线性代数第四章齐次线性方程组
- 格式:ppt
- 大小:454.50 KB
- 文档页数:26
第四章 线性方程组【基本要求】1. 理解线性方程组有解的判定定理2. 理解齐次线性方程组的基础解系、通解、一般解等概念及解的结构。
3.理解非齐次线性方程组解的结构4. 熟练掌握用初等行变换求线性方程组通解的方法。
【主要内容】<1>齐次线性方程组:① 齐次方程组0=Ax 恒有零解;当()n A R <时有无穷多解,其基础解系中解向量的个数是)(A r n −,即自由未知量的个数。
② 设是A n m ×阶矩阵,齐次方程组0=Ax 有非零解的充要条件是即的列向量线性相关;充分条件是n A r <)(A n m <(即方程个数<未知数个数) ③ 若是阶方阵,则有非零解的充要条件是A n 0=Ax 0=A <2>非齐次线性方程组:① 设是A n m ×阶矩阵,方程组b Ax =有解⇔系数矩阵的秩等于增广矩阵A A 的秩可由的列向量⇔b A n ααα,,,21 线性表出⇔n ααα,,,21 与b n ,,,,21ααα 是等价向量组。
② 设是A n m ×阶矩阵,则方程组b Ax =无解⇔()()A r A r ≠;有唯一解b Ax =⇔n A r A r ==)()(;b Ax =有无穷多解⇔n A r A r <=)()(<3>解的联系:① 若21,ξξ是b Ax =的解,则21ξξ−是0=Ax 的解。
② 若ξ是b Ax =的解,η是0=Ax 的解,则ηξ+仍是b Ax =的解。
③ 若有唯一解,则只有零解;反之,当b Ax =0=Ax 0=Ax 只有零解时,没有无穷多解(可能无解,也可能只有唯一解)。
b Ax =【典型例题】例1 求解齐次线性方程组 解: 将系数矩阵化为上阶梯形⎪⎪⎩⎪⎪⎨⎧=−+++=−−+−=−+++=−+++076530230553203454321543215432154321xx x x x x x x x x x x x x x x x x x xA B =−−−−−−⎛⎝⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟⎯→⎯⎯⎯−−−⎛⎝⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟=1114321355113213156711143011310000000000行变换 所以 R A r n n r (),,,===−=253 即方程组(1)有无穷多解 ,其基础解系中有三个线性无关的解向量。
第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。
矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。
§4.4 线性方程组解的结构第四章n元向量空间111122121122221122000.+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩n n n n m m mn n a x a x a x a x a x a x a x a x a x ,,,AX ⇔=(矩阵形式)0记齐次线性方程组111212122211n n m m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 的系数矩阵为 12X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦n x x x 未知数向量为{}A X AX A X ∈==0的解集是的子空间nnN 0 ,()=注2注1 齐次线性方程组解的线性组合还是解.性质11212AX AX =+=0 0 若是 的解则也是的解,.η,ηηη性质2()AX AX =∀∈=0 0 若是 的解则 也是的解k k ,.ηη齐次线性方程组的基础解系定义1当 有非零解时, AX =0如果解向量满足: 12,,,t ηηη(1)线性无关; 12,,,t ηηη(2)的任一解可由 线性表示, 12,,,t ηηηAX =0则称为方程组 的一个基础解系. 12,,,t ηηηAX =01122X =+++t t k k k ,ηηη12,,,其中是任意常数t k k k .()12(),,,A =t N L ηηη{}11221,2,,=+++∈=t t i k k k k i t ,ηηη如果为齐次线性方程组 的一个基础解系,则 12,,,t ηηηAX =0的通解可表示为 AX =0◆向量组的极大无关组不唯一,但不同极大无关组中所含向量个数相同.