【VIP专享】第五章-理想流体不可压缩无粘性流体平面势流
- 格式:ppt
- 大小:2.06 MB
- 文档页数:22
第五章理想不可压流体的二维无旋和有旋流动1.二维流动流函数定义、性质;2.二维流动流函数方程、定解条件、应用;3.复势、复速度求解无界二维流动、应用——定常圆柱绕流;4.奇点镜像法——平壁面和圆柱干扰下二维流动.流函数基本知识理想流体流动求解——叠加原理应用第五章理想不可压流体的二维无旋和有旋流动解不可压理想流体的平面和轴对称流动思路:运动学和动力学分解(位流理论)第四章确定不可压理想流体无旋流动时,直接利用连续方程()和无旋()条件求解速度场(拉普拉斯方程:),利用柯西——拉格朗日积分求压力场(将运动学问题和动力学问题分解)。
0=⋅∇V 0=⨯∇V 0=∆ϕ利用平面流动连续方程定义一个流函数,不可压平面无旋流动流函数和势函数均满足拉普拉斯方程(运动学方程),进而可以进行基本解叠加。
ψ不可压平面无旋流动流函数和势函数满足柯西---黎曼条件,因而可以利用复变函数工具。
均匀来流垂直于长柱体绕流,机翼中部流动近似为平面流动第五章理想不可压流体的二维无旋和有旋流动5.1 不可压平面流动和轴对称流动的流函数及性质5.1.1 平面流动和轴对称流动的定义平面流动:任一时刻,流场中各点的流动速度都平行于某一固定平面,且各物理量在此平面的垂直方向上没有变化。
若流动平行于xy平面,则平面流动速度及任一物理量B表示为:),,(,0),,,(),,,(t y x B B w t v x v v t y x u u ====轴对称流动:任一时刻,流场中各物理量在以某轴线为中心的同一圆周上没有变化。
若取z轴为对称轴,则各物理量满足:,0==∂∂εεV 第五章理想不可压流体的二维无旋和有旋流动5.1 不可压平面流动和轴对称流动的流函数及性质5.1.2 平面流动和轴对称流动的流函数流函数定义:对不可压流动,连续方程:,展开为:0=⋅∇V 0)(122311132321=∂∂+∂∂q V h h q V h h h h h 对定常可压缩流动,连续方程:,展开为:0)(=⋅∇V ρ0)(122311132321=∂∂+∂∂q V h h q V h h h h h ρρ定义流函数ψ流函数的概念是1781年Lagrange 首先引进的第五章理想不可压流体的二维无旋和有旋流动或者:通常把不可压平面流动的流函数称作拉格朗日流函数不可压平面流动(直角坐标中)的流函数(q 1=x, q 2=y, q 3=z )(h 1=h 2=h 3=1):不可压平面流动(极坐标)的流函数:(q 1=r,q 2=θ,q 3=z )23111322,V h h q V h h q -=∂∂=∂∂ψψ23111322,V h h q V h h q ρψρψ-=∂∂=∂∂v xu y -=∂∂=∂∂ψψ,(h 1=1,h 2=r ,h 3=1):θψθψV rrV r -=∂∂=∂∂,第五章理想不可压流体的二维无旋和有旋流动# 柱坐标z, r, ε不可压轴对称流动(柱坐标及球坐标中)的流函数:# 球坐标R,θ,ε23111322,V h h q V h h q -=∂∂=∂∂ψψ(h 1=1,h 2=1,h 3=r):(h 1=1,h 2=R,h 3=Rsinθ):r z rV z rV r-=∂∂=∂∂ψψ,θθψθθψV R RV R R sin ,sin 2-=∂∂=∂∂2 r第五章理想不可压流体的二维无旋和有旋流动)()(4)()(42122222=+---++++-∞r d x d x Qr d x d x Q r U ππr=0 满足流线方程,即ψ=0的流线通过x 轴,另解方程)2(,0)()()()(22222222∞==+--++++-U Qb rd x d x b rd x d x b r π求速度场:V复势:复速度:共轭复速度:复速度的模:共轭复速度的表示方法:(2)复速度:以平面无旋流场的速度分量组成的复数U=u+ivψφi z W +=)(V iv u xi x dz dW =-=∂∂+∂∂=ψφiv u dzdW+=V v u dzdW=+=22αi Ve iv u dzdW -=-=dzWd artg u v tg i V dz dW ==-=-1),sin (cos ααα复速度:ivu V +=,x qφ=∂若平面点源在(x 0, y 0)θππψ'=--=-2)(2001q x x y y tg q 20202)()(,In 2y y x x q-+-==σσπφ)(2),(20202y y q v x x qu -=-=πσπσ)(22)(2)(0z z In qz In q i In q z W -='='+=ππθσπm(3)平面偶极子两无限长直线点源相距δl ,线源强度分别为q (位于z=-δl )和-q (位于z=0),当δl →0时,称这一对直线点源为平面偶极子。
