不可压缩流体动力学基础习题答案
- 格式:doc
- 大小:724.00 KB
- 文档页数:13
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载流体力学第七章不可压缩流体动力学基础地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。
本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
一、平移:如果图(a)所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为。
基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。
二、线变形:从图(b)中可以看出,由于沿y轴的速度分量,B点和C点都比A点和D点大了,而就代表时液体基体运动时,在单位时间内沿y轴方向的伸长率。
,,三、角变形(角变形速度)角变形:四、旋转(旋转角速度)即,那么,代入欧拉加速度表达式,得:各项含义:平移速度(2)线变形运动所引起的速度增量(3)(4)角变形运动所引起的速度增量(5)(6)微团的旋转运动所产生的速度增量流体微团的运动可分解为平移运动,旋转运动,线变形运动和角变形运动之和。
——亥姆霍兹速度分解定理第二节有旋运动1、无涡流(势流)如在液体运动中,各涡流分量均等于零,即,则称这种运动为无涡流。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
《流体力学》试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项不属于流体力学的三大基本方程?A. 连续性方程B. 动量方程C. 能量方程D. 牛顿第二定律答案:D2. 在不可压缩流体中,流速和压力之间的关系可以用下列哪个方程表示?A. 伯努利方程B. 欧拉方程C. 纳维-斯托克斯方程D. 帕斯卡方程答案:A3. 下列哪个现象表明流体具有粘性?A. 流体流动时产生涡旋B. 流体流动时产生湍流C. 流体流动时产生层流D. 流体流动时产生摩擦力答案:D4. 在下列哪种情况下,流体的动能和势能相等?A. 静止流体B. 均匀流动的流体C. 垂直下落的流体D. 水平流动的流体答案:C5. 下列哪个因素不会影响流体的临界雷诺数?A. 流体的粘度B. 流体的密度C. 流体的流速D. 流体的温度答案:D二、填空题(每题5分,共25分)6. 流体力学是研究______在力的作用下运动规律的科学。
答案:流体7. 不可压缩流体的连续性方程可以表示为______。
答案:ρV = 常数8. 在恒定流场中,流体质点的速度矢量对时间的导数称为______。
答案:加速度矢量9. 伯努利方程是______方程在不可压缩流体中的应用。
答案:能量10. 流体的湍流流动特点为______、______和______。
答案:随机性、三维性、非线性三、计算题(每题25分,共50分)11. 一个直径为10cm的管道,流体的流速为2m/s,流体的密度为800kg/m³,求管道中流体的流量。
解:流量Q = ρvA其中,ρ为流体密度,v为流速,A为管道截面积。
A = π(d/2)² = π(0.05)² = 0.00785m²Q = 800kg/m³ 2m/s 0.00785m² = 12.44 kg/s答案:管道中流体的流量为12.44 kg/s。
12. 一个直径为20cm的圆柱形储罐,储罐内充满水,水面高度为1m。
不可压缩流体动力学基础1.已知平面流场的速度分布为xy x u x+=2,y xy u y 522+=。
求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。
解:(1)线变形速度:y x xu x x +=∂∂=2θ 54+=∂∂=xy y u yy θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为322+=y u x,x z u y 32+=,y x u z 32+=。
试求旋转角速度,角变形速度和涡线方程。
解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ω 2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x yz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ε 2521=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x+=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。
