高三概率(理:立足文科)
- 格式:docx
- 大小:347.45 KB
- 文档页数:10
高三文科概率统计知识点概率统计是高中数学中的一门重要课程,它是数学的一个分支,研究随机现象的规律。
在高三文科阶段,概率统计作为数学的一个重要组成部分,对于学生的综合素质和学习能力有着重要的影响。
下面将介绍高三文科概率统计的几个重要知识点。
一、样本空间和事件在概率统计中,样本空间是指一个随机试验所有可能结果组成的集合。
在高三文科中,我们常常需要根据实际问题来确定样本空间。
而事件则是样本空间的一个子集,表示我们关心的某个结果。
在计算概率时,我们需要根据样本空间和事件来确定概率的计算方法。
二、频率和概率频率是指某个事件在重复试验中出现的次数与试验总次数之比,它是一种统计性的概念。
而概率是指某个事件在一次试验中出现的可能性大小,它是一种理论性的概念。
在高三文科概率统计中,我们需要根据频率来估计概率,并通过大量试验的结果来验证概率的准确性。
三、事件的运算事件的运算是指对事件进行组合、分解和取反等操作。
在高三文科概率统计中,我们常常需要根据实际问题对事件进行逻辑运算,以求得出我们所关心的事件。
常见的事件运算包括并、交、差和补等。
四、排列组合排列是指从给定的一组元素中取出若干个元素按照一定的顺序进行排列。
组合是指从给定的一组元素中取出若干个元素进行组合,不考虑顺序。
在高三文科概率统计中,我们常常需要运用排列组合的知识来解决实际问题,如计算事件的总数、计算可能的排列或组合等。
五、条件概率和独立事件条件概率是指在已知事件B发生的条件下,事件A发生的概率。
在高三文科概率统计中,我们常常需要根据已知条件来计算事件的概率。
独立事件是指事件A和事件B相互独立,即事件A的发生与事件B的发生没有任何关系。
在计算独立事件的概率时,我们可以直接将事件A和事件B的概率相乘。
六、期望和方差期望是指随机变量的平均值,表示了随机变量的平均水平。
方差是指随机变量的离散程度,表示了随机变量的波动程度。
在高三文科概率统计中,我们常常需要计算期望和方差,以评估随机现象的规律性和预测能力。
高三文科数学概率知识点概率是数学中一个重要的分支,也是高中数学中的一门重要课程,它研究的是不确定事件发生的可能性。
在高三文科数学中,概率作为其中的一部分内容,涵盖了很多重要的知识点。
本文将针对高三文科数学中的概率知识点进行详细论述。
一、基本概率规则在概率的计算中,我们首先要掌握的是基本概率规则。
基本概率规则包括等可能概型、互斥事件与对立事件等概念。
等可能概型指的是实验中每个基本结果发生的概率相等的情况。
例如,掷一个均匀的六面骰子,每个面出现的概率都是1/6。
互斥事件指的是两个事件不能同时发生的情况。
例如,投篮比赛中不同队员投进的概率是互斥事件。
对立事件指的是两个事件至少有一个发生的情况。
例如,掷一个均匀的六面骰子,出现奇数点数和出现偶数点数是对立事件。
二、概率计算方法在计算概率时,我们有多种方法可供选择,如频率法、古典概型法、几何概型法等。
频率法是通过重复实验的统计结果来估计概率。
例如,我们可以通过掷一枚硬币多次,统计正面朝上的次数来估计正反面朝上的概率。
古典概型法适用于每个基本结果发生的概率相等的情况。
例如,两个均匀的骰子同时掷出,计算两个骰子之和为7的概率。
几何概型法适用于几何空间问题。
例如,在一个圆盘内随机放置一个点,计算该点落在一个扇形区域内的概率。
三、条件概率条件概率是指在某个条件下事件发生的概率。
例如,某次抽奖中,已知甲中奖的概率为1/10,已知乙中奖的概率为1/5,求在乙中奖的条件下,甲中奖的概率。
条件概率的计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生条件下发生的概率。
四、独立事件独立事件是指两个事件的发生与否相互独立,即一个事件的发生不会影响到另一个事件的发生。
例如,掷一颗骰子,第一次掷得6点,第二次掷得1点的概率。
独立事件的概率计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
高三数学知识点归纳概率概率是数学中一个非常重要的分支,它可以帮助我们理解事件发生的可能性。
在高三数学中,概率是一个必学的知识点。
本文将对高三数学概率知识点进行归纳总结,旨在帮助高三学生加深对概率的理解和掌握。
一、基础概念概率是指事件发生的可能性,用来表征事件的随机性。
它的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
常用的求概率的方法有频率法、几何法和古典概型法等。
