη-为线性方程组0AX =的解.。
充 1:当 A 列 秩 ( 或 A 可逆 ,A 在矩 乘法中有左消去律AB=0 B=0;AB=AC B=C.明B =(1,, ⋯,t ), AB = Ai =0,i=1,2, ⋯,s., , ⋯ , t 都是 AX =0212的解 . 而 A 列 秩 , AX =0 只有零解 ,i=0,i=1,2,⋯ ,s, 即 B =0.同理当 B 行 秩(或 B 可逆 ),AB 0 B T A T0 A T0A 0AB CB A C充 2如果 A 列 秩(或 A 可逆) , r( AB )=r( B ).分析 : 只用 明 次方程ABX =0 和 BX =0 同解 .( 此 矩 AB 和 B 的列向量 有相同的 性关系, 从而秩相等 .)明:是 ABX = 的解 AB = B =0( 用推 ) 是 BX = 的解 .于是 ABX =0 和 BX =0 确 同解 .同理当 B 行 秩(或B 可逆) , r( AB )=r( A ).例题一 . 填空1.A m 方 , 存在非零的 m × n 矩 B, 使 AB = 0 的充要条件是 ______.解: Ax 0 有非零解, r Am2.A n 矩 , 存在两个不相等的n 矩 B, C, 使 AB = AC 的充要条件是解: A B C 0 , B, C 不相等, Ax0 有非零解, r An3.若 n 元 性方程 有解, 且其系数矩 的秩r, 当 ______, 方程 有唯一解;当 ______ , 方程 有无 多解 .解:假 方程A m × n x = b, 矩 的秩 r ( A) r .当 r n , 方程 有惟一解 ; 当 r n , 方程 有无 多解 .4. 在 次 性方程 A m ×n x = 0 中 , 若秩 (A) = k 且 1, , ⋯ , r 是它的一个基 解2系 ,r = _____; 当 k = ______ , 此方程 只有零解。
第四章 线性方程组1.设齐次方程组1231231230030x ax x ax x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 有非零解,求a 及其通解.解:因为此方程组有非零解,故系数矩阵的行列式为零.2211||1131********a aa a a a ==-+--+=-=-A所以,21a =,即1a =±(1)当1a =时,对此方程组的系数矩阵进行行变换111111120111000011113022000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A原方程组等价于1223200x x x x +=⎧⎨-=⎩, 即 12322x x x x =-⎧⎨=⎩. 取21x =,得1211-⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ为方程组的基础解系. 则方程组的通解为1(2,1,1),k k k ==-∈X ξTR .(2)当1a =-时,111111110111001001113000000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭A原方程组等价于1230x x x -=⎧⎨=⎩取21x =,得()T21,1,0=ξ为方程组的基础解系.故通解为2(1,1,0),TR k k k ==∈X ξ.2.解齐次方程组(1)12341234123420222020x x x x x x x x x x x x ++-=⎧⎪+++=⎨⎪++-=⎩ (2)12341234123412342350327043602470x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩(3)12341234123420510503630x x x x x x x x x x x x ++-=⎧⎪++-=⎨⎪+--=⎩ (4)12341234123412343457041113160723023320x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++=⎪⎪-+-=⎩(1)解:对此线性方程组的系数矩阵进行初等行变换211111211010221201310103112100340034---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→--→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭A原方程组等价于 132434030340x x x x x x -=⎧⎪+=⎨⎪-=⎩即 1323439434x x x x x x ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩取34x =,得()T4,9,4,3=-ξ为原方程组的基础解系. 故通解为 ,R k k =∈X ξ.(2)解:对线性方程组的系数矩阵进行初等行变换2315231531271231241361051312471247--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭A 123121231207729011746028250015015000327----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭故 ||0≠A ,所以此方程组只有零解,即 T(0,0,0,0)=X .