哈工大结构动力学第一章课后作业解答
- 格式:ppt
- 大小:345.00 KB
- 文档页数:7
(完整版)结构化学课后答案第⼀章01.量⼦⼒学基础知识【1.1】将锂在⽕焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原⼦由电⼦组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产⽣的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。
解:811412.99810m s 4.46910s 670.8m cνλ--??===? 41711 1.49110cm 670.810cm νλ--===??%3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν--===?【1.2】实验测定⾦属钠的光电效应数据如下:波长λ/nm 312.5365.0404.7546.1光电⼦最⼤动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν0)。
解:将各照射光波长换算成频率v ,并将各频率与对应的光电⼦的最⼤动能E k 列于下表:λ/nm 312.5 365.0 404.7 546.1v /1014s -19.59 8.21 7.41 5.49 E k /10-19J 3.412.561.950.75由表中数据作图,⽰于图1.2中E k /10-19Jν/1014g-1图1.2 ⾦属的k E ν-图由式 0k hv hv E =+ 推知0k kE E h v v v ?==-?即Planck 常数等于k E v -图的斜率。
选取两合适点,将k E 和v 值带⼊上式,即可求出h 。
例如: ()()19341412.70 1.0510 6.60108.5060010J h J s s ---?==?-?g图中直线与横坐标的交点所代表的v 即⾦属的临界频率0v ,由图可知,1410 4.3610v s -=?。
理论力学作业答案
第一章静力学公理和物体的受力分析1-1
1-2
第二章平面汇交力系与平面力偶系
第三章平面任意力系
第四章空间力系
第五章摩擦
第六章点的运动学
第七章刚体的简单运动
第八章点的合成运动
第九章刚体的平面运动
第十章质点动力学的基本方程
第十一章动量定理
第十二章动量矩定理
第十三章动能定理
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
第一章 电路元件与电路基本定律1.1 图示电路,设元件A 消耗功率为10W ,求A u ;设元件B 消耗功率为-10W ,求B i ;设元件C 发出功率为-10W ,求C u 。
Au +-10V +-Cu +-(a)(b)(c)图 1.1解:(a)元件A 电压和电流为关联参考方向。
元件A 消耗的功率为A A A p u i =,则A A A 10W 5V 2Ap u i ===,真实方向与参考方向相同。
(b) 元件B 电压和电流为关联参考方向。
元件B 消耗的功率为B B B p u i =,则B B B 10W 1A 10Vp i u -===-,真实方向与参考方向相反。
(c) 元件C 电压和电流为非关联参考方向。
元件C 发出的功率为C C C p u i =,则C C C 10W 10V 1Ap u i -===-,真实方向与参考方向相反。
1.2 图示电路中,电容C = 2F ,电容电压()C u t 的波形如图所示。
(1)求电容电流()C i t ,并绘出波形图; (2)求电容功率表达式,并绘出功率波形图;(3)当t = 1.5s 时,电容是吸收功率还是放出功率?其值是多少?电容储能为多少?u +-图 1-2解:(1)有题可知电容电压的表达式为0201421202c t t t U t t t <⎧⎪<<⎪=⎨-<<⎪⎪>⎩又由电容的性质可知故当t<0时 i =0A0<t<1时1<t<2时 综上所述,可得到电容电流为:故电容电流波形如图1-2-1所示。
(2)电容上所消耗的功率为c c P U I = 当t<0时 0P = 当 0<t<1时 248P t t =⨯=当1<t<2时 4(42)816P t t =-⨯-=- 当t>2时 0P =故功率波形图如图1-2-2所示。
C i(3)t=1.5s 时电容两端电压为421V U t =-=,电容所消耗功率为21121122W CU J ==⨯⨯=由图中电压电流的参考方向可知电容是发出功率且发出功率为4W 。
《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。
因此命名为振型叠加法。
8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。
1-1 答:(a) 可看成11个刚片,F 、J 两个固定铰支座,想当四根链杆,再加上A 、E 处三个链杆,总计7根链杆。
B 、C 、D 、G 、H 、I 共6个连接三个刚片的复刚结点,相当于12个单铰。
因此,由计算公式()()20710h b +⋅+++=−33 113312W m g =⋅−⋅=×−×(单纯由W 的结果不能判断其是否能作为结构。