二、事件的概率计算1.频率法频率法是通过实验的次数和结果的出现次数来计算概率的方法。
当实验的次数足够多时,事件发生的频率将逼近其概率。
2.几何法几何法是通过对样本空间的几何图形进行面积比较来计算概率。
对于连续型随机事件,可以使用几何法计算概率。
3.古典概型法古典概型法适用于样本空间元素个数有限且等可能的随机事件。
通过计算事件的有利结果个数与总结果个数之比来计算概率。
三、概率的性质与公式1.加法公式对于两个互斥事件A和B,其概率之和等于两个事件分别发生的概率之和。
2.乘法公式对于两个独立事件A和B,其同时发生的概率等于两个事件分别发生的概率之积。
3.全概率公式全概率公式是在事件A的基础上,将样本空间划分为若干互斥事件,并计算这些事件的概率之和等于事件A的概率。
4.条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
通过条件概率,我们可以计算两个事件的相关性。
四、排列与组合排列与组合是概率中常见的计数方法。
排列是指从n个不同元素中选取m个元素按照一定顺序排列的方法数,计算公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中选取m个元素并不考虑顺序的方法数,计算公式为C(n,m)=n!/[(n-m)!m!]。
五、常见的概率模型1.简单随机抽样简单随机抽样是指从总体中随机选择样本的抽样方法,其样本容量n较小时,可以近似认为是简单随机抽样,使用古典概型法计算概率。
2.二项分布二项分布是一种离散型概率分布,适用于只有两种可能结果的重复试验。
概率1.随机事件的概率及概率的意义1、基本概念:(1)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试 (2)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率2.概率的基本性质2.1概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);3.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;①求出总的基本事件数;②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数A4.几何概型及均匀随机数的产生基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;5.分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
文科高中概率知识点总结一、基本概念1.1 概率的定义概率是指某种事件发生的可能性大小。
在数学上,概率可以用一个介于0和1之间的数字来表示,0表示事件不可能发生,1表示事件一定会发生。
1.2 试验与样本空间试验是指进行的某种随机事件,样本空间是指试验的所有可能结果的集合。
1.3 事件与事件的概率事件是指在一次试验中可能发生的某种结果,事件的概率是指该事件发生的可能性大小。
二、概率的性质2.1 非负性事件的概率是非负的,即概率大于等于0。
2.2 规范性事件的总体概率是1,即所有可能事件发生的总和为1。
2.3 可列可加性对于互不相容的事件,它们的概率之和等于各自的概率之和。
三、概率的计算方法3.1 古典概率古典概率适用于试验的所有可能结果都是等可能的情况,概率的计算公式为P(A) =n(A)/n(S),其中n(A)表示事件A包含的元素个数,n(S)表示样本空间包含的元素个数。
3.2 几何概型概率几何概型概率适用于试验的样本空间呈现出一定的几何形状,概率的计算公式为P(A) =S(A)/S(S),其中S(A)表示事件A对应的几何图形的面积或体积,S(S)表示整个几何图形的面积或体积。
3.3 组合概率组合概率适用于试验的所有可能结果都是等可能的情况,但事件的发生并不是独立的情况,概率的计算公式为P(A和B) = P(A) × P(B|A)。
3.4 条件概率条件概率是指在已知事件B发生的情况下,事件A发生的概率,概率的计算公式为P(A|B) = P(A和B)/P(B)。
3.5 贝叶斯概率贝叶斯概率是指在已知事件A发生的情况下,事件B发生的概率,概率的计算公式为P(B|A) = P(A|B) × P(B)/P(A)。
四、独立事件与互不相容事件4.1 独立事件两个事件A和B满足P(A和B) = P(A) × P(B),则称事件A和B是独立事件。
4.2 互不相容事件两个事件A和B满足P(A和B) = 0,则称事件A和B是互不相容事件。