向量组的秩◆方程组的基础解系不唯一,但所含解向量的个数是唯AX 0解空间的维数一确定的.dim N(A)=如何求基础解系()A AX ⨯=<=0m n r r n 当时,方程组有非零解,1212,,,,,,++r r r n x x x x x x 不失一般性,不妨设为主变量,为自由变量111,1,10010000A --⎛⎫⎪ ⎪ ⎪−−−−→⎪ ⎪ ⎪ ⎪ ⎪⎝⎭n r r r n r b b b b 初等行变换A 则系数阵化为行简化阶梯形矩阵齐次线性方程组的基础解系11111,11,+-+-⎧=---⎪⎨⎪=---⎩r n r n rr r r n r nx b x b x x b x b x ⇔AX =011111,11,11+-+-++---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦r n r n r r r r n r n r r n n x b x b x x b x b x x x x x 通解为11121212212100010001++---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦r r r r r n b b b b b b x x x11121,12,12,,,.100010001n r r r r n r n rb b b b b b ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηη记112212,.X ---=+++其中 为任意常数n r n r n r k k k k k k ,,,ηηη112212,,,,,++--===令其中为任意常数r r n n r n r x k x k x k k k k ,,,AX =0 则 的通解为为齐次线性方程组 的一个基础解系,且 12,,,t ηηηAX =0dim ().A =-N n r()AX A A ⨯=<0m n r n 若齐次线性方程组的系数矩阵的秩,则必有定理1基础解系,()A -n r 且任一基础解系所含解向量的个数为.123412341234123450,230,380,3970.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩例1 求齐次线性方程组的一个基础解系,并写出通解.解 对方程组的系数矩阵初等行变换,得11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦310127012200000000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦()24A =<r ,1342343,272,2x x x x x x ⎧=--⎪⎪⎨⎪=-⎪⎩该方程组有非零解,且基础解系中含2个解向量, 同解方程组为 34,x x 其中为自由变量. 31272212123412,,.0110--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=+∀∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x x k k k k x x 327212120110--⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,ηη通解为 为该方程组的一个基础解系. 1231722001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥''==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,ηη由于11112211211222221122,,.n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩11121121222212[]A A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦n n m m mn m a a a b a a a b a a a b β增广矩阵为已知 非齐次线性方程组 m n ⨯AX ⇔=(矩阵形式)β AX AX ==0.β称齐次线性方程组为的导出组()()A A AX =<=r r n 当时,有无穷多解,这些解具有怎样的形式?β性质3性质41212.X X AX X X AX =-= 设是的任意两个解,则是其导出组 的解,β0 0,X AX =设是 的一个特解β.AX =方程组的解β0X η+则是,AX =0是导出组 的解η()()AX A A ⨯===<如果非齐次线性方程组满足m n r r r n β,它的一个解(称它为特解),定理212AX -=0是它的导出组的一个基础n r ,,,ηηη0X 是解系,AX =则方程组的通解为β12.-其中为任意常数n r k k k ,,,01122X X ηηη--=++++n r n r k k k ,例2 12312312331,334,598.+-=-⎧⎪--=⎨⎪+-=-⎩x x x x x x x x x 113131341598A --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦3302437024001100⎡⎤-⎢⎥⎢⎥⎢⎥−−→--⎢⎥⎢⎥⎢⎥⎣⎦求非齐次线性方程组 解 313233427342⎧=+⎪⎪⎨⎪=-+⎪⎩x x x x ,,的全部解.()()23A A ==<r r ,由于 该方程组有无穷多解,其同解方程组为 其中 为自由变量. 3x方法1 (1) 令 , 30=x 求出非齐次线性方程组的一个特解 T 037[,,0].44X =-(2) 导出组的同解方程组为31323232⎧=⎪⎪⎨⎪=⎪⎩x x x x ,, 令 , 31=x 得导出组的一个基础解系 T 33[,,1].22=η(3) 所求非齐次线性方程组的全部解为 T T 3733[,,0][,,1],.4422X =-+∀∈k k方法2 由同解方程组 直接写出通解 或其向量形式的通解为T T T 1233733[,,][,,0][,,1],.4422=-+∀∈x x x k k 313233427342⎧=+⎪⎪⎨⎪=-+⎪⎩x x x x ,,13233333427342.