解:流场的涡量为: 0=∂∂-∂∂=zu y u y z x Ω 22z y cz xu z u z x y +=∂∂-∂∂=Ω 22z y cy y u x u x yz +-=∂∂-∂∂=Ω旋转角速度分别为:0=x ω222zy czy +=ω 222z y cyz +-=ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c y dz z dy +-=⎰⎰可得涡线的方程为:c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。
《工程流体力学》试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是流体力学的分支?A. 流体静力学B. 流体动力学C. 流体力学实验D. 流体力学数值模拟答案:C2. 下列哪种流体是不可压缩流体?A. 水蒸气B. 液体C. 气体D. 所有流体答案:B3. 下列哪个方程描述了流体运动的基本规律?A. 连续性方程B. 动量方程C. 能量方程D. 上述都是答案:D4. 在伯努利方程中,流速增加时,压力会?A. 增加B. 减少C. 不变D. 无法确定答案:B5. 下列哪个因素对流体流动的影响最小?A. 流体的粘度B. 流体的密度C. 流体的温度D. 流体的流速答案:C二、填空题(每题3分,共15分)1. 流体力学研究的对象是______。
答案:流体2. 流体的连续性方程表达了______与______之间的关系。
答案:流量,流速3. 流体力学中的动量方程是由______和______推导得出的。
答案:牛顿第二定律,动量定理4. 在伯努利方程中,流速与压力之间的关系为:流速越______,压力越______。
答案:大,小5. 流体力学实验中,常用的测量流体流速的仪器是______。
答案:流速仪三、计算题(每题20分,共60分)1. 已知一圆柱形管道,直径为0.2米,管道中水流速度为2米/秒,水的密度为1000千克/立方米,水的粘度为0.001帕·秒。
求管道中的压力分布。
解答:首先,根据连续性方程,计算管道中的流量Q:Q = A v = π (d/2)^2 v = π (0.2/2)^2 2 = 0.0628 m^3/s然后,根据伯努利方程,计算管道中的压力分布:P1 + 1/2 ρ v1^2 + ρ g h1 = P2 + 1/2 ρ v2^2 + ρ g h2由于管道为水平管道,h1 = h2,所以可以简化为:P1 + 1/2 ρ v1^2 = P2 + 1/2 ρ v2^2代入已知数据,得到:P1 + 1/2 1000 2^2 = P2 + 1/2 1000 2^2解得:P1 = P2所以,管道中的压力分布为均匀分布。
流体测试题及答案详解一、选择题1. 流体静力学的基本方程是:A. 伯努利方程B. 欧拉方程C. 连续性方程D. 牛顿流体方程答案:D2. 在不可压缩流体中,流体的密度是:A. 恒定的B. 随压力变化C. 随温度变化D. 随流速变化答案:A二、填空题1. 流体力学中的雷诺数是用来描述_________的无量纲数。
答案:流体流动的层流与湍流特性2. 流体的粘性系数通常用_________来表示。
答案:帕斯卡秒(Pa·s)三、简答题1. 简述流体静力学中的压力分布规律。
答案:在流体静力学中,流体内部的压力分布遵循帕斯卡定律,即流体内部的压力在所有方向上都是相等的。
此外,流体的压力还受到重力的影响,因此在静止流体中,压力会随着深度的增加而增加。
四、计算题1. 已知一个容器内装有水,水的深度为10米,求容器底部受到的水压。
答案:首先,我们需要知道水的密度,通常水的密度为1000kg/m³。
然后,使用静水压力公式P = ρgh,其中 P 是压力,ρ 是密度,g 是重力加速度(约9.81 m/s²),h 是水的深度。
将已知数值代入公式,得到 P = 1000 kg/m³ × 9.81 m/s² × 10 m = 98100 Pa。
五、论述题1. 论述流体动力学中的伯努利定理及其应用。
答案:伯努利定理是流体动力学中的一个重要原理,它指出在理想流体的稳定流动中,流体的总能量(包括动能、势能和压力能)在沿流线的任何两点都是相等的。
这个原理可以用来解释许多现象,如飞机的升力、喷气发动机的工作原理以及管道流动中的压力降低等。
在实际应用中,伯努利定理可以帮助设计更有效的流体输送系统,优化能源消耗和提高效率。
六、实验题1. 设计一个实验来验证流体的连续性方程。
答案:实验设计可以包括以下步骤:- 准备一个管道,管道的两端具有不同的横截面积。
- 在管道的一端安装一个流量计,以测量通过管道的流体流量。
第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。
