第七章 不可压缩流体动力学基础
- 格式:ppt
- 大小:1.66 MB
- 文档页数:63
重庆大学2022年城市建设与环境学院《流体力学》考研大纲第一章绪论:表面张力不考。
流体的内摩擦阻力计算题要考。
第二章流体静力学:浮体,潜体不考,本章的一些证明不考(如压强公式的证明)第三章*(重点章)一元流体动力学:1、考试重点章节,动量方程为重点。
2、水头线不考,气体部分的总压线和全压线不考。
气体能量方程(供暖,供热,供燃气,通风及空调工程考)。
3、恒定平面势流问题:关于应力和应变率的关系不考,关于微团的流动只需了解,需知道液体微团运动的意义,恒定平面势流中势流的叠加不考,流函数,势函数的关系重点(必考)。
4、不可压缩流体运动微分方程:方程的意义要会写,紊流的基本方程,要知道平均值,切应力如何产生要知道。
第四章流动阻力的能量损失:1、只考普朗特假设,粗糙雷诺数,层流底层厚度,局部阻碍相互干扰要了解比较透彻。
水击不考。
2、切应力计算公式(层流圆管切应力τ)需了解,紊流运动中了解概念,普朗特假设不考。
3、绕流阻力:什么叫绕流阻力,如何产生的?边界层分离的概念要考。
第五章孔口,管嘴,管路闸孔:计算一般不考(非重点,但需了解)1、孔口,管嘴环状管网,闸孔不考,但枝状管网,串,并联要考。
2、管网的水力计算:环状管网的水力计算不考,枝状管网需了解。
3、堰流、闸孔出流不考,水击不考。
4、气孔射流(稳定射流)计算不考,概念要考(如什么叫质量流速)。
第六章射流与扩散:重点掌握射流特征,其余不考。
1、射流计算不考(市政工程,供暖,供热,供燃气,通风及空调工程不用看射流,其他专业要了解它的概念)。
扩散不用看。
第七章不可压缩流体动力基础:1、微团运动不考,但微团的运动分为平动和转动和变形运动要记牢。
应力表示的运动方程不考,应力不考,应变率不考第八章绕流,平面势流*(重点章):涡流运动的性质不考。
掌握判断势流的叠加,流函数和势函数必考计算题。
差分法不考。
第九章气体动力基础(除供暖,供热,供燃气,通风及空调工程,其他专业不用看):等温管路不考,绝热管路不考,只考可压缩气体方程。
831流体力学考试内容范围
第一章绪论
质量力,表面力,流体的主要力学性质,流体的力学模型。
第二章流体静力学
流体静压强及分布规律,压强的量度单位,液柱测压计,作用于平面及曲面的液体压力,流体平衡微分方程,液体的相对平衡。
第三章一元流体动力学基础
流线和迹线,一元流动连续性方程,恒定元流、总流能量方程,过流断面的压强分布,能量方程的应用,总水头线和测压管水头线,恒定气流能量方程,总压线和全压线,恒定流动量方程。
第四章流动阻力和能量损失
沿程损失和能量损失,层流与紊流、雷诺数,尼古拉兹实验,非圆管的沿程损失,减小阻力的措施。
第五章孔口管嘴管路流动
孔口自由及淹没出流,管嘴出流,简单管路及串、并联,有压管中的水击。
第六章气体射流
无限空间淹没紊流射流的特征,圆断面射流的运动分析,温差或浓差射流,有限空间射流。
第七章不可压缩流体动力学基础
流体微团运动的分析,有旋流动,不可压缩流体连续性微分方程,以应力表示的粘性流体运动微分方程式,纳维—斯托克斯方程,理想流体运动微分方程及积分,流体运动的定解条件。
第八章绕流运动
无旋流动,平面无旋流动,势流叠加,绕流运动及附面层基本概念,附面层动量方程,曲面附面层的分离现象与卡门涡街,绕流阻力与升力。
第九章一元气体动力学基础
理想气体一元恒定流动的运动方程,音速、滞止参数、马赫数,气体一元恒定流动的连续性方程,等温与绝热管路中的流动。
第十章相似性原理和因次分析。
不可压缩流体名词解释
不可压缩流体是指在流动过程中,其体积或密度不发生显著变化的流体。
这类流体在平衡状态下,任何微小变化(如温度或压力的变化),都不会影响其深度、形状或体积等物理性质。
在工程和科学领域,不可压缩流体通常用来描述流体动力学中的一类理想化现象。
例如,一般假设在低速流动中,气体可以视为不可压缩的。
然而,当速度接近或超过音速时,气体的压缩效应就变得重要起来。
不可压缩流体的概念非常重要,因为在许多实际问题中,流体的性质足够接近不可压缩的性质,可以忽略其小的压缩性,从而简化对流体动力学进行的研究和计算。
例如,在研究和设计飞机、船舶、管道、水轮机等的流体力学问题时,常常
假设工作介质为不可压缩流体,以便于使用更简单的方程进行分析。
不可压缩流体理论在流体力学中占据重要位置。
流体运动的基本规律——质量守恒定律、动量守恒定律、能量守恒定律在不可压缩流体中的表现形式,成为流体力学的基础方程。
这些基础方程是研究流体运动最重要的工具,也是解决实际流
体力学问题的基础。
在模拟和解析实际问题时,不可压缩流体假设为工程师和科研人员提供了实用的工具。
这些工具不仅帮助他们理解和解决复杂的流体动力学问题,而且帮助他
们设计和优化了许多工程系统,例如管道输送系统、液压系统、制冷系统等等。
然而,需要注意的是,不可压缩流体模型只是一个理想化的模型,它不一定能完全描述所有类型的流体动力学现象。
例如,对于高速流、音速流或者强烈震动和振动的流,压缩效应可能不能忽略,需要使用其他更复杂的模型来描述其物理行为。
因此,使用不可压缩流体模型时,必须清楚它的适用范围和局限性,以避免误导设计和决策。
不可压缩流体动力学基础1.已知平面流场的速度分布为xy x u x+=2,y xy u y 522+=。