(3)解:对线性方程组的系数矩阵进行初等行变换1211120151015001036130000--⎛⎫⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A原方程组等价于142320x x x x =-⎧⎨=⎩ 取 2410,.01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT122,1,0,0,1,0,0,1=-=ξξ为方程组的基础解系.所以,原方程组的通解为 112212(,)R k k k k =+∈X ξξ.(4)解:对方程组的系数矩阵进行初等行变换,34571789411131617897213017192023322332--⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪----⎝⎭⎝⎭A 1789017192000000000-⎛⎫ ⎪-- ⎪→ ⎪ ⎪⎝⎭原方程组等价于123423478901719200x x x x x x x +-+=⎧⎨-+-=⎩ 即 134234313171719201717x x x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩取 34170,017x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT123,19,17,0,13,20,0,17==--ξξ为方程组的基础解系.故通解为 112212,,k k k k =+∈X ξξR .3.解非齐次方程组(1)1231231232104221138x x x x x x x x -+=⎧⎪+-=⎨⎪+=⎩ (2)12312312312323438213496245x x x x x x x x x x x x ++=⎧⎪+-=⎪⎨-+=-⎪⎪-+=-⎩ (3)1234123412342133344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩(1)解:对此方程组的增广矩阵进行初等行变换3121031210()42121338113081332--⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A b 133801011340006--⎛⎫⎪→- ⎪ ⎪-⎝⎭因为 ()23()r r =≠=A A b所以,此方程组无解.(2)解:对此方程组的增广矩阵进行初等行变换231412453821307714()41960141428124507714--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪--- ⎪ ⎪---⎝⎭⎝⎭A b 12451021011201120000000000000000---⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭原方程组等价于 1323212x x x x +=-⎧⎨-=⎩此方程组对应的导出组的基础解系为()T2,1,1=-ξ此方程组的特解为 ()T01,2,0=-η 故方程组的通解为 0k k =+∈X ξηR .(3)解:对此方程组的增广矩阵进行初等行变换2111114352()331340759514352015101810---⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭A b 143520759501000--⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭103520100000595--⎛⎫ ⎪→ ⎪ ⎪-⎝⎭原方程组等价于 1342343520595x x x x x x -+=-⎧⎪=⎨⎪-=⎩即 142342150915x x x x x ⎧=+⎪⎪=⎨⎪⎪=+⎩此方程组对应导出组的基础解系为 ()T2,0,9,5=ξ特解为 ()T01,0,1,0=η 故通解为 0k k =+∈X ξηR .4.求解非齐次方程组(1)1234523451234512345226323054332x x x x x a x x x x b x x x x x x x x x x ++++=⎧⎪+++=⎪⎨+++-=⎪⎪+++-=⎩ (2)1234123412341234230264132716x x x x x x x x x x px x x x x x t+-+=⎧⎪+-+=-⎪⎨+++=-⎪⎪---=⎩(1)解:对此非齐次线性方程组的增广矩阵进行初等行变换111111111101226012263211300122635433120122625a ab b a a ⎛⎫⎛⎫⎪⎪⎪ ⎪→ ⎪ ⎪------ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 111111111101226012260000030000030000025000001a a b b b a b b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪+--⎝⎭⎝⎭①当1a ≠,或3b ≠时,方程组无解; ②当1a =且3b =,方程组有无穷多解; 此时方程组等价于 12345234512263x x x x x x x x x ++++=⎧⎨+++=⎩即 13452345522263x x x x x x x x =++-⎧⎨=---+⎩取 3451000,1,0001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得对应的导出组的基础解系()T 11,2,1,0,0=-ξ,()T 21,2,0,1,0=-ξ,()T35,6,0,0,1=-ξ,()T02,3,0,0,0=-η为特解.