求流线方程并画出若干条流线。
解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。
z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。
解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。
习题7-1 对于二维不可压缩流体平壁边界层,试利用边界层的特点及其化简方法,将耗散函数Φ简化为2=x v y μ⎛⎫∂Φ ⎪∂⎝⎭。
解:由式(2-56)可知,耗散函数()()22222222222222=22223 2---3xx yy zz xy yz xz xx yy zz y yx x z z y y x x z z v v v v v v y x z y z x v v v v v v x y y z z x μεεεεεεμεεεμμΦ+++++-++⎡⎤∂∂⎛⎫⎛⎫∂∂∂∂⎛⎫⎢⎥=+++++ ⎪⎪ ⎪∂∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤∂∂⎛⎫⎛⎫∂∂∂∂⎛⎫⎢⎥++ ⎪ ⎪ ⎪∂∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+ 对于二维不可压缩平壁及边界层的特点可知:00iz v v z∂==∂, 再结合连续性方程0yx v v x y∂∂+=∂∂,耗散函数化简为 222222222=-3412=++3312 =++23y y y x x x y y y x x x y y y x x x v v v v v v y x x y y x v v v v v v y x x y y x v v v v v v y x y x y x μμμμμμμμμ⎡⎤∂∂∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫⎢⎥Φ+++ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∂∂∂⎛⎫⎛⎫∂∂∂+- ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂⎛⎫∂∂∂⎛⎫-⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭+由边界层内的量纲化:yxv v v yx ∞,,可知22y y y x x x v v v v v v x y x y xy ∂∂∂⎛⎫⎛⎫∂∂∂ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭所以,耗散函数为2=x v y μ⎛⎫∂Φ ⎪∂⎝⎭7-3 试用动量积分关系式和速度剖面πsin 2()xv y v x δ∞⎡⎤=⎢⎥⎣⎦,计算零压梯度平板不可压缩定常层流边界层的壁面切应力系数f C [2f w e =/C U τρ(/2)]。
流体动力学基础习题答案流体动力学基础习题答案一、流体静力学1. 压力是流体静力学中的重要概念。
它定义为单位面积上的力的大小,可以用公式P = F/A表示,其中P表示压力,F表示作用在面积A上的力。
2. 流体静力学中的另一个重要概念是压强。
压强定义为单位面积上的压力大小,可以用公式P = F/A表示,其中P表示压强,F表示作用在面积A上的力。
3. 流体静力学中的重要定理之一是帕斯卡定律。
帕斯卡定律指出,在静止的流体中,任何一个点的压力改变都会传递到整个流体中。
这意味着,如果在一个封闭容器中施加了压力,那么容器中的每一个点都会受到相同大小的压力。
4. 流体静力学中的另一个重要定理是阿基米德原理。
阿基米德原理指出,浸没在流体中的物体所受到的浮力等于物体排开的流体的重量。
这一原理解释了为什么物体在浸没在流体中时会浮起来。
二、流体动力学1. 流体动力学是研究流体在运动状态下的行为和性质的学科。
与流体静力学不同,流体动力学关注的是流体在运动中的力学特性。
2. 流体动力学中的重要概念之一是流速。
流速定义为流体通过某一点的体积流量除以通过该点的横截面积。
可以用公式v = Q/A表示,其中v表示流速,Q表示体积流量,A表示横截面积。
3. 流体动力学中的另一个重要概念是雷诺数。
雷诺数定义为流体的惯性力与黏性力的比值。
雷诺数越大,流体的惯性力相对于黏性力越大,流体的流动趋向于湍流;雷诺数越小,流体的惯性力相对于黏性力越小,流体的流动趋向于层流。
4. 流体动力学中的伯努利定理是一个重要的定理。
伯努利定理指出,在不可压缩、黏性、稳定的流体中,沿着流线的总能量保持不变。
这一定理解释了为什么飞机的机翼能够产生升力,以及水管中的水流速度和压力之间的关系。
三、流体力学习题答案1. 问题:一个直径为0.1米的管道中的水流速度为2米/秒,求水流的体积流量。
