连续时间信号与系统的复频域分析
- 格式:ppt
- 大小:1.42 MB
- 文档页数:2
《信号与系统信号与系统》》自测题第4章 连续时间连续时间信号与信号与信号与系统的的系统的的系统的的复复频域分析一、填空题1、由系统函数零、极点分布可以决定时域特性,对于稳定系统,在s 平面其极点位于 左半开平面(不含虚轴) 。
2、线性时不变连续时间系统是稳定系统的充分必要条件是()H s 的极点位于s 平面的 左半开平面(不含虚轴) 。
3、()H s 的零点和极点中仅 极点 决定了()h t 的函数形式。
4、()H s 是不 随系统的输入信号的变化而变换。
5、已知某系统的系统函数为()H s ,唯一决定该系统单位冲激响应()h t 函数形式的是()H s 的 极点 。
6、如下图所示系统,若221()2()()22U s H s U s s s ==++,则L = 2 H ,C =14F 。
注:2211()121/2()1()(0.5)1221/2U s Cs H s U s Ls Cs s s Ls Cs +====++++++2Ls s =222LCs s = 所以 2L = 1/4C =7、某信号2()x t t =,则该信号的拉普拉斯变换是32s。
注:1!()nn n t t sε+↔8、若信号3()t f t e =,则()F s =13s −。
9、431s s ++的零点个数是 0 ,极点个数是 4 。
10、求拉普拉斯逆变换的常用方法有 部分分式分解法 、 留数法 。
1(U s Ls+−+−2()s11、若信号的单边拉普拉斯变换为32s +,则()f t =23()t e u t −。
12、已知6()(2)(5)s F s s s +=++,则原函数()f t 的初值为 1 ,终值为 0 。
注:6(0)lim 1(2)(5)s s f s s s →∞+=×=++ 06()lim 0(2)(5)s s f s s s →+∞=×=++13、已知2()(2)(5)sF s s s =++,则原函数()f t 的初值为 2 ,终值为 0 。
信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。
L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
L=laplace(F,t)用t 替换结果中的变量s 。
F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。
F=ilaplace(L,x)用x 替换结果中的变量t 。
2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。
对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。
信号与系统实验报告实验题目: 实验三:连续时间系统的复频域分析实验仪器: 计算机,MATLAB 软件101b s b a s a ++++++称为系统的特征多项式,征根,也称为系统的固有频率(或自然频率)。
为将个特征根,这些特征根称为()F s 极点。
根据求函数21()(1)F s s s =-的拉氏逆变换。
源代码:num = [1]; 结果为:r =-1 1 1 a=conv([1 -1],[1 -1]);den = conv([1 0], a); p =1 1 0 [r,p,k] = residue(num, den); k=03.示例3:求函数2224()(4)s F s s -=+的拉氏逆变换源代码:num = [1 0 -4];den = conv([1 0 4], [1 0 4]); [r,p,k] = residue(num, den);结果为:r =-0.0000-0.0000i 0.5000+0.0000i -0.0000+0.0000i 0.5000-0.0000ip =-0.0000+2.0000i -0.0000+2.0000i -0.0000-2.0000i -0.0000-2.0000i k=04.示例4:已知系统函数为:321()221H s s s s =+++,利用Matlab 画出该系统的零极点分布图,分析系统的稳定性,并求出该系统的单位冲激响应和幅频响应。
源代码: num=[1];den=[1 2 2 1]; sys=tf(num,den); poles=roots(den); figure(1);pzmap(sys);xlabel('Re(s)');ylabel(' Im(s)');title('zero-pole map'); t=0:0.02:10;h=impulse(num,den,t); figure(2);plot(t,h);xlabel('t(s)');ylabel('h(t)');title('Impulse Response'); [H,w]=freqs(num,den);figure(3);plot(w,abs(H));xlabel('\omega(rad/s)');ylabel('|H(j\omega)|');title('Magenitude Response'); 结果为:poles =-1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i (2) 已知象函数,试调用residue 函数完成部分分式分解,并写出逆变换。