故通解为1122330k k k =+++X ξξξη, 123,,k k k ∈R . (2)解:对方程组的增广矩阵进行初等行变换1123011230216410122132710162111610244P P t t --⎛⎫⎛⎫ ⎪ ⎪------⎪ ⎪→ ⎪ ⎪--+-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭11230012210080000002P t -⎛⎫⎪ ⎪→ ⎪+ ⎪ ⎪+⎝⎭①当2t ≠-时,方程组无解.②当2t =-,8P =-时,方程组有无穷多解.此时,原方程组等价于1234234230221x x x x x x x +-+=⎧⎨++=⎩即 13423441221x x x x x x =--⎧⎨=--+⎩则 ()T14,2,1,0=-ξ,()T21,2,0,1=--ξ为导出组的基础解系()T01,1,0,0=-η为方程组的一个特解,故通解为1122012,,k k k k =++∈X ξξηR .③ 2t =-,8P ≠-时,方程组有无穷多解 此时,原方程组等价于12342343230220(8)0x x x x x x x P x +-+=⎧⎪++=⎨⎪+=⎩即 142431210x x x x x =--⎧⎪=-+⎨⎪=⎩则 ()T1,2,0,1=--ξ为导出组的基础解系, ()T01,1,0,0=-η为方程组的一个特解. 故方程组的通解为0k k =+∈X ξηR .5.讨论方程组的解,并求解123123123(3)2(1)23(1)(3)3a x x x a ax a x x aa x ax a x +++=-⎧⎪+-+=⎨⎪++++=⎩解:线性方程组的系数矩阵的行列式为312132132||111112323(1)3333333a a a a a a aa a a aa aa a a a a +++=-=-=-----++++++A21320033a aa a a +=----+221120(1)03a a a a a a a +=-=---+令||0=A ,则0a =或1a =(1)0a =时. 线性方程组的增广矩阵为31203120()0110011030330113⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A b 312001100003⎛⎫⎪→- ⎪ ⎪⎝⎭因为()23()r r =≠=A Ab所以,此时方程组无解;(2)当1a =时, 41211012()1012012961430000-⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b方程组等价于1323229x x x x =-+⎧⎨=-⎩,()T1,2,1=-ξ为导出组的基础解系,()T02,9,0=-η为方程组的一个特解. 故通解为0k k =+∈X ξηR .(3)当0a ≠且1a ≠时,方程组有唯一解.2129a x a +=-,222339a a x a ++=,3239a x a +=. 6.设T T11012,,0,,2180⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭αβγA αβB βα,其中T β是β的转置,求解方程22442=++B A x A x B x γ. 解:将TT T ,,2===A αβB βαβα代入下式得22T TTT4T222=⋅B A x βαβααβαβx αβx = 4TTTT3T2=⋅⋅⋅=A x αβαβαβαβx αβx 442=B x x 由 22442=++B A x A x B x γ 得4T 3T 4222=++x x x γαβαβ3T T32(22)--=αβαβE x γ 3T32(2)-=αβE x γ又 T1101212(10)210211102⎛⎫ ⎪⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭αβ所以 3110222101122⎛⎫- ⎪ ⎪-= ⎪ ⎪- ⎪⎝⎭x γ即 12384001680084168-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭x x x对线性方程组的增广矩阵进行初等行变换84002100202216800012201228416800000000----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组等价于 1323122+=-⎧⎨-=⎩x x x x ,即1323122x x x x =--⎧⎨=+⎩,121-⎛⎫⎪= ⎪ ⎪⎝⎭ξ为导出组的基础解系.0120-⎛⎫ ⎪= ⎪ ⎪⎝⎭η为方程组的一个特解. 故通解为 0R k k =+∈X ξη. 7.已知向量组12301,2,1110a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭βββ与向量组1231392,0,6317⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ααα具有相同的秩,且3β可由123,,ααα线性表示,求,a b 的值. 解:因为3β可以由123,,ααα线性表示 所以,1233(,,)=X αααβ有解.即 1231233(,,)(,,)r r =ααααααβ1233(,,)αααβ13913920610612123170010203b b b b ⎛⎫⎛⎫ ⎪ ⎪=→--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭139210126500030b b b ⎛⎫ ⎪ ⎪- ⎪→ ⎪ ⎪- ⎪ ⎪⎝⎭ 因为 1231233(,,)(,,)r r =ααααααβ所以 1231233(,,)(,,)2r r ==ααααααβ 故50,530bb -==又 123(,,)βββ01101101210310311100003a b a b a b ⎛⎫⎪--⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭- ⎪⎝⎭ 因为 123123(,,)(,,)r r =αααβββ所以 03ab -= 315a b ==.8.