解答:体积流量可以用公式Q = Av表示,其中Q表示体积流量,A表示横截面积,v表示流速。
第三章流体动力学基础(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章 流体动力学基础习 题一、单选题1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是( )A .加速运动B .减速运动C .匀速运动D .不能确定2、血管中血液流动的流量受血管内径影响很大。
如果血管内径减少一半,其血液的流量将变为原来的( )倍。
A .21B .41C .81D .1613、人在静息状态时,整个心动周期内主动脉血流平均速度为 m/s ,其内径d =2×10-2m ,已知血液的粘度η =×10-3 Pa·S,密度ρ=×103 kg/m 3,则此时主动脉中血液的流动形态处于( )状态。
A .层流B .湍流C .层流或湍流D .无法确定4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。
A .30B .40C .45D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。
A .1m/sB .2m/sC .3 m/sD .4 m/s6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。
A .1×10-3 m 3/sB .2×10-3 m 3/sC .1×10-4 m 3/sD .2×10-4 m 3/s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。
液体运动学试题及答案一、选择题(每题2分,共20分)1. 液体运动学中,液体流动的基本类型有:A. 层流和湍流B. 稳定流动和非稳定流动C. 一维流动和二维流动D. 所有选项答案:D2. 液体运动学中,雷诺数是用来描述:A. 液体的密度B. 液体的黏度C. 液体流动的稳定性D. 液体的压缩性答案:C3. 在液体运动学中,以下哪种力不是液体流动的主要驱动力?A. 压力梯度力B. 重力C. 表面张力D. 摩擦力答案:D4. 液体运动学中,液体的连续性方程表明:A. 液体的质量守恒B. 液体的能量守恒C. 液体的动量守恒D. 液体的体积守恒答案:A5. 液体运动学中,液体的黏度是:A. 液体的固有属性B. 液体流动的阻力C. 液体的压缩性D. 液体的表面张力答案:A6. 液体运动学中,以下哪种流动是不可压缩流动?A. 水在管道中的流动B. 空气在管道中的流动C. 气体在管道中的流动D. 所有选项答案:A7. 液体运动学中,液体流动的边界层厚度随着:A. 流动距离的增加而增加B. 流动距离的增加而减少C. 流动速度的增加而增加D. 流动速度的增加而减少答案:A8. 液体运动学中,液体流动的分离点是指:A. 液体从固体表面分离的点B. 液体速度为零的点C. 液体压力为零的点D. 液体黏度最大的点答案:A9. 液体运动学中,液体流动的马赫数是用来描述:A. 液体流动的速度B. 液体流动的稳定性C. 液体流动的压缩性D. 液体流动的密度答案:C10. 液体运动学中,液体流动的弗劳德数是用来描述:A. 液体流动的惯性力与重力的比值B. 液体流动的惯性力与表面张力的比值C. 液体流动的重力与表面张力的比值D. 液体流动的表面张力与黏度的比值答案:A二、填空题(每题2分,共20分)1. 液体运动学中,雷诺数的表达式为:Re = _______ / _______。
答案:ρvL / μ2. 液体运动学中,液体的连续性方程可以表示为:A1v1 =_______。
不可压缩流体动力学基础1.已知平面流场的速度分布为xy x u x+=2,y xy u y 522+=。
求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。
解:(1)线变形速度:y x xu x x +=∂∂=2θ 54+=∂∂=xy y u yy θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω 2.已知有旋流动的速度场为322+=y u x,x z u y 32+=,y x u z 32+=。
试求旋转角速度,角变形速度和涡线方程。
解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ω 2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x yz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ε 2521=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x+=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。