⎧=+⎪⎪⎪=-+⎨⎪=⎪⎪⎩x x x x x x ,,zxyOXX+ηηLW例2的几何意义=在例2中若,,在三维几何空间取定直角坐标系后,++=ax by cz d平面++=ax by cz过原点的平面L可由W 沿作平移得到.X非齐次线性方程组解的判定11112212112222,.a x a x b a x a x b +=⎧⎨+=⎩11111221:L a x a x b +=,已知平面直线 22112222:.L a x a x b +=则两条平面直线的交点坐标满足重合 相交 平行解的几何意义§4.5 欧氏空间n 第四章n元向量空间{}1212T [,,,],,,=∈元实向量空间n n n n a a a a a a ||||cos ,a b a b θ=||,a a a =cos .||||a b a b θ=112233,a b a b a b a b =++数量积的直角坐标计算公式: 解析几何中向量的数量积:T T 1212[,,,],[,,,],==设是元向量空间中两个向量n n n a a a b b b n αβ1122(,)αβ=+++n n a b a b a b ,令定义了内积的n 元实向量空间 , 称为欧几里得空间,简称欧氏空间.n T ,,(,).=当为列向量时有αβαβαβ※ 定义1称 为向量 与 的内积(inner product ). (,)αβαβ(1)(,)(,);=αββα(2)(,)(,);=k k αβαβ(3)(,)(,)(,);+=+αβγαγβγ(对称性) 内积具有以下性质(其中为n 元向量,k 为实数): ,,αβγ(线性性) (4)(,)0,(,)0.≥=⇔=0且ααααα(正定性)⎫⎪⎬⎪⎭利用这些性质可以证明施瓦茨(Schwarz )不等式成立:2(,)(,)(,).≤⋅αβααββ定义2 对欧氏空间 中的任一向量 , αn (,).=ααα称非负实数 为向量的长度 (,)ααα(length ),记为 注 (,).=ααα向量的长度也称为范数(norm),记为 α(i)0;0≠>==00;当时当时,αααα,2(ii)(,)(,)||||.=== 对任意向量及任意实数有k k k k k k ααααααα, (非负性)(齐次性)向量的长度具有下述性质:定义3 在欧氏空间 中, n 若(,)0,=αβ称向量 与 正交(orthogonal ), βα.⊥αβ记为01,≠=0若则为单位向量αααα,1=α当时,称 为单位向量. α由向量 得到 的过程称为把向量 α0α 单位化.α 欧氏空间 中,两两正交的非零向量组成的向量组称为正交向量组. n每一个向量都是单位向量的正交向量组称为标准正交组.正交向量组一定线性无关.命题1 1,,(,),1,2,,.0,.=⎧⇔==⎨≠⎩i j i j i j s i j αα12s ,,,∈是一个标准正交组n ααα由n 个向量组成的正交向量组称为 的一个正交基(orthogonal basis ). n 每一个向量都是单位向量的正交基称为 的标准正交基(orthonormal basis ). n 例如, 12,,,.基本向量组 是 的一个标准正交基n n εεε121122,,,,(,)(,)(,).∀∈=+++R 设是的一个标准正交基.证明:对有n n n n n αααααααααααααα 例112(),,,(),ns s n ααα≤设Ⅰ是欧氏空间中的一个线性无关向量组令定理1施密特正交化方法12(),,,,ns βββ则Ⅱ是的正交向量组且11;βα=11(,),2,3,,,(,)k k i k k i i i i k s αββαβββ-==-=∑1212(,,,)(,,,),1,2,,.i i L L i s αααβββ==2122111(,),(,)αββαβββ=-12,1,2,,,():,,,.ii ins i s βηβηηη==令则Ⅲ是的标准正交组T T T 31233[1,1,0],[1,0,1],[0,1,1],.ααα===设是的一个基用施密特正交化方法求的一个标准正交基T 11[1,1,0],βα==令 2122111(,)(,)αββαβββ=-解T T 1[1,0,1][1,1,0]2=-T1[1,1,2],2=-313233121122(,)(,)(,)(,)αβαββαββββββ=--TT T 11[0,1,1][1,1,0][1,1,2]26=---T2[1,1,1].3=-例1123βββ将,,单位化得3123,,.ηηη则是的一个标准正交基T 111T 222T 3331[1,1,0],21[1,1,2],61[1,1,1],3βηββηββηβ====-==-11αβ=2α2β221k βαβ=-3β2β11αβ=2α3α1k β3312k l βαββ=--§4.6 正交矩阵第四章n元向量空间正交矩阵T ,n n A A A E =若阶实方阵满足则称 A 为正交矩阵,简称正交阵.