设向量组12311111,1,1,11111λλλ+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ讨论λ取可值时,β不能由123,,ααα线性表示. λ取何值时,β可由123,,ααα唯一线性表示. λ取何值时,β可由123,,ααα线性表示,且有无穷多种表示形式.解:β是否能由123,,ααα线性表示,也即是 非齐次线性方程组123(,,)=αααX β是否有解.321(,,)αααβ211111111111100111101(1)λλλλλλλλλ++⎛⎫⎛⎫ ⎪ ⎪=+−−→- ⎪ ⎪ ⎪ ⎪+--+-⎝⎭⎝⎭行2111100003λλλλλλ+⎛⎫ ⎪−−→- ⎪ ⎪---⎝⎭行(1)当0λ=时,123123(,,)(,,)2r r ==ααααααβ,则123(,,)=αααX β有无穷多解. 也即β可由123,,ααα线性表示,并且有无穷多表示方法. 121122312(1),k k k k k k =--++∈βαααR ;(2)3λ=-时,123123(,,)23(,,)r r =≠=ααααααβ,故方程组123(,,)=αααX β无解,也即β不能由123,,ααα线性表示;(3)0,3λλ≠≠-时,123123(,,)(,,)r r =ααααααβ,则方程组123(,,)=αααX β有唯一解. 即β可由123,,ααα唯一线性表示.13λ=+β123(,,)ααα. 9.设四阶方阵A 的秩为2,且(1,2,3,4)i i ==A ηb ,其中122334112112,,012002⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ηηηηηη 求非齐次方程组=AX b 的通解.解:因为()2r =A ,故非齐次线性方程组=AX b 的导出组的基础解系含有2个向量又 1231202()()10⎛⎫ ⎪- ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη,2342313()()12⎛⎫ ⎪ ⎪=+-+= ⎪ ⎪ ⎪⎝⎭ξηηηη为=AX b 对应导出组的2个线性无关的解向量,即12,ξξ是=AX b 导出组的基础解系0121()2=+ηηη是=AX b 的一个解.故=AX b 的通解为1122012,k k k k =++∈X ξξηR . 10.已知方程组(I )的通解为1212(0,1,1,0)(1,2,2,1),k k k k =+-∈X T TR设方程组(II )为 122400x x x x +=⎧⎨-=⎩问方程组(I )、(II )是否有非零公共解,若有,求其所有公共解. 解:由题意,(I )的通解为212121212201212,21201R k k k k k k k k k k --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪=+=∈ ⎪⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X将X 的表达式代入方程组(II )得2121222020k k k k k k -++=⎧⎨+-=⎩ 即 12k k =-所以(I )和(II )有公共解,并且公共解为()()11,,,1,1,1,1k k k k k k =---=---∈X T TR .11.设四元齐次方程组(I )为123123423020x x x x x x x +-=⎧⎨++-=⎩ 且已知另一四元齐次方程组(II )的一个基础解系为T1(2,1,2,1)a =-+α,T 2(1,2,4,8)a =-+α,(1)求方程组(I )的一个基础解系(2)当a 为何值时,方程组(I )与(II )有非零公共解?在有非零公共解时,求出全部非零公共解.解:(1)方程组(I )123123423020x x x x x x x +-=⎧⎨++-=⎩显然,系数矩阵的秩为2. 对(I )的系数阵进行初等行变换2310231012113501--⎛⎫⎛⎫→ ⎪ ⎪--⎝⎭⎝⎭故方程组(I )与1231242335x x x x x x +=⎧⎨+=⎩等价取 1210,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得 ()()TT121,0,2,3,0,1,3,5==ββ为(I )的一个基础解系.(2)若(I )、(II )有非零公共解,即存在不全为0的数1234,,,x x x x ,使11223142x x x x +=+ββαα (*)即 12121234(,,,)0x x x x ⎛⎫⎪ ⎪--= ⎪ ⎪⎝⎭ββαα有非零解 故 1212(,,,)4r --<ββαα. 1212(,,,)ββαα10211021112011223240326351805511a a a a --⎛⎫⎛⎫ ⎪⎪--⎪ ⎪=−−→⎪ ⎪----+- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭行1021011200100001a a -⎛⎫⎪- ⎪−−→⎪+ ⎪⎪+⎝⎭行所以 1a =-时,方程组有非零解此时 1342342020x x x x x x -+=⎧⎨+-=⎩即 13423422x x x x x x =-⎧⎨=-+⎩所以 ()()T T122,1,1,0,1,2,0,1=-=-ξξ为(*)的基础解系.