高考概率文科知识点概率是数学中的一个重要概念,也是文科高考数学部分的一项重要内容。
掌握概率的相关知识,可以帮助我们更好地理解和利用随机事件的规律。
下面将介绍文科高考概率的知识点。
一、概率的基本概念概率是描述事件发生可能性的一种数值,在[0,1]之间取值。
如果事件发生的可能性较小,则其概率接近于0;如果事件发生的可能性较大,则其概率接近于1。
同时,所有事件的概率之和为1。
二、随机变量与概率分布随机变量是描述随机事件结果的数学符号。
在概率论中,可以将随机变量分为离散随机变量和连续随机变量。
对于离散随机变量,可以通过概率分布来描述其取值和对应的概率;而对于连续随机变量,则需要使用概率密度函数来描述。
三、概率的运算1.加法原理对于两个互斥事件A和B,其概率的和等于各自概率的和,即P(A∪B) = P(A) + P(B)。
2.乘法原理对于两个独立事件A和B,其概率的乘积等于各自概率的乘积,即P(A∩B) = P(A)×P(B)。
四、条件概率与独立性条件概率是指在已知某一事件发生的条件下,另外一事件发生的概率。
条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)。
当事件A和事件B相互独立时,条件概率的计算会简化为P(A|B) = P(A)。
五、排列与组合排列是指从n个元素中取出m个元素进行有序排列的方式数目,计算公式为A(n,m) = n! / (n-m)!。
组合是指从n个元素中取出m个元素进行无序排列的方式数目,计算公式为C(n,m) = n! / (m! * (n-m)!))。
六、正态分布正态分布是一种在概率论与统计学中经常出现的概率分布。
在高考中,许多问题可以使用正态分布来进行近似计算。
正态分布的概率密度函数表示为f(x) = (1 / (σ√(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为均值,σ为标准差。
七、抽样与估计在统计学中,通过对样本进行抽样调查,可以对总体的某些特征进行估计。
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
高三概率文科知识点概率是数学中一个重要的分支,在日常生活和社会科学领域中具有广泛的应用。
作为高三文科学习的一部分,了解概率知识点对于培养学生的逻辑思维和决策能力至关重要。
本文将介绍高三文科概率相关的几个重要知识点。
一、概率基本概念概率是指某一事件在所有可能事件中发生的可能性。
通常表示为一个范围在0到1之间的数值,其中0代表不可能发生,1代表必然发生。
对于一个事件A来说,用P(A)表示其概率。
二、概率的计算方法1. 经典概率:当事件的每个结果是等可能发生时,可以用经典概率计算。
例如,一枚公正的硬币,正反两面出现的概率都是1/2。
2. 频率概率:通过实验和观察事件发生的次数来计算概率。
当实验次数趋于无限时,频率概率将趋近于某一固定的值。
3. 主观概率:基于个人主观判断和经验来进行概率计算。
这种方法通常用于没有明确统计数据的情况。
三、概率运算规则1. 事件的互斥:两个事件A和B互斥是指它们不能同时发生。
对于互斥事件来说,它们的概率之和等于它们分别的概率之和。
2. 事件的独立:两个事件A和B相互独立是指它们的发生与否不会相互影响。
对于独立事件来说,它们的联合概率等于它们分别的概率之积。
3. 事件的补事件:对于一个事件A来说,其补事件指的是不发生A的事件,即事件A的对立事件。
事件A和其补事件的概率之和等于1。
四、概率分布概率分布描述了不同事件的概率分布情况,可以通过密度函数、累积分布函数等方式来表示。
在高三文科中,常见的概率分布有以下几种:1. 均匀分布:指在某一区间内,每个值出现的概率相等,通常用于描述随机抽取的情况。
2. 二项分布:适用于只有两个可能结果的事件,如抛硬币、投篮等情况。
该分布可以描述事件成功的次数。
3. 正态分布:也称为高斯分布,特点是具有钟形曲线。
正态分布在社会科学领域中应用广泛,如身高、智力等指标的测量。
4. 泊松分布:适用于描述在某个时间段或区间内,事件发生的次数。
例如,某个时间段内电话呼叫次数、交通事故发生次数等。
高考文科概率知识点在高考文科中,概率是一个重要的数学知识点。
掌握了概率的基本概念和计算方法,可以帮助我们解决各种实际问题,也能够在高考中得到更好的成绩。
下面将介绍一些常见的高考文科概率知识点,帮助大家更好地备考。
一、基本概念和性质1.1 随机事件和样本空间在概率理论中,随机事件是指在一次试验中可能发生的事情,而样本空间是指一次试验的所有可能结果组成的集合。