(orthogonal matrix )定义1TAA E ⇔=nT A A E =n 1TAA -⇔=注 1T(i),,11A A ,A A A -*=-若是正交阵则也是正交阵,且或;(ii),若和是同阶正交阵则也是正交阵.A B AB 正交阵具有下述性质:T(i),.n =由于是正交矩阵所以A AA E 从而,两边取行列式可得1 1.=-从而或A 2T T 1,n ====A A A AA E T T T 1,,,,.n *-==显然为实矩阵.由于是正交矩阵所以且A A A A A E A A 11T T T T T ()()()(),n --===A A A A A A E 2T 11T11T()()()()()(),n **----===A A A A A A A A A E 1T,,-*因此均是正交矩阵.A A A 证(ii),,,显然为实矩阵. 由于是正交矩阵所以AB A B T T,,n n ==AA E BB E 因此T T T T()()(),n ===AB AB A BB A AA E 故是正交矩阵.AB,()n 设是阶实矩阵则是正交矩阵当且仅当的行列向量组A A A 命题1n是的一个标准正交基.12,,,,n ααα设的行向量组为则A 证12T T TT 12,,,n n αααααα⎡⎤⎢⎥⎢⎥⎡⎤=⎣⎦⎢⎥⎢⎥⎣⎦AA T TT 11121T TT 21222T T T 12n n n n n n αααααααααααααααααα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=111212122212(,)(,)(,)(,)(,)(,).(,)(,)(,)n n n n n n αααααααααααααααααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是正交矩阵A 12,,,nn ααα⇔的行向量组是的一个标准正交基.A Tn⇔=AA E (,)1,1,2,,,(,)0,,,1,2,,.i i i j i n i j i j n αααα==⎧⇔⎨=≠=⎩TTn n ==因为与等价,所以上述结论对的列向量亦成立.A A E AA E A若矩阵S 为正交阵,则线性变换 X=SY 称为正交变换.11111221221122221122.n n n n n n n nn n x s y s y s y x s y s y s y x s y s y s y =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩则,,,1122n n x y x y x y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设,X , Y 为由向量X 到Y 的一个线性变换.T T T T T (,)()().======X X X X X SY SY Y S SY Y Y Y 这说明经正交变换线段长度保持不变.cos sin ,sin cos -⎡⎤==⎢⎥⎣⎦例如,矩阵是正交矩阵旋转是一个正交变换;ϕϕϕϕA Y AX。
习题四答案(A)1. 求下列矩阵的特征值与特征向量:(1) ⎪⎪⎭⎫ ⎝⎛--3113 (2) ⎪⎪⎪⎭⎫ ⎝⎛---122212221 (3) ⎪⎪⎪⎭⎫ ⎝⎛----020212022 (4)⎪⎪⎪⎭⎫ ⎝⎛--201034011 (5) ⎪⎪⎪⎭⎫ ⎝⎛--011102124 (6)⎪⎪⎪⎭⎫ ⎝⎛----533242111 解 (1)矩阵A 的特征多项式为=-A E λ)4)(2(3113--=--λλλλ,所以A 的特征值为4,221==λλ.对于21=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,1(1=αT ,所以A 的属于特征值2的全部特征向量为)1,1(111k k =αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,1(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,1(222-=k k αT(02≠k 为任意常数).(2)矩阵A 的特征多项式为=-A E λ)3)(1)(1(122212221--+=------λλλλλλ, 所以A 的特征值为11-=λ,12=λ,33=λ.对于11-=λ,解对应齐次线性方程组=--X A E )(O ,可得它的一个基础解系为)0,1,1(1-=αT ,所以A 的属于特征值-1的全部特征向量为)0,1,1(111-=k k αT (01≠k 为任意常数).对于12=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,1,1(2-=αT ,所以A 的属于特征值1的全部特征向量为)1,1,1(222-=k k αT (02≠k 为任意常数).对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,0(3-=αT ,所以A 的属于特征值3的全部特征向量为)1,1,0(333-=k k αT (03≠k 为任意常数).(3) 矩阵A 的特征多项式为=-A E λ)4)(1)(2(2021222--+=--λλλλλλ, 所以A 的特征值为11=λ,42=λ,23-=λ.