但是,显而易见,即使将ABCDEFGHIJ 整个看成一个刚片(当成一根梁),有A 、E 处三个链杆即构成“简支梁”,是静定的。
因此,W < 0体系属有多余约束的几何不变体系,是可以做结构用的,是有10个多余联系的几何不变体系(超静定结构)。
(b) 可看成1个刚片FJ 和 A 、B 、C 、D 、E 5点10根链杆(包括A 、E 处三个链杆)组成, F 、J 处两个单铰相当4根链杆,因此总链杆数为14。
由计算自由度公式可得 )()3232 =312500141W m j g h b =⋅+⋅−⋅+⋅+×+×−++=−W j单纯由W 的结果不能判断其是否能作为结构。
但是,利用减二元体规则可知体系几何不变,是有一个多余约束的超静定结构。
(c) 本题有6个结点,由31根链杆相连。
由计算自由度公式可得2216311b =⋅−332W =×−×3524332W =×−×−×=−210200W =×−=由此可确定此体系是几何可变体系,不能作为结构。
1-2 答::(a) 三个刚片:AD 、BDEF 、FC ,刚片间有两个单铰: D 、F , 三个刚结点:A 、B 、C 。
2334−×=−此体系几何不变,有4个多余约束,是超静定结构。
(b) 5个刚片:AD 、DE 、EBF 、FG 、GC ,4个单铰: D 、E 、F 、G ,三个刚结点:A 、B 、C 。
理论力学作业答案第一章静力学公理和物体的受力分析1-11-2第二章平面汇交力系与平面力偶系第三章平面任意力系第四章空间力系第五章摩擦第六章点的运动学第七章刚体的简单运动第八章点的合成运动第九章刚体的平面运动第十章质点动力学的基本方程第十一章动量定理第十二章动量矩定理第十三章动能定理赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
科学研究证实,虽然大脑的重量只占人体重量的2%-3%,但大脑消耗的能量却占食物所产生的总能量的20%,它的能量来源靠葡萄糖氧化过程产生。
据医学文献记载,一个健康的青少年学生30分钟用脑,血糖浓度在120毫克/100毫升,大脑反应快,记忆力强;90分钟用脑,血糖浓度降至80毫克/100毫升,大脑功能尚正常;连续120分钟用脑,血糖浓度降至60毫克/100毫升,大脑反应迟钝,思维能力较差。
我们中考、高考每一科考试时间都在2小时或2小时以上且用脑强度大,这样可引起低血糖并造成大脑疲劳,从而影响大脑的正常发挥,对考试成绩产生重大影响。
因此建议考生,在用脑60分钟时,开始补饮25%浓度的葡萄糖水100毫升左右,为一个高效果的考试加油。
二、考场记忆“短路”怎么办呢?对于考生来说,掌握有效的应试技巧比再做题突击更为有效。
1.草稿纸也要逐题顺序写草稿要整洁,草稿纸使用要便于检查。
不要在一大张纸上乱写乱画,东写一些,西写一些。
打草稿也要像解题一样,一题一题顺着序号往下写。
最好在草稿纸题号前注上符号,以确定检查侧重点。
为了便于做完试卷后的复查,草稿纸一般可以折成4-8块的小方格,标注题号以便核查,保留清晰的分析和计算过程。
第一章 单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。
单自由度系统固有频率求法有: 牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。
1. 牛顿第二定律法适用范围: 所有的单自由度系统的振动。
解题步骤: (1) 对系统进行受力分析,得到系统所受的合力;(2) 利用牛顿第二定律∑=F x m,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根, 得到该系统的固有频率。
2. 动量距定理法适用范围: 绕定轴转动的单自由度系统的振动。
解题步骤: (1) 对系统进行受力分析和动量距分析;(2) 利用动量距定理J ∑=M θ,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根, 得到该系统的固有频率。
3. 拉格朗日方程法:适用范围: 所有的单自由度系统的振动。
解题步骤: (1)设系统的广义坐标为 , 写出系统对于坐标 的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式: L=T-U ;(2)由格朗日方程 =0, 得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根, 得到该系统的固有频率。
4. 能量守恒定理法适用范围: 所有无阻尼的单自由度保守系统的振动。
解题步骤: (1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 , 进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根, 得到该系统的固有频率。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。
用衰减法求单自由度系统阻尼比的方法有两个: 衰减曲线法和共振法。
方法一: 衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线, 并测得周期和相邻波峰和波谷的幅值 、 。
(2)由对数衰减率定义 , 进一步推导有,因为 较小, 所以有πδζ2=。