在计算概率时,我们常常需要确定随机事件和样本空间的关系。
1.2 事件的概率事件的概率是指该事件发生的可能性大小。
在概率理论中,我们常用概率的定义来计算事件的概率。
概率的定义包括古典概型、几何概型和统计概型等。
1.3 事件的互斥性和独立性如果两个事件不能同时发生,我们称它们为互斥事件。
而独立事件指的是两个事件发生与否相互不影响。
互斥性和独立性是概率计算中重要的性质,我们需要根据具体情况来判断事件之间的关系。
二、概率的计算方法2.1 古典概率计算在古典概率计算中,我们假设每个基本事件发生的可能性相等。
在计算古典概率时,我们可以利用排列组合的原理,将问题转化为简单的计算。
2.2 几何概率计算几何概率是指基于几何图形的概率计算方法。
在计算几何概率时,我们需要确定样本点的几何位置,然后计算所关心的事件所占的几何面积。
2.3 统计概率计算统计概率是指基于实验数据的概率计算方法。
在计算统计概率时,我们需要进行实验观察,统计事件发生的频率,并利用频率来估计概率。
三、概率的应用3.1 事件的组合与分解在求解复杂事件的概率时,我们可以将事件进行组合与分解。
通过合理地组合和分解事件,可以简化计算,减少出错的可能性。
3.2 条件概率条件概率是指在已知某一事件发生的条件下,其他事件发生的概率。
在计算条件概率时,我们需要考虑相关事件之间的关系,并根据给定条件进行计算。
3.3 贝叶斯定理贝叶斯定理是一种计算条件概率的方法。
通过贝叶斯定理,我们可以根据已知条件和历史统计数据,来估计事件的概率。
高三文科概率与统计知识点概率与统计作为数学的一个重要分支,被广泛应用于现实生活中的各个领域。
在高三文科阶段,学生们需要了解概率与统计的基本知识点,并掌握其实际运用能力。
本文将从概率与统计的基础概念、样本空间与事件、频率与概率、概率计算方法以及统计分析方法等几个方面,进行深入的探讨。
一、基础概念概率与统计的基础概念是理解后续知识的重要前提。
概率是事件发生的可能性大小的度量,可以为0到1之间的任意实数。
统计是通过收集、整理、描述和分析数据来得出结论的一种方法。
概率与统计在实际应用中经常结合使用,通过收集和分析数据来预测未来事件的可能性。
二、样本空间与事件在概率与统计中,样本空间是指一个试验所有可能结果的集合。
事件则是样本空间中的子集,表示我们感兴趣的某些结果。
例如,掷一个骰子的样本空间为{1, 2, 3, 4, 5, 6},事件A为出现偶数点数的结果集合{2, 4, 6}。
事件的概率是指事件发生的可能性大小,可以通过事件在样本空间中的元素个数与样本空间元素个数的比值得出。
三、频率与概率频率与概率是概率与统计的重要概念之一。
频率是指事件发生的相对次数,可以通过实验和观察得到。
频率与概率之间存在着近似关系,即频率越高,概率越接近。
当实验次数趋于无穷大时,频率与概率的值趋于相等。
概率可以由频率近似估计,而频率可以通过大量实验来逼近概率。
四、概率计算方法概率的计算方法有很多种,常用的有古典概型法、几何概型法和条件概率法。
古典概型法适用于样本空间中的每个结果出现的概率相等的情况。
几何概型法适用于样本空间是一个几何对象的情况,如掷骰子、抽球等。
条件概率法适用于样本空间的结果与某个条件有关的情况,如已知某人患病的情况下,另一人患病的概率。
五、统计分析方法统计分析是根据收集到的数据,采用有效的方法进行整理、描述和分析,以得出结论的过程。
常用的统计分析方法包括描述统计和推断统计。
描述统计是通过计算各种统计量(如均值、中位数、众数等)来对数据进行总结和描述。
统计与概率专题(理科)【总知识脉络】概率概念随机事件必然事件不可能事件随机事件的概率等可能性事件的概率互斥事件互斥事件有一个发生的概率相互独立事件相互独立事件同时发生的概率计算频率与概率数理统计随机变量离散型随即变量随即变量的概率分布列数学期望方差连续型随即变量抽样方法系统抽样分层抽样简单随机抽样【知识梳理】一、离散型随机变量及其分布列、均值与方差1、随机变量、离散型随机变量的定义(1)随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。