将12,ξξ表示式代入(*)得(I )、(II )的全部解为()()TT122,1,1,11,2,4,7k k =-+-X (12,k k 为不同时为0的常数).12.设112224336⎛⎫⎪= ⎪ ⎪⎝⎭A ,求一秩为2的矩阵B ,使.=AB 0解:先求=AX 0的基础解系112112224000336000⎛⎫⎛⎫⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A故齐次线性方程组=AX 0等价于12320x x x ++= 1232x x x =--得 ()()TT121,1,0,2,0,1=-=-ξξ为=AX 0的一个基础解系令 121001--⎛⎫⎪= ⎪ ⎪⎝⎭B ,()2r =B 并且 =AB 0.13.设T 2122(),(,,,)ij n n n a x x x ⨯==A X ,方程组=AX 0的一个基础解系为T 12,2(,,,),1,2,,i i i n b b b i n =,求方程组 1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的通解.解:将题中所求通解的线性方程组记为=BY 0由题意 1112121121121222212222122122220n n n n n n n n n n n n a a a b b b a a a b b b a a a b b b ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭ 两边取转置1112121121121222212222122122220n n n n n n n n nnn n b b b a a a b b b a a a b b b a a a ⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭故T A 的每一列为=BY 0的解向量.又 =AX 0的基础解系含有n 个向量,所以,()2r n n n =-=A ,则A 的行向量组线性无关. 又 ()r n =B ,所以,A 的行向量组为=BY 0的基础解系.14.已知4阶方阵1234(,,,)=A αααα,其中234,,ααα线性无关,1232=-ααα,如果1234=+++βαααα,求线性方程组=AB β的通解.解:因为234,,ααα线性无关,又123420=-+⋅αααα, 则 ()3r =A . 所以,=AX 0的基础解系只含有1个向量.又 1234200+-+⋅=αααα所以 123412(,,,)100⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭αααα 故 ()T1,2,1,0=-ξ为=AX 0的一个基础解系. 又 1234+++=ααααβ则 123411(,,,)11⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααααβ 所以 ()T01,1,1,1=η为=AB β的一个特解 故 =AB β的通解为0R k k =+∈X ξη.15.设()ij m n a ⨯=A 的行向量组是某个齐次线性方程组的基础解系. 证明()ij m n b ⨯=B 的行向量组也是该方程组的基础解系⇔存在可逆阵()ij m m p ⨯=P ,使1,1,2,,,1,2,,mij ik kj k b p a i m j n ====∑.解:设m n ⨯A 的行向量组是=CX 0的基础解系,若m n ⨯B 的行向量组也是=CX 0的基础解系, 则A 的行向量组与B 的行向量组等价 故存在可逆阵P ,使得 =B PA , 所以 1mij ik kjk b P a==∑ 1,2,,i m =,1,2,,j n =.反之,若存在可逆阵,()ij m m P ⨯=P P ,使得1,1,2,,;1,2,,mij ik kj k b P a i m j n ====∑则=B PA ,故A 的行向量组与B 的行向量组等价.又 因为A 的行向量组是=CX 0的基础解系. 所以,B 的行向量组也是=CX 0的基础解系.16.设=AX 0的解都是=BX 0的解,则=AX 0与=BX 0同解()()r r ⇔=A B . 证:必要性.若=AX 0与=BX 0同解,则=AX 0与=BX 0具有相同的解空间, 即()()=N A N B 故 ()()n r n r -=-A B , 所以()()r r =A B .充分性.设1,,n r -ξξ是=AX 0的基础解系,()r r =A ,因为=AX 0的解都是=BX 0的解. 所以,1,,n r -ξξ是=BX 0的n r -个线性无关的解向量.又()()r r =A B ,所以,=BX 0的基础解系所含向量的个数为 ()()n r n r n r -=-=-B A因此,1,,n r -ξξ为=BX 0的一个基础解系. 故=AX 0与=BX 0同解.17.设A 为m p ⨯阵,B 为p n ⨯阵,证明=ABX 0与=BX 0同解()()r r ⇔=AB B证:必要性.因为=ABX 0与=BX 0同解,所以,=ABX 0与=BX 0有相同的解空间, 即()()=N AB N B 因此()()n r n r -=-AB B , 故()()r r =AB B . 充分性.设1X 是=BX 0的解,1=BX 0. 则1==ABX A 00. 所以,=BX 0的解都是=ABX 0的解.设1,,n r -ξξ是=BX 0的基础解系,()r r =B ,则1,,n r -ξξ也是=ABX 0的线性无关解向量. 并且,=ABX 0的基础解系所含向量的个数为()()n r n r n r -=-=-AB B所以 1,,n r -ξξ为=ABX 0的基础解系,故=ABX 0与=BX 0同解.18.