流体力学——理想不可压缩流体的平面势流内容¾基本方程组,初始条件及边界条件¾速度势函数及无旋运动的性质¾平面流动及其流函¾不可压缩流体平面无旋流动的复变函数表示¾基本的平面有势流动¾有势流动叠加P=Pa , Pa为大气压强。
在直角坐标系中有一个线性的二阶偏微分方程(拉普拉斯方程线性方程的一个优点是解的可叠加性对于定常流:则由伯努利方程得到理想不可压缩无旋流的基本方程为:边界条件静止固壁上自由面上:P = Pa 无穷远处:速度势函数及无旋运动的性质在无旋流中有若已知函数,则可求出若已知速度矢量V,则可由积分求出势函数上式中为任意常数,因此的值相对于不同的Mo点可以差一个,为某一常数,但并不影响流动的实质,因为当求流动的特征量ui, P时,常数的差别便消失不见了,所谓的结果完全一样φ涉及到单值和多值问题在单连通区域 与积分路线无关,而只与起点M0及终点M的位置 有关。
因而势函数为单值函数。
在多连通区域 , 是封闭曲线L绕某一点的圈数, 称为环量 势函数 为多值函数。
速度势函数及无旋运动的性质(已作介绍)内容 ¾ 基本方程组,初始条件及边界条件 ¾ 速度势函数及无旋运动的性质¾ ¾平面流动及其流函数 不可压缩流体平面无旋流动的复变函数表示 基本的平面有势流动 有势流动叠加¾ ¾平面流动及其流函数 平面问题是指 流动在平面内进行,即 u z = 0 ; 垂直平面的垂线上个物理量相 等即适用范围 无限长柱体,它的一个方向的尺寸比其它两个方向的尺寸大得 多,在长方向的速度分量很小,其它物理量的变化也很小。
如:低速机翼表面的压力分布问题的理论计算等,无限长的柱 体平板的绕流等研究平面无旋运动,在平面运动中,涡旋矢量Ω的三个分量为只有 而无旋,可推出存在着速度势函数 使得:速度势函数的性质我们已经讨论过了流函数的意义 如果能够找到某一函数Ψ,满足流动的可能判据 —— 连续性 方程,则称这一函数Ψ为流函数 在平面运动时,不可压缩流体的连续性方程为:若有一函数Ψ(x,y,t)并令 则连续性方程为称为流函数知道了流函数 •若与流速ux ,uy 之间的关系之后 求出流速场已知,可由• 若 ux ,uy 已知,可用积分速度势与流函数 平面流动垂直与z轴的每个平面流动 都相同,称平面流动速度势函数 速度势函数存在的条件∂w ∂v − = 0 ∂y ∂z ∂u ∂w − = 0 ∂z ∂x ∂v ∂u − = 0 ∂x ∂y此条件称 柯西—黎曼条件由高数知识可知,柯西—黎曼条件是使udx + vdy + wdz全微分的充要条件,即成为某一个函数ϕ(x ,y ,z ,t )d ϕ = udx + vdy + wdz而当 t 为参变量, ϕ(x ,y ,z ) 的全微分为∂ϕ ∂ϕ ∂ϕ dϕ = dx + dy + dz ∂x ∂y ∂z比较两式有∂ϕ u = ∂x ∂ϕ v = ∂y ∂ϕ w = ∂z∂ϕ 柱坐标 V r = ∂r 1 ∂ϕ Vθ = r ∂θ ∂ϕ Vz = ∂z把ϕ(x ,y ,z ) 称为速度势函数简称势函数无论流体是否可压缩,是否定常流只要满足无旋条件 ,总有 势函数存在。
流体力学名词解释简答判断计算1.没有粘性的流体是实际流体。
错2.在静止、同种、不连续流体中,水平面就是等压面。
如果不同时满足这三个条件,水平面就不是等压面。
错3.水箱中的水经变径管流出,若水箱水位保持不变,当阀门开度一定时,水流是非恒定流动。
错4.紊流运动愈强烈,雷诺数愈大,层流边层就愈厚。
错5.Q1=Q2是恒定流可压缩流体总流连续性方程。
错6.水泵的扬程就是指它的提水高度。
错7.流线是光滑的曲线,不能是折线,流线之间可以相交。
错8.一变直径管段,A断面直径是B 断面直径的2倍,则B断面的流速是A 断面流速的4倍。
对9.弯管曲率半径Rc与管径d之比愈大,则弯管的局部损失系数愈大。
错10.随流动雷诺数增大,管流壁面粘性底层的厚度也愈大。
错1.相似现象可以不是同类物理现象。
(×)2.虹吸管中的水能爬到任意高度。
(×)3.气体粘度通常随温度升高而升高。
(∨)4.管内流动入口段与充分发展段流动特征有着较大差别。
(∨)5.理想流体粘度可以不为零。
(∨)6.流体做圆周运动不一定是有旋的。
(∨)7.超音速气体流动流速随断面的加大而减小。
(×)8.欧拉准数体现压力与重力之比。
()9.雷诺数体现惯性力与粘性力之比。
(∨)10.简单并联管路总流量等于各支路流量之和。
(∨)11.理想流体的伯努利方程体现的是能量守恒。
(∨)12.非稳定流动指流动随时间变化。
(∨)13.当气体流速很高时,气体流动一般按不可压缩处理。
(×)14.非圆管道层流阻力计算时按当量直径计算误差较大。
(∨)15.粘性流体的流动一定是有旋流动。
(×)16.突扩改渐扩可以减少阻力损失。
(∨)17.温差射流将由于流体密度和环境的差异发生射流弯曲。
(∨)18.射流由于沿程不断卷吸导致质量流量增加。
(∨)11.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。
(3分)12.均匀流过流断面上压强分布服从于水静力学规律。