(2)离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.2、离散型随机变量的分布列:(1)定义:一般的,设离散型随机变量X 可能取的值为12,,,,,i n x x x xX 取每一个值(1,2,)i x i =的概率()i i P x p ξ==,则称表为离散型随机变量X 的概率分布,简称分布列:(2)分布列性质:①0,1,2,i p i ≥= ;②12... 1.n p p p +++=3、两点分布与超几何分布(1)二点分布:如果随机变量X 的分布列为:其中01,1p q p <<=-,则称离散型随机变量X 服从参数p 的二点分布(2)超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取()n n N ≤件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为),2,1,0()(m k C C C k X P nNk n MN k M ===--, 其中{}min,m M n =,且*,,,,n N M N n M N N∈≤≤4、※均值与方差※则称1122()n n E X x p x p x p =+++为X 的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
(2)方差:2221122()()()()n n D X x EX p x EX p x EX p =-+-++-叫随机变量X 的均方差,简称方差。
二、二项分布与正态分布1、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P (B |A ),读作A 发生的条件下B 的概率。
.0)(,)()()|(>=A P A P AB P A B P2、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅3、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验4、※二项分布※:设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q =1-p ,那么在n 次独立重复试验中 (其中 k =0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ) ,其中n ,p 为参数5、集中分布的期望与方差一览:6、正态分布:(1)定义:若概率密度曲线就是或近似地是函数的图像,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差. 则其分布叫正态分布,记作:(,)N μσ,f( x )的图象称为正态曲线。
)(k P =ξkn k k n q p C -=),(,21)(222)(+∞-∞∈=--x e x f x σμσπ(2)基本性质:①曲线在x 轴的上方,与x 轴不相交。
②曲线关于直线x=对称,且在x=时位于最高点。
③当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近。
④当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中。
⑤当σ相同时,正态分布曲线的位置由期望值μ来决定。
⑥正态曲线下的总面积等于1。
(3)3原则:从上表看到,正态总体在 以外取值的概率 只有 4.6%,在以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的。
μμμ<x μ>x μσσσσ)2,2(σμσμ+-)3,3(σμσμ+-【例题讲解】1、(本小题满分12分)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6、0.5、0.5.假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.2、某地区为下岗女职工免费提供财会和家政培训,以提高下岗女职工的再就业能力,每名下岗人员可以参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有50%,参加过家政培训的有80%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响。
(1)任选1名下岗女职工,求该人参加过培训的概率;(2)任选3名下岗女职工,记ξ为3人中参加过培训的人数,求ξ的分布列和期望。