设A 为m n ⨯阵,B 为m p ⨯阵,证明=AX B 有解()()r r ⇔=A B A证:必要性.A 为m n ⨯阵,B 为m p ⨯阵,=AX B ,则X 为n p ⨯阵 令 1(,,)p =X X X ,1(,,)p =B b b因为 =AX B 所以 1122,,,p p ===AX b AX b AX b 故 12()()()()p r r r r ===A b A b A b A即矩阵B 的列向量组可以由A 的列向量组线性表示 所以 ()()r r =A B A 充分性.若 ()()r r =A B A ,又由1(,,)p =B b b有 ()()()()1,,i r r r r i p ≤≤==A A b A B A所以 ()()1,,i r r i p ==A b A故 12,,,p ===AX b AX b AX b 有解. 设解分别为12,,,p X X X 1212(,,,)(,,,)p p =A X X X b b b即 =AX B 有解.19.设A 为m n ⨯阵,B 为l n ⨯阵,则=AX 0与=BX 0同解⇔()()r r r ⎛⎫== ⎪⎝⎭A AB B证:若=AX 0与=BX 0同解,则⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解.又 ⎛⎫= ⎪⎝⎭A XB 0的解一定是=AX 0的解.由题16, ()r r ⎛⎫= ⎪⎝⎭A A B同理, ()r r ⎛⎫= ⎪⎝⎭A B B故 ()()r r r ⎛⎫== ⎪⎝⎭A A B B .反之,若 ()()r r r ⎛⎫== ⎪⎝⎭A AB B .因为,⎛⎫=⎪⎝⎭A X B 0的解都是=AX 0的解. 所以,由题16,⎛⎫= ⎪⎝⎭A XB 0与=AX 0同解. 又因为⎛⎫= ⎪⎝⎭A X B 0的解都是=BX 0的解,所以 ⎛⎫= ⎪⎝⎭A XB 0与=BX 0同解,故,=AX 0与=BX 0同解.20.设T (),0ij n n a ⨯⎛⎫==⎪⎝⎭Ab A B b ,其中T 12(,,,)n =b b b b ,若()()r r =A B ,则=AX b 有解.证:因为 ()()()()r r r r ≤≤=A A b B A 所以, ()()r r =A b A故 =AX b 有解.21.设A 为(1)n n ⨯-阵,,()n∈=b R B A b ,若b =AX 有解,则||=B 0. 又当()1r n =-A 时,b =AX 有解||⇔=B 0.证:(1)因为A 为(1)n n ⨯-阵,所以()1n ≤-R A .故()()1r r n n =≤-<A b A又 ()=B A b 为n n ⨯阵,故 ||=B 0.(2)若()1r n =-A ,=AX b 有解,则()()1r r n ==-A b A所以||0=B .反之,若||,()1r n ==-B A 0. 故 ()1r n =-B即 ()()()1r r r n ===-A A b B 所以=AX b 有解.22.若方阵A 的行列式为0,则A 的伴随阵*A 各行成比例. 证:因为||0=A ,所以()1r n ≤-A . (1)若()1r n =-A ,则*()1r =A .故*A 的行向量组的秩为1,不妨设第一行1α为行向量的极大无关组,则剩余行向量均可以由1α线性表示,故各行成比例.(2)若()1r n <-A ,则*()0r =A ,即*=A 0,显然各行成比例.23.设(1)(),()ij n n a r n ⨯+==A A ,则方程组0=AX 的任意两解成比例. 证:因为A 为(1)n n ⨯+阵,()r n =A所以,=AX 0的基础解系所含向量个数为(1)1n n +-=. 设ξ为=AX 0的一个基础解系. 则任意解,R k k =∈X ξ. 所以,任意两解成比例.24.设()ij n n a ⨯=A ,且10,1,2,,nijj ai n ===∑,则A 不可逆.证:由于10nijj a==∑故 111⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A 0. 所以,()T1,1,,1=X 是=AX 0的解.即 齐次线性方程组=AX 0有非零解,故||0=A .25.设A 为n n ⨯实矩阵,若对任意n 维非零列向量X ,均有T0>X AX ,则||0.≠A 证:反证,若||0=A则 =AX 0有非零解设1X 是=AX 0的一个非零解,则1=AX 0T T 11100=⋅=X AX X此与对任意 ≠X 0,T0>X AX 矛盾.26.设A 为(实)反对称阵,D 为对角元全大于0的对角阵,则||0+≠A D ,且还有||0.+>A D证:(1)反证,若||0.+=A D 则 ()+=A D X 0有非零解,设为1X1()+=A D X 0进而 T11()0+=X A D XT T 11110+=X AX X DX因为A 为反对称阵,所以 T110=X AX 故 T110=X DX但 1diag(,,),0n i a a a =>D所T110>X DX ,此为矛盾所以, ||0+≠A D . (2)令()||[0,1]f x x x =+∈A D假设 ||0+<A D .因为 (0)||0f =>D ,(1)||0f =+<A D . 由介值定理 存在0(0,1)x ∈使得00()||0f x x =+=A D0001||||0x x x +=+=D A D A 0x D 为对角元全大于0的对角阵. 但由第(1)步 0||0x +≠DA 矛盾. 故||0+>A D . 27.求出平面上n 点(,)(1,2,,(3))i i x y i n n =≥位于一条直线上的充要条件.