对于11=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)2,1,2(1-=αT ,所以A 的属于特征值1的全部特征向量为)2,1,2(111-=k k αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,2,2(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,2,2(222-=k k αT (02≠k 为任意常数).对于23-=λ,解对应齐次线性方程组=--X A E )2(O ,可得它的一个基础解系为)2,2,1(3=αT ,所以A 的属于特征值-2的全部特征向量为)2,2,1(333k k =αT (03≠k 为任意常数).(4)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为12,1=λ(二重),23=λ.对于12,1=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,2,1(1-=αT ,所以A 的属于特征值1的全部特征向量为)1,2,1(111-=k k αT (01≠k 为任意常数).对于23=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,0,0(2=αT ,所以A 的属于特征值2的全部特征向量为)1,0,0(222k k =αT (02≠k 为任意常数).(5)矩阵A 的特征多项式为=-A E λ2)2(11132124-=------λλλλλ, 所以A 的特征值为01=λ,23,2=λ(二重).对于01=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)2,1,1(1--=αT ,所以A 的属于特征值0的全部特征向量为)2,1,1(111--=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,所以A 的属于特征值2的全部特征向量为22αk )0,1,1(2-=k T (02≠k 为任意常数).(6)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为61=λ,23,2=λ(二重).对于61=λ,解对应齐次线性方程组=-X A E )6(O ,可得它的一个基础解系为)3,2,1(1-=αT ,所以A 的属于特征值6的全部特征向量为)3,2,1(111-=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,)1,0,1(3=αT ,所以A 的属于特征值2的全部特征向量为3322ααk k +)0,1,1(2-=k T )1,0,1(3k +T (32,k k 为不全为零的任意常数).2. 设A 为n 阶矩阵, (1) 若O A ≠,且存在正整数k ,使得O A k=(A 称为幂零矩阵),证明:A 的特征值全为零;(2) 若A 满足A A =2(A 称为幂等矩阵),证明:A 的特征值只能是0或1;(3) 若A 满足E A =2(A 称为周期矩阵),证明:A 的特征值只能是1或1-. 证明:设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .(1)因αλαk k A =,而,O A k=故O k =αλ.又因O ≠α,故0=k λ,得.0=λ(2)因αλα22=A ,而,2A A =故αλααλα22===A A ,即.)(2O =-αλλ又因O ≠α,故02=-λλ,得0=λ或1.(3)同(2)可得αλααα22===A A ,即.)1(2O =-αλ又因O ≠α,故012=-λ,得1=λ或1-.3. 设21,αα分别为n 阶矩阵A 的属于不同特征值1λ和2λ的特征向量,证明:21αα+不是A 的特征向量.证明:反证法.若21αα+是A 的特征向量,相应的特征值为λ,则有)()(2121ααλαα+=+A ,即2121λαλααα+=+A A .又因21,αα分别为矩阵A 的属于特征值1λ和2λ的特征向量,即111αλα=A ,222αλα=A ,则2121λαλαλαλα+=+,即O =-+-2211)()(αλλαλλ.因21,αα是矩阵A 的属于不同特征值的特征向量,故21,αα线性无关,于是可得0,021=-=-λλλλ,即21λλλ==,矛盾.4. 证明定理4.4.若λ是n 阶矩阵A 的特征值,则(1)设m m x a x a a x f +++= 10)(,则)(λf 是)(A f 的特征值,其中m m A a A a E a A f +++= 10)()(N m ∈;(2)若A 可逆,则0≠λ,且λ1是1-A 的特征值,λ||A 是A 的伴随矩阵*A 的特征值. 证明:设矩阵A 属于特征值λ的特征向量为α,即λαα=A .(1)因αλαλλαλλαααααα)()()(101010f a a a a a a A a A a a A f m m m m m m =+++=+++=+++=故)(λf 是)(A f 的特征值. (2)因A 可逆,故0||≠A .而||A 为A 的特征值之积,故A 的特征值0≠λ.用1-A 左乘λαα=A 两端得αλλααα111---===A A A A .因0≠λ,故αλα11=-A ,即λ1是1-A 的特征值. 因1*||-=A A A ,故λ||A 是A 的伴随矩阵*A 的特征值.5. 