解:流场的涡量为: 0=∂∂-∂∂=zu y u y z x Ω 22z y cz x u z u z x y +=∂∂-∂∂=Ω 22z y cy y u x u x yz +-=∂∂-∂∂=Ω旋转角速度分别为:0=x ω222zy czy +=ω 222z y cyz +-=ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c y dz z dy +-=⎰⎰可得涡线的方程为:c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。
(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3)0=y u ,r A u =θ。
其中A 为常数。
解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。
在z =0的平面上速度分布为:Ax u x =,0=y u涡量分布为:0=z Ω根据斯托克斯定理得:0==⎰z Az s dA ΩΓ (2)涡量分布为:A z -=Ω根据斯托克斯定理得:2b A dA z Az s πΩΓ-==⎰(3)由于0=r u ,r A u =θ 则转化为直角坐标为:22b Ay y r A u x -=-=,2bAx u y = 则22bA y u x u x yz =∂∂-∂∂=Ω 根据斯托克斯定理得:A dA z Az s πΩΓ2==⎰ 5.试确定下列各流场是否满足不可压缩流体的连续性条件?答:不可压缩流体连续性方程 直角坐标:0=∂∂+∂∂+∂∂zu y u x u z y x (1) 柱面坐标:0=∂∂+∂∂+∂∂+zu r u r u r u z r r θθ (2) (1)0,,=-==z y xu ky u kx u 代入(1) 满足 (2)y x u x z u z y u z y x +=+=+=,, 代入(1) 满足(3)0),(),(2222=+=-+z y x u y x k u y xy x k u 代入(1) 不满足(4)0,sin ,sin =-==z y xu xy k u xy k u 代入(1) 不满足 (5)0,,0===z ru kr u u θ 代入(2) 满足 (6)0,0,==-=z ru u r k u θ 代入(2) 满足 (7)0,sin 2,cos sin 22=-==z r u r u r u θθθθ 代入(2) 满足6.已知流场的速度分布为y x u x2=,y u y 3-=,22z u z =。
求(3,1,2)点上流体质点的加速度。
解:y x y x x y xy y x zu u y u u x u u t u a x z x y x x x x 22322320320-=+⋅-⋅+=∂∂+∂∂+∂∂+∂∂= y z u u y u u x u u tu a y z y y y x yy 9=∂∂+∂∂+∂∂+∂∂= 28z zu u y u u x u u t u a z z z y z x z z =∂∂+∂∂+∂∂+∂∂= 将质点(3,1,2)代入a x 、a y 、a z 中分别得:27=x a ,9=y a ,64=z a7.已知平面流场的速度分布为2224y x y t u x +-=,222y x x u y +=。
求0=t 时,在(1,1)点上流体质点的加速度。
解:()()()⎥⎥⎦⎤⎢⎢⎣⎡+-+-++⎥⎥⎦⎤⎢⎢⎣⎡+⋅⎪⎪⎭⎫ ⎝⎛+-+=∂∂+∂∂+∂∂=2222222222222420222244y x y y x y x x y x y x y x y t y u u x u u t u a x y x x x x 当0=t 时,()()2222222222284y x y x x y x xy a x +--+-= 将(1,1)代入得3=x a()()()22222222222224242240y x xy y x x y x x y x y x y t y u u xu u t u a y y y x yy +-⋅++⎥⎥⎦⎤⎢⎢⎣⎡+-+⎪⎪⎭⎫ ⎝⎛+-+=∂∂+∂∂+∂∂= 当t=0时,将(1,1)代入得:1-=y a8.设两平板之间的距离为2h ,平板长宽皆为无限大,如图所示。
试用粘性流体运动微分方程,求此不可压缩流体恒定流的流速分布。