证:设n 点所共直线为y kx b =+,则关于,k b 的方程组i i y kx b =+ (1,,)i n =有解,从而矩阵12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与1122111n n x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等,故11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ ,反之,若 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ (1)若12n x x x ==,则此n 点共线.(2)否则,121121n x x r x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,但11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 故 11221121nn x y x y r x y ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 从而 12111n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 1122111nn x y x y x y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 方程组(未知量为,k b )1122n nkx b y kx b y kx b y +=⎧⎪+=⎪⎨⎪⎪+=⎩ 有解,于是n 点共线,故平面上n 点(,)1,,;1,,i i x y i n y n ==共线的充要条件是 11221131nn x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭ 即 11221131n n x y x y r x y ⎛⎫ ⎪ ⎪< ⎪ ⎪ ⎪⎝⎭. 28.求出平面内n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充分必要条件. 证:若平面内n 条直线0i i i a x b y c ++=(1,2,,)i n =共点,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,故矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 与 111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的秩相等. 反之,若矩阵1122n n a b a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭秩相等,则线性方程组 111222000n n n a x b y c a x b y c a x b y c ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 有解,即n 条直线共点.故n 条直线0(1,2,,)i i i a x b y c i n ++==共点的充要条件是 矩阵1122nn a b a b a b ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭与111222n n n a b c a b c a b c ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭的秩相等. 29.设T12(,,,)(1,2,,;)i i i in a a a i r r n ==<α是n 维实向量,且12,,,r ααα线性无关,已知T 12(,,,)n b b b ==β是线性方程组11112212122221122000n n n nr r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的非零解向量,试判断向量组12,,,r ααα,β的线性相关性. 解:设有一组数12,,,,r k k k k 使得11220r r k k k k ++++=αααβ成立,因为T 12(,,,)n b b b ==β是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解,且0≠β,故有T(1,2,,)i i r ==αβ即 T(1,2,,)i i r ==βα于是,由1122T T T T 0r r k k k k ++++=βαβαβαββ得 T0k =ββ,但T0≠ββ,故0k =.从而 11220r r k k k +++=ααα由于向量组12,,,r ααα线性无关,所以有120r k k k ====因此,向量组12,,,,r αααβ线性无关.30.已知向量()()()TTT1231,1,0,2,2,1,1,4,4,5,3,11=-=-=-ηηη,是方程组112334411223442122344324335a x x a x a x d x b x x b x d x c x x c x d ⎧+++=⎪+++=⎨⎪+++=⎩ 的三个解. 求该方程组的通解.解:由已知有()()TT21311,2,1,2,3,6,3,9-=--=-ηηηη是相应的齐次方程组的两个线性无关解.所以,系数矩阵的秩2≤,(因为4()2r -≥A ).又 系数矩阵134242424335a a ab b cc ⎛⎫⎪⎪ ⎪⎝⎭有二阶子式43035≠所以,系数矩阵的秩2≥. 于是,系数矩阵的秩为2.故齐次方程组的基础解系包含2个向量,即2131,--ηηηη是齐次方程组的基础解系. 因此,该方程组的通解为121231112()()(,)R k k k k -+-+∈ηηηηη.31.