证明:矩阵A 可逆的充分必要条件是A 的特征值全不等于零.证明:因矩阵A 可逆,故0||≠A .由n n A λλλλ,,(||11 =是A 的全部特征值)得01≠n λλ ,故),,1(0n i i =≠λ.6. 已知三阶矩阵A 的特征值为1,2,3,求*12,,3A A E A A -++的特征值. 解:由矩阵的特征值的性质得 A A 32+的特征值为41312=⨯+,102322=⨯+,183332=⨯+;1-+A E 的特征值为34311,23211,2111=+=+=+; 因6321||=⨯⨯=A *A 的特征值为236,326,616===. 7. A 是三阶矩阵,已知0|3|,0|2|,0||=-=-=+A E A E A E ,求|4|A E +.解:因,0||)1(||3=+-=--A E A E 0|3|,0|2|=-=-A E A E ,故三阶矩阵A 的全部特征值为-1,2, 3.因此A E +4的特征值为,734,624,3)1(4=+=+=-+于是126763|4|=⨯⨯=+A E .8. 已知向量)1,,1(k =αT 是矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量,求常数k 的值.解:因α是1-A 的特征向量,故也是A 的特征向量.设对应的特征值为λ,于是由λαα=A 可得⎪⎩⎪⎨⎧=++=++=++λλλ2112112k k k k ,解得2-=k 或1=k .9. 证明:如果矩阵A 可逆,则BA AB ~.证明:因BA BA A A A AB A ==--))(()(11,且A 可逆,则BA AB ~.10. 如果B A ~,证明:存在可逆矩阵P ,使得BP AP ~.证明:因B A ~,故存在可逆矩阵P ,使得AP P B 1-=.将上式两端右乘,P 得P AP P AP P BP )(11--==,即BP AP ~. 11. 如果B A ~,D C ~,证明:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~. 证明:因B A ~,D C ~,故存在可逆矩阵Q P ,,使得CQ Q D AP P B 11,--==.于是有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---D O O B Q O O P C O O A Q O O P Q O O P C O O A Q O O P 111.而⎪⎪⎭⎫ ⎝⎛Q O O P 可逆,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~. 12. 已知A 为二阶矩阵,且0||<A ,证明:存在可逆矩阵P ,使得AP P 1-为对角矩阵.证明:A 为二阶矩阵,且0||<A ,故A 必有两个不等特征值,因此必存在可逆矩阵P ,使得AP P 1-为对角矩阵.13. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛--=x A 14020112与矩阵⎪⎪⎪⎭⎫ ⎝⎛-=21y B 相似,求(1) 常数x 和y 的值;(2) 可逆矩阵P ,使得B AP P =-1.解:(1)因B A ~,故B A 与有相同的特征值.而B 的特征值为2,,1y -,故-1,2也是A 的特征值.而=-A E λ]42)2()[2(140201122+--+-=-----+x x xλλλλλλ. 将1-=λ代入上式中得3=x .于是可得)1()2(2+-=-λλλA E ,故有A 的特征值为2,2,1-,因此2=y .(2)由(1)知A 的特征值为11-=λ,23,2=λ(二重).对应11-=λ的无关特征向量为)1,0,1(1=αT ,对应23,2=λ的无关特征向量为)0,4,1(2=αT ,)4,0,1(3=αT ,令⎪⎪⎪⎭⎫ ⎝⎛=401040111P ,则P 可逆,且B AP P =-1.14. 设三阶矩阵A 的特征值为1, 2, 3, 对应的特征向量分别为)1,1,1(T ,)1,0,1(T ,)1,1,0(T ,求(1)A ;(2)n A .解:(1)令⎪⎪⎪⎭⎫ ⎝⎛=111101011P ,则⎪⎪⎪⎭⎫ ⎝⎛=-3211AP P .而⎪⎪⎪⎭⎫ ⎝⎛---=-1011101111P 则⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛=-4122121113211P P A . (2)因⎪⎪⎪⎭⎫ ⎝⎛==-3211ΛAP P ,所以1-=P P A Λ,故 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==-1011101113211111010111n nn n P P A Λ⎪⎪⎪⎭⎫ ⎝⎛-+------=13221311313112211n n n n n n n n. 15. 判断第1题中各矩阵是否可以对角化?若可以对角化,求出可逆矩阵P ,使得AP P 1-为对角阵.