线性方程组有解的判定条件
- 格式:pdf
- 大小:439.93 KB
- 文档页数:28
§3.1 线性方程组解的判定1.定理3.1:n 元线性方程组AX=b ,其中A=(a 12a 12•••a 1n a 21a 22•••a 2n••••a m1a m2•••a mn),x=( x 1x 2••x n ) ,b=( b 1b 2••b m )(1)无解的充要条件是R(A)<R(A,b);(2)有惟一解的充要条件是R(A)=R(A,b)=n , (3)有无穷多解的充要条件是R(A)=R(A,b)<n.注:(1)R(A,b)先化为行阶梯形,判别。
有解时再化为行最简形求解。
(2)R(A)=m 时,AX=b 有解。
(3)R(A)=r 时,有n-r 个自由未知量,未必是后面n-r 个。
2.定理3.2:n 元线性方程组AX=0(1)有惟一解(只有零解)的充要条件是R(A)=n ; (2)有无穷多解(有非零解)充要条件是R(A)<n .注:(1)m <n,AX=0必有非零解。
3.定理3.3:矩阵方程AX=B 有解的充要条件是R(A)=R(A,B) 求解线性方程组例1. {4x 1+2x 2−x 3=23x 1−x 2+2x 3 =1011x 1+3x 2 =8例2. {2x 1+x 2−x 3+x 4 =14x 1+2x 2−2x 3+x 4=22x 1+x 2 −x 3−x 4 =1例3. 求解齐次线性方程组{3x 1+ 4x 2−5x 3+ 7x 4 =02x 1−3x 2+3x 3− 2x 4 =04x 1+11x 2−13x 3+16x 4=07x 1−2x 2+ x 3+ 3x 4 =0例4.写出一个以X=C 1(2−310)+C 2(−2401)为通解的齐次线性方程组。
例5(每年).(1)λ取何值时,非齐次线性方程组{ λx 1+x 2+x 3=1x 1+λx 2+x 3=λx 1+x 2+λx 3=λ2(1)有惟一解;(2)无解;(3)有无穷多组解?并在有无穷多组解时求出通解.(2)非齐次线性方程组{x 1+x 2+2x 3=02x 1+x 2+ax 3=13x 1+2x 2+4x 3=b当a,b 取何值时,(1)有惟一解;(2)无解;(3)有无穷多组解?并求出通解.例5(12/13学年).设A=(λ110λ−1011λ), b=(a11),已知Ax=b 存在两个不同的解:(1)求λ,a;(2)求Ax=b 的通解。
线性方程组解的判定
线性方程组解的判定是一个重要的数学问题,它涉及到对一组未知量的求解。
解的判定问题的主要内容如下:
1. 系数矩阵存在不等式:在求解线性方程组时,首先要判断系数矩阵是否存在不等式,即是否存在元素值为负的情况:若存在,则解不存在;如果全部元素值都不为负,则判定解存在。
2. 是否存在无穷解:通常情况下,一个线性方程组只有唯一解,即只有一组解。
但也有可能存在无穷多解,即系数矩阵存在元素值全为0,此时解可以是任意一组数,因此可以判定存在无穷解。
3. 闭解的确定:当系数矩阵存在不等式或存在元素值全为0时,可以判定存在无穷解;当系数矩阵存在唯一解时,需要通过计算、符号识别和几何意义的结合,来确定具体的闭解。
4. 压缩可行性:压缩可行性判定法是指将求解所求出来的解,压缩在基本解所构成的空间上,以便表达出更复杂的结果。
5. 方程式系数:也可以通过方程式系数的分析,来判定方程组的解的存在与否,这是一种常用的判定方法。
从上述内容可以看到,线性方程组解的判定是一个复杂的数学问题,要想判断线性方程组的解的存在性,需要结合不等式判定、无穷解判定、压缩可行性判定以及方程式系数等步骤,一步步进行判断,才能正确地确定某个线性方程组的解的存在性。