设12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关.证:设有一组01,,,t k k k 得01112()()()0t t k k k k +++++++=ββαβαβα得 0121122()0t t t k k k k k k k ++++++++=βααα (1)由于12,,,t ααα是齐次线性方程组0=AX 的基础解系,向量β不是0=AX 的解,所以β不能表为1,,t αα的线性组合,所以010t k k k +++=因此(1)式变为 11220t t k k k +++=ααα由于1,,t αα线性无关,所以 120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.32.已知齐次方程组(I )124213224000x x x ax a x ax a x ++=⎧⎪+=⎨⎪+=⎩的解都满足方程1230x x x ++=,求a 和方程组(I )的通解.解:(I )的解都满足1230x x x ++=的充要条件是(I )与方程组1242132241230000x x x ax a x ax a x x xx ++=⎧⎪+=⎪⎨+=⎪⎪++=⎩同解,于是该方程组系数矩阵的秩等于方程组(I )的秩,即22110100001110a a a a ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭B 与 2211010000a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭A的秩相等,对,A B 都施以行变换得222110100aa a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 2211010000110002a a a a ⎛⎫⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 因此,当0a =时,秩()1=≠A 秩()2=B 不满足题意当0a ≠时 1101010001a a a ⎛⎫ ⎪→ ⎪ ⎪-⎝⎭A 1101010001100021a a ⎛⎫ ⎪⎪→ ⎪- ⎪ ⎪-⎝⎭B 使秩()=A 秩()3=B 的充要条件是12a =,此即12a =为题意所求.把12a =代入方程组(I )得系数矩阵110011012111000102421100110024⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪=→ ⎪⎪ ⎪ ⎪- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭A 所以 14243411,,22x x x x x x =-=-=方程组(I )的基础解系为 T11(,,1,1)22=--α通解 为()R k k =∈X α. 33.设121201101t t t ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,且方程组0=AX 的基础解系中含有两个解向量,求0=AX 的通解.解:因为4,()2n n r =-=A ,所以()2r =A 对A 施行初等行变换得1112121201011010211t t t t t t ⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A 2212120100(1)(1)t t t t ⎛⎫⎪→ ⎪ ⎪----⎝⎭221012220100(1)(1)tt t t t t --⎛⎫ ⎪→ ⎪ ⎪----⎝⎭要使()2r =A ,则必有1t =,此时与0=AX 同解的方程组为13234x x x x x =⎧⎨=--⎩ 得基础解系 ()()TT121,1,1,0,0,1,0,1=-=-ξξ方程组的通解为 112212(,)R k k k k =+∈X ξξ.34.讨论三个平面11111:a x b y c z d π++=,22222:a x b y c z d π++=,33333:a x b y c z d π++=的位置关系解:设111222333a b c a b c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,111122223333a b c d a b c d a b c d ⎛⎫ ⎪= ⎪ ⎪⎝⎭A(1)若()()3r r ==A A ,则三平面交于一点,因为三平面的联立方程组仅有唯一解.(2)若()3,()2r r ==A A ,则三平面不相交,因为此时三平面的联立方程组无解. 由()2r =A ,知A 的3个行向量123,,ααα线性相关,故存在3个不全为零的数,123,,k k k 使得1122330k k k ++=ααα,当123,,k k k 都不为零时,三平面中任意两平面的交线与另一平面平行;当123,,k k k 中有一个为零时,三平面中有两平面平行,另一平面与这两平面相交.(3)若()()2r r ==A A ,则三平面相交于一直线,因为此时三平面联立方程组有无穷多解.由于()2r =A ,则A 的3个行向量123,,βββ线性相关. 故存在3个不全为零的数123,,k k k ,使得1122330k k k ++=βββ,当123,,k k k 均不为零时,三平面互异;当123,,k k k 中有一个为零时,三平面中有两平面相重合.(4)若()2r =A ,()1r =A ,则三平面不交,因为此时三平面的联立方程组无解. 由()1r =A ,故三平面平行,又因为()2r =A ,所以三平面中至少有两个互异. (5)若()()1r r ==A A ,则三平面重合,因为此时三平面的方程实际上是一样的.。