解:由第1题结果知 (1) 可以对角化, ⎪⎪⎭⎫ ⎝⎛-=1111P ;(2) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛---=110111011P ;(3) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=212221122P ; (4) (5) 不可以对角化;(6) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=103012111P .16.证明正交矩阵的实特征值只能是1或1-.证明:设A 为正交矩阵,则AA T E A A T ==.设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .将上式两端取转置得TT T A λαα=.将上面两式左右相乘得ααλααT T T A A 2=,即ααλααT T 2=.而ααT 为非零常数,故1,12±==λλ.17. 设⎪⎪⎪⎭⎫ ⎝⎛=111111111A ,求正交矩阵P ,使得AP P 1-为对角阵.解:矩阵A 的特征多项式为=-A E λ)3(1111111112-=---------λλλλλ, 所以A 的特征值为02,1=λ(二重),33=λ.对于02,1=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)0,1,1(1-=αT ,)1,0,1(2-=αT .将其正交化,取⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=-=1212101121101),(),(1111222ββββααβ, 再单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==366666,02222222111ββγββγ; 对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,1(3=αT.将其单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==333333333ααγ. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=33360336622336622P ,则⎪⎪⎪⎭⎫⎝⎛==-3001ΛAP P .18. 设三阶实对称矩阵A 的特征值为1,23,21=-=λλ, 属于1λ的特征向量为)1,1,0(1=αT,求属于3,2λ的特征向量及矩阵A .解:设属于13,2=λ的无关特征向量为32,αα.因A 是实对称矩阵,故123,21=-=λλ的特征向量与的特征向量必正交,于是⎪⎩⎪⎨⎧==03121ααααTT , 即32,αα是齐次线性方程组O X T=1α的两个线性无关解向量.求得上述方程组的基础解系为)0,0,1(T ,)1,1,0(-T,故取)0,0,1(1=αT,)1,1,0(2-=αT,因此属于13,2=λ的全部特征向量为)0,0,1(1k T)1,1,0(2-+k T(21,k k 不全为零);令⎪⎪⎪⎭⎫⎝⎛-=101101010P ,则⎪⎪⎪⎭⎫ ⎝⎛-==-1121ΛAP P . 而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-21210011212101P ,故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----==-21230232100011P P A Λ. (B)1. 设n 阶矩阵A 的各行元素之和为常数a ,证明:a =λ是矩阵A 的一个特征值,)1,,1,1( T是对应的特征向量.证明:设n n ij a A ⨯=)(,其中T nj ija a)1,,1,1(,1==∑=α.由ααa a a a a a a A T nj nj nj j nj j ===∑∑∑===),,,(),,,(11211知a =λ是矩阵A 的一个特征值,)1,,1,1( =αT 是对应的特征向量.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n b b b a a a 2121,βα都是非零向量,且0=βαT,记αβ=A T ,求(1)2A ;(2)A 的特征值与特征向量.解:(1)由0=βαT得0)(==TTTβααβ,于是O A T T T T ===βαβααβαβ)())((2.(2)由A 组第2题(1)知A 的特征值为0.求A 的特征向量.⎪⎪⎪⎪⎪⎭⎫⎝⎛==n n n n n n T b a b a b a b a b a b a b a b a b a A 212221212111αβ,因βα,都是非零向量,故必存在某个i a 和j b 不为零,因此A 中元素0≠j i b a ,不妨设011≠b a .将A 做初等行变换得⎪⎪⎪⎪⎪⎭⎫⎝⎛00000021n b b b ,即1)(=A r ,故齐次线性方程组O AX =-的基础解系含有1-n 个解向量.令T n x x x ),,,(21 为T b )0,,0,(1 ,T b )0,,,0(1 ,T b ),,0,0(,1 ,得T b b )0,,0,,(121 -=α,T b b )0,,,0,(132 -=α,T n n b b ),,0,0,(,11 -=-α,于是所求特征向量为T n n b b k k k k )0,,0,,(121112211 -=+++--αααT b b k )0,,,0,(132 -+T n n b b k ),,0,0,(111 ---++,121,,,(-n k k k 不全为零).3. 