3、济南市开展支教活动,有五名教师被随机的分到A 、B 、C 三个不同的乡镇中学,且每个乡镇中学至少一名教师,(1)求甲乙两名教师同时分到一个中学的概率; (2)求A 中学分到两名教师的概率;(3)设随机变量X 为这五名教师分到A 中学的人数,求X 的分布列和期望.4、某学校举行知识竞赛,第一轮选拔共设有A 、B 、C 、D 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A 、B 、C 、D 分别加1分、2分、3分、6分,答错任一题减2分②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A 、B 、C 、D 顺序作答,直至答题结束. 假设甲同学对问题A 、B 、C 、D 回答正确的概率依次为41,31,21,43,且各题回答正确与否相互之间没有影响.(Ⅰ)求甲同学能进入下一轮的概率;(Ⅱ)用ξ表示甲内当家本轮答题结束时答题的个数,求ξ的分布列和数学期望E ξ.【高考链接】 (19)(本小题满分12分)现有甲、乙两个靶。
某射手向甲靶射击一次,命中的概率为43,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为32,每命中一次得2分,没有命中得0分。
该射手每次射击的结果相互独立。
假设该射手完成以上三次射击。
(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX(理19)(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分,求乙队得分X 的分布列及数学期望.【综合练习】1、袋中有3个白球,5个黑球,从中任取2个,可以作为随机变量的是( ) A 、至少取到一个白球 B 、至多取到1个白球C 、取到白球的个数D 、至少取到1个白球的概率2、抛掷两枚骰子,记第一枚掷出的点数与第二枚骰子掷出的点数之差为ξ,则"4">ξ表示的试验结果是( )A 、第一枚6点,第二枚2点B 、第一枚5点,第二枚1点C 、第一枚1点,第二枚6点D 、第一枚6点,第二枚1点3、设随机变量ξ的分布列为)3,2,1()31()(===i a i P iξ,则a 的值为( )A 、1B 、139C 、1311D 、13274、已知21)|(=A B P ,53)(=A P ,则=)(AB P ( )A 、65B 、109C 、103D 、1015、设随机变量ξ的概率分布为P (ξ=k )=p k ·(1-p )1-k (k =0,1),则Eξ、Dξ的值分别是 ( )A.0和1B.p 和p 2C.p 和1-pD.p 和(1-p )p6、一个电路装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,则至少有一根熔断的概率为( )A 、2.22B 、0.96C 、0.74D 、0.57、如果ξ是离散型随机变量,23+=ξη,那么( )A 、23+=ξηE E ,ξηD D 9=B 、ξηE E 3=,23+=ξηD DC 、23+=ξηE E ,49+=ξηD D D 、43+=ξηE E ,23+=ξηD D8、100件产品中有95件正品,5件次品,从中随机抽取2件,那么得到1件次品的概率是( )A 、1005B 、210019515C C C C 、210019915C C C D 、1919、设随机变量),(~2σμN X ,且)()(C X P C X P >=≤,则C 等于( ) A 、0 B 、μ C 、μ- D 、σ10、设随机变量)4,2(~N X ,那么_________)21(=X D11、设随机变量X 服从二项分布),(p n B ,则XE XD 22等于( )A 、2p B 、2)1(p - C 、np D 、)1(2p p -12、设随机变量)2,1(~2N ξ,13-=ξη服从的总体分布可记为_____________13、如果随机变量ξ~N (1,0),标准正态分布表中相应0x 的值为)(0x Φ则 ( )A.)()(00x x P Φ==ξB.)()(00x x P Φ=>ξC.)()|(|00x x P Φ=<ξD. )()(00x x P Φ=<ξ14、如果随机变量ξ~N (2,1σ-),且P (13-≤≤-ξ)=0.4,则P (1≥ξ)等于 ( )A 、 0.1B 、 0.2C 、0.3D 、0.4 【解答巩固】 15、(12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为432,,543。
(I )对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(II)该项目要求实验A ,B 各做两次,实验C 做3次,如果A 实验两次都成功则进行实验B 并获奖励10000元,两次B 实验都成功则进行实验C 并获奖励30000元,3次C 实验只要有两次成功,则项目研发成功并获奖励60000元(不重复得奖)。