信号与系统自测题(第4章 连续时间信号与系统的复频域分析)含答案
- 格式:pdf
- 大小:203.85 KB
- 文档页数:7
第4章 拉普拉斯变换与连续系统复频域分析4.1 学习要求(1)深刻理解拉普拉斯变换的定义、收敛域及基本性质;会根据定义和性质求常用信号的拉普拉斯变换;(2)正确理解拉普拉斯变换的时移、频移、时域微分、频域积分、初值定理、终值定理等性质及其应用条件;(3)能应用部分分式法和常用的拉普拉斯变换对求解拉普拉斯反变换;(4)掌握复频域方法分析线性时不变系统,求解系统的全响应、零输入响应、零状态响应和单位冲激响应;(5)正确理解复频域法中,输入、系统状态与响应的关系,理解复频域方法与频域方法的异同点和各自的优缺点;(6)掌握系统的零极点分析。
4.2 本章重点(1)单边拉普拉斯变换的定义和收敛域; (2)单边拉普拉斯变换及逆变换的计算;(3)单边拉普拉斯变换的性质及常用变换对的综合应用; (4)线性时不变系统的复频域分析方法;(5)系统函数与零极点的概念及s 域系统特性分析; (4))(s H 与系统稳定性;4.3 本章的内容摘要4.3.1拉普拉斯变换(1)单边拉普拉斯变换的定义正变换 0()()st X s x t e dt -∞-==⎰逆变换 1()()2j st j x t X s e ds j σσπ+∞-∞=⎰式中,0ωσj s +=。
(2)收敛域把使信号()x t 的拉氏变换存在的s 值的范围称为()X s 的收敛域(Region of Convergence ),缩写为ROC ,可以用下面极限表示:0)(lim =-∞→t t e t x σ 0σσ>上式表明,极限在0σσ>条件下为零,在S 平面上0σσ>就是收敛域。
0σ称为收敛坐标,通过0σ的垂直线是收敛域的边界,称为收敛轴。
如图4-1所示。
图4.1 s平面中的收敛域(3)常见函数的拉普拉斯变换如表4-1所示。
4.3.2 拉普拉斯变换的性质如表4-2所示。
4.3.3拉普拉斯逆变换求()X s 的逆变换就是求一个复变函数积分,直接积分要熟悉复变函数理论,一般是比较困难的。
《信号与系统信号与系统》》自测题第4章 连续时间连续时间信号与信号与信号与系统的的系统的的系统的的复复频域分析一、填空题1、由系统函数零、极点分布可以决定时域特性,对于稳定系统,在s 平面其极点位于 左半开平面(不含虚轴) 。
2、线性时不变连续时间系统是稳定系统的充分必要条件是()H s 的极点位于s 平面的 左半开平面(不含虚轴) 。
3、()H s 的零点和极点中仅 极点 决定了()h t 的函数形式。
4、()H s 是不 随系统的输入信号的变化而变换。
5、已知某系统的系统函数为()H s ,唯一决定该系统单位冲激响应()h t 函数形式的是()H s 的 极点 。
6、如下图所示系统,若221()2()()22U s H s U s s s ==++,则L = 2 H ,C =14F 。
注:2211()121/2()1()(0.5)1221/2U s Cs H s U s Ls Cs s s Ls Cs +====++++++2Ls s =222LCs s = 所以 2L = 1/4C =7、某信号2()x t t =,则该信号的拉普拉斯变换是32s。
注:1!()nn n t t sε+↔8、若信号3()t f t e =,则()F s =13s −。
9、431s s ++的零点个数是 0 ,极点个数是 4 。
10、求拉普拉斯逆变换的常用方法有 部分分式分解法 、 留数法 。
1(U s Ls+−+−2()s11、若信号的单边拉普拉斯变换为32s +,则()f t =23()t e u t −。
12、已知6()(2)(5)s F s s s +=++,则原函数()f t 的初值为 1 ,终值为 0 。
注:6(0)lim 1(2)(5)s s f s s s →∞+=×=++ 06()lim 0(2)(5)s s f s s s →+∞=×=++13、已知2()(2)(5)sF s s s =++,则原函数()f t 的初值为 2 ,终值为 0 。
第四章 连续系统的复频域分析习题解答4-1. 根据拉氏变换定义,求下列函数的拉普拉斯变换。
. )()cos( )4( , )(3)1(2 )3( , )()e e ( )2( , )2( )1(22t t t e t t t at t t εθεδεε+--+---ω解:s st st st t t s F 2 2 0 1e e e 1d d )2()( ---==-=⎰⎰∞+∞-ε22 0 0 4 0 03 0 222sin cos d )sin sin cos (cos d )cos()(32d 32d )](3)1(2[)(2121d )e e ()( )(ωωωωωεδ+-=-=+=+-=-=--=++-=+=⎰⎰⎰⎰⎰∞-∞-∞+∞-∞-----+-----s s t t t t t s F as t t t t s F s s t s F st sts t a s s st ta st e e e e e e e e t t θθθθθ4-2. 求下列函数的拉氏变换。
. )(e 2 )4( , )1(e 2 )3( , )1(e 2 )2( , )(e 2 )1()1(55)1(55t t t t t t t t εεεε--------解:.5e 2)( )4(,5e 2)( )3(,5e 2)( )2(,52)( )1( 5 )5( +=+=+=+=+--s s F s s F s s F s s F S S 4-3. 利用拉变的基本性质,求下列函数的拉氏变换。
~)121( )10( )22( )9( )]( 2[sin d d )8()2()1(e e )7( )4cos(e 5 )6( )]2()([e )5(e )4( e )2(1 )3( )4sin( )2( 2 )1( )1(2222---+-++---+++-------t t t t t t t t t t t t t t t t t t t ta t δεδππεεωεεω解:.e 2)2(2 )10( e )1( )9( 42022)( )8(e 1e 21)( )7( )2()2(25.2)( )6(1e 11)( )5( )(2)( )4( 12)1(11)( )3()(2)(2)( , )cos (sin 22)( )2(22)( )1(22)1(2 222 22 322223s ss s s t s t s s s s s F s s s F s s s F s s s F a s s F s s s s F s s s F t t t f s s s F ----+-↔-↔-+=-+=++++=++-+=+-+=+=+-++=++=+=+=δεωωωωωω 4-4. 求图示信号的拉氏变换式。