已知三阶矩阵A 的特征值为2, 3, 4, 对应的特征向量分别为)1,2,1(1-=αT ,)2,1,2(2-=αT ,)2,3,3(3-=αT .令向量=β)6,5,4(T ,(1)将β用321ααα,,线性表示;(2)求βnA (n 为正整数).解:(1)由⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛---=210030104001622153124321),,,(321βααα得321234αααβ++=.(2)321321234)234(ααααααβnn n n n A A A A A ++=++=332211234αλαλαλnn n ++=,2332,23322(12131212++++++⨯-+⨯+⨯-=n n n n n n)23222212++++⨯+-n n n T .4. 设A 为三阶实对称矩阵,2)(=A r ,且满足条件O A A =+232,求矩阵A 的全部特征值.解:设矩阵A 的特征值为λ,则由O A A =+232得0223=+λλ,故0=λ或2-=λ.因A 为三阶实对称矩阵,故A 必与某三阶对角矩阵Λ相似.因2)(=A r ,故2)(=Λr ,所以Λ的对角线元素有两个-2和一个0.因此A 的全部特征值为22,1-=λ(二重),03=λ.5. 设四阶矩阵A 满足AAA E ,0|2|=+T0||,2<=A E ,求*A 的一个特征值.解:因0||<A ,故矩阵A 可逆.由E AA T 2=知422||=A 得4||-=A .因,0|2|)1(|2|4=+-=--A E A E 得2-=λ是矩阵A 的一个特征值,因此*A 的一个特征值为22.6. 设⎪⎪⎪⎭⎫ ⎝⎛=0011100y x A 有3个线性无关的特征向量,求x 与y 满足的条件.解:矩阵A 的特征多项式为=-A E λ2)1)(1(01110-+=-----λλλλλy x ,所以A 的特征值为11-=λ,13,2=λ(二重).因A 有3个线性无关的特征向量,故齐次线性方程组=-X A E )(O 的系数矩阵的秩为1,即1)(=-A E r .而⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----=-000001011010101y x y x A E ,于是0=+y x .7. 问n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111 与⎪⎪⎪⎪⎪⎭⎫⎝⎛00100100 n 是否相似,为什么?解:令⎪⎪⎪⎪⎪⎭⎫⎝⎛=111111111 A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00100100 n B ,则B A ~. 矩阵B 的特征值为1(01,,1-=-n n λ重),n n =λ.01,,1=-n λ对应的齐次线性方程组的系数矩阵为,1)(,000000001=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-B r B故属于01,,1=-n λ的无关特征向量有1-n 个;n n =λ对应的齐次线性方程组的系数矩阵为,1)(,00000001=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-B nE r n B nE故属于n n =λ的无关特征向量有1个.因此矩阵B 有n 个线性无关的特征向量,故B 可对角化,且;00~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n B Λ 因为0||,11===++A trA n n λλλλ ,故A 的特征值必有0和非零数值.因1)()(==-A r A r ,故特征值0有1-n 个线性无关的特征向量,所以0的重数至少为1-n ,则A 的非零特征值为n ,因此矩阵A 的特征值为1(01,,1-=-n n λ重),n n =λ.因A 为实对称矩阵,故必可对角化,且⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 00~ Λ,于是B A ~.8. 设A 为n 阶矩阵, O A ≠,且存在正整数m ,使得O A m=,证明A 不能对角化.解:反证法.假设A 可对角化,由A 组第2题(1)知,A 的特征值都为0,故O A ~,即存在可逆矩阵P ,使得O AP P =-1,则O A =,矛盾.9. 设矩阵,220021000030000⎪⎪⎪⎪⎪⎭⎫⎝⎛-=B 矩阵B A ~,求)3()(E A r E A r -+-. 解:矩阵B 的特征方程为=-B E λ0)3)(2(2=-+=λλλ,所以B 的特征值为01=λ,22-=λ,14,3=λ(二重).因矩阵B 是实对称矩阵,故属于14,3=λ的线性无关的特征向量必有2个,即224)3(=-=-B E r .因B A ~,则A 的特征值只有0,-2,3(二重),且属于3的线性无关的特征向量也有2个,即2)3(=-A E r .因1不是矩阵A 的特征值,故0||≠-A E ,即4)(=-A E r .因此6)3()(=-+-E A r E A r .。