物理方程有定解的线性边界条件的分类
- 格式:pdf
- 大小:58.38 KB
- 文档页数:2
材料力学边界条件边界条件在材料力学中起到非常重要的作用,它们是物理现象或力学问题的解决方案的关键要素之一、边界条件确定了在研究区域边界上发生的物理过程和影响。
在材料力学中,常见的边界条件包括:1.位移边界条件:位移边界条件是指物体在边界上的位移情况。
常见的位移边界条件有固定边界条件、自由边界条件和摩擦边界条件等。
固定边界条件是指物体在其中一边界上的位移被限制为零,即该边界上的点不能发生位移。
自由边界条件是指物体在其中一边界上的位移没有任何限制,即该边界上的点可以自由运动。
摩擦边界条件是指物体在其中一边界上的位移受到边界面上的摩擦力所限制。
2.力边界条件:力边界条件是指物体在边界上受到的外力情况。
常见的力边界条件有固定力边界条件和自由力边界条件等。
固定力边界条件是指物体在其中一边界上受到的外力为零,即该边界上没有外力作用。
自由力边界条件是指物体在其中一边界上受到的外力没有任何限制,即该边界上的外力可以自由作用。
3.应力边界条件:应力边界条件是指物体在边界上的应力情况。
常见的应力边界条件有固定应力边界条件和自由应力边界条件等。
固定应力边界条件是指物体在其中一边界上的应力被固定为其中一个值,即该边界上的应力受到限制。
自由应力边界条件是指物体在其中一边界上的应力没有任何限制,即该边界上的应力可以自由变化。
边界条件的选择需要根据具体问题的要求和实际情况进行确定。
通常情况下,边界条件需要满足力学平衡条件、位移连续条件和应力连续条件等。
同时,边界条件的选择也需要考虑到物体的边界特性,比如是否有固定边界、自由边界或者摩擦边界等。
边界条件的正确选择对于力学问题的解决至关重要。
不恰当的边界条件会导致计算结果的不准确甚至错误。
因此,在进行模拟和计算时,需要仔细分析和确定边界条件,并考虑到实际问题的特点和要求。
总之,材料力学边界条件是研究区域边界上发生的物理过程和影响的要素,其正确选择对于解决力学问题具有重要作用。
在选择边界条件时,需要考虑到力学平衡、位移连续和应力连续等方面,以获得准确的计算结果。
定解问题问题的分类数学物理方程(泛定方程)加上相应的定解条件一起构成了定解问题。
根据定解条件的不同,又可以把定解问题分为三类:初值问题:定解条件仅有初值条件;边值问题:定解条件仅有边值条件;混合问题:定界条件有初值条件也有边值条件。
35分离变量理论(,)(,)(,)(,)(,)0xx yy x y a x y u b x y u c x y u d x y u e x y u ++++=考察如下两变量的二阶线性齐次偏微分方程:试确定方程如下形式的解:()()u X x Y y =将该解代入方程可得:aX Y bXY cX Y dXY eXY ′′′′′′++++=8有界弦的自由振动问题(齐次方程的混合问题)研究两端固定的均匀弦的自由振动,即定解问题:()()()()()()()()()20, 0,0,0, ,00;,0, ,0, 0.tt xx t u a u x l t u t u l t t u x x u x x x l ϕψ⎧=<<>⎪==≥⎨⎪==≤≤⎩在求解常微分方程时,通常的做法是先求出方程的通解,然后利用给定条件确定通解中的积分常数。
对于如上定解问题,这中做法一般情况下是行不通的。
原因在于通常很难求出偏微分方程的通解。
解决这一问题的办法是直接求满足定解条件的特解。
10相应地,边界条件变为:()()()()()()()()0000,00,0u t X T t u l t X l l t X X T ==⎫⎪⇒⎬===⎧=⎪⎭⎪⎨⎪⎩这样就得到如下常微分方程:()()''000, 0X X X X l λ−=⎧⎪⎨==⎪⎩该常微分方程的解依λ的取值不同而不同,需要讨论。
15本征值问题在求解方程过程中,我们遇到如下问题:()()''000, 0X X X X l λ−=⎧⎪⎨==⎪⎩通过讨论我们知道,仅当λ>0,且为某些特定值时该方程有非平庸解。
第一章1.定解条件:边界条件和初始条件统称为定解条件。
边界条件又有Dirichlet边界条件(也称第一类边界条件)、Neumann条件,也称第二类边界条件、Robin边界条件,第三类边界条件。
P3-42.定解问题:一个微分方程(组)和相对应的定解条件合在一起就构成了一个定界问题。
又分有初始问题(Cauchy问题),只有初始条件没有边界条件的定界问题;边值问题,只有边界条件没有初始条件的定解问题;混合问题,两者都有。
对于边值问题,根据边界条件不同,又可以分为第一、第二和第三边值问题。
P113.定解问题的适定性从数学上看,判断一个定解问题是否合理,即是否能够完全描述给定的物理状态,一般来说有一下三个标准:⑴解的存在性:所给定的定解问题至少存在一个解。
⑵解的惟一性:所给定的定解问题至多存在一个解。
⑶解的稳定性:当给定条件以及方程中的系数有微小变动时,相应的解也只有微小变动。
定解问题解的存在性、惟一性和稳定性统称为定解问题的适定性。
P124.Dirichlet、Neumann定解问题定解条件只有Dirichlet条件没有初始条件的定解问题叫做Dirichlet定解问题。
定解条件只有Neumann条件没有初始条件的定解问题叫做Neumann定解问题。
5.热传导Fourier定律:热量以传导形式传递时,单位时间内通过单位面积所传递的热量与当地温度梯度成正比。
对于一维问题,可表示为:Φ=-λA(dt/dx)其中Φ为导热量,单位为W,λ为导热系数,A为传热面积,单位为m2, t为温度,单位为K, x 为在导热面上的坐标。
6.Hooke弹性定律:在弹性限度内,物体的形变跟引起形变的外力成正比。
7.发展方程:所描述的物理过程随时间而演变,如:波动方程、热传导方程等8.在热传导方程中,如果温度分布稳定,即,则三维热传导方程变为,此方程为Poisson方程。
特别地,若f(x,y,z)=0,即,则为Laplace方程。
Poisson方程或Laplace方程统称为位势方程。