解:z 方向速度与时间无关,质量力:g f x -=运动方程:z 方向:2210dxu d z p υρ+∂∂-= x 方向:→∂∂--=x p g ρ10 积分:)(z f gx p +-=ρ∴p 对z 的偏导与x 无关,z 方向的运动方程可写为z p dyu d ∂∂=μ122 积分:21221C x C x z p u ++∂∂=μ 边界条件:h x ±=,0=u得:01=C ,221h zp C ∂∂-=μ ∴⎥⎦⎤⎢⎣⎡-∂∂-=22)(12h x z p h u μ 9.沿倾斜平面均匀地流下的薄液层,试证明:(1)流层内的速度分布为()θμγsin y by u 222-=;(2)单位宽度上的流量为θμγsin 33b q =。
解:x 方向速度与时间无关,质量力θsin g f x =,θcos g f y -=运动方程:x 方向:221sin 0dy ud x p g υρθ+∂∂-= ①y 方向:y pg ∂∂--=ρθ1cos 0 ②②→积分)(cos x f gy p +-=θρb y = a p p = )(cos x f gb a +-=θρρ∴θρcos )(y h g p p a -+=∵=b 常数 ∴p 与x 无关①可变为μθρsin 22g dy u d -=积分)21(sin 212C y C y g u ++-=μθρ边界条件:0=y ,0=u ;b y =, 0=dy du∴b C -=1,02=C∴θμμθρsin )2(2)2(2sin 2y by ry b y g u -=-=θμγθμγsin 3sin )2(23200b dy y by udy Q b b =-==⎰⎰10.描绘出下列流速场解:流线方程: yx u dyu dx =(a )4=x u ,3=y u ,代入流线方程,积分:c x y +=43直线族(b )4=x u ,x u y 3=,代入流线方程,积分:c x y +=283抛物线族(c )y u x 4=,0=y u ,代入流线方程,积分:c y =直线族(d )y u x 4=,3=y u ,代入流线方程,积分:c y x +=232抛物线族(e )y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2243椭圆族(f )y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22双曲线族(g )y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22同心圆(h )4=x u ,0=y u ,代入流线方程,积分:c y =直线族(i )4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=22抛物线族(j )x u x 4=,0=y u ,代入流线方程,积分:c y =直线族(k )xy u x 4=,0=y u ,代入流线方程,积分:c y =直线族(l )r c u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y += 220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x =直线族(m )0=r u ,r c u =θ,220y x cy r x r c u x +-=-=,220y x cx r x r c u y +=+= 代入流线方程积分:c y x =+22同心圆11.在上题流速场中,哪些流动是无旋流动,哪些流动是有旋流动。
如果是有旋流动,它的旋转角速度的表达式是什么? 解:无旋流有:x u y u y x ∂∂=∂∂(或r r u u r ∂∂=∂∂θθ)(a ),(f ),(h ),(j ),(l ),(m )为无旋流动,其余的为有旋流动对有旋流动,旋转角速度:)(21yu x u x y ∂∂-∂∂=ω (b )23=ω (c )2-=ω (d )2-=ω (e )27-=ω (g )4-=ω (i )2-=ω (k )x 2-=ω 12.在上题流速场中,求出各有势流动的流函数和势函数。
解:势函数⎰+=dy u dx u y x ϕ流函数⎰-=dx u dy u y x ψ(a )⎰+=+=y x dy dx 3434ϕy x dx dy 4334--=-=⎰ψ(e )⎰⎰⎰⎰-+=-+=y y x x xdy dx y xdy ydx 0034340ϕ取),(00y x 为)0,0(则积分路线可选其中0,0:0,0,0==→y dy xx x dx y x x ==→,0:,0,)34()30(0000⎰⎰⎰⎰-++-+=yy x x xdy ydx xdy dx ϕxy xy 3)30()00(-=-++= 2223234x y xdx ydy +=--=⎰⎰ψ其他各题略13.流速场为r c u u a r==θ,0)(,r u u b r 2,0)(ωθ==时,求半径为1r 和2r 的两流线间流量的表达式。