求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。
解:(1)线变形速度:y x xu x x +=∂∂=2θ 54+=∂∂=xy y u yy θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为322+=y u x,x z u y 32+=,y x u z 32+=。
试求旋转角速度,角变形速度和涡线方程。
解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ω 2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x yz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ε 2521=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x+=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。
解:流场的涡量为: 0=∂∂-∂∂=zu y u y z x Ω 22z y cz xu z u z x y +=∂∂-∂∂=Ω 22z y cy y u x u x yz +-=∂∂-∂∂=Ω旋转角速度分别为:0=x ω222zy czy +=ω 222z y cyz +-=ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c y dz z dy +-=⎰⎰可得涡线的方程为:c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。
第七章不可压缩流体动力学基础在询面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的 观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等 流动参数在二个或三个坐标轴方向上的分布情况。
本章的容介绍流体运动的基本 规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移 和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则 是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
(b)谥.A n(d)一. 平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成(c)A B(a)A了液体基体的单纯位移,其移动速度为心、®、“,。
基体在运动中可能沿直线也 可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不 变)。
二、 线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比 A 点和D 点大了竺如 而比就代表〃y = l 时液体基体运动时,在单位时间沿勿dyy 轴方向的伸长率。
du x °"、. du : dxdydz三、 角变形(角变形速度)—BIA ■ dp -------------------------------- Jda-0 = dp + 00 =J"些+些k dz. dx四、旋转(旋转角速度)1O = —0 =—21勿du vdx—dx角变形:血 A那么,代入欧拉加速度表达式,得:du r du Tdu r八 八5=说=古叫 云+"卑+"0+-叭巴加、6仇 du Ya v = ----- = — + u v ---------- + U.0, +ii t a ). -iLCoydt dt dy “'2 …加.du diL q 。
(完整版)流体力学选择题精选题库《流体力学》选择题库第一章绪论1.与牛顿内摩擦定律有关的因素是:A、压强、速度和粘度;B、流体的粘度、切应力与角变形率;C、切应力、温度、粘度和速度;D、压强、粘度和角变形。
2.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:A、牛顿流体及非牛顿流体;B、可压缩流体与不可压缩流体;C、均质流体与非均质流体;D、理想流体与实际流体。
3.下面四种有关流体的质量和重量的说法,正确而严格的说法是。
A、流体的质量和重量不随位置而变化;B、流体的质量和重量随位置而变化;C、流体的质量随位置变化,而重量不变;D、流体的质量不随位置变化,而重量随位置变化。
4.流体是一种物质。
A、不断膨胀直到充满容器的;B、实际上是不可压缩的;C、不能承受剪切力的;D、在任一剪切力的作用下不能保持静止的。
5.流体的切应力。
A、当流体处于静止状态时不会产生;B、当流体处于静止状态时,由于内聚力,可以产生;C、仅仅取决于分子的动量交换;D、仅仅取决于内聚力。
6.A、静止液体的动力粘度为0;B、静止液体的运动粘度为0;C、静止液体受到的切应力为0;D、静止液体受到的压应力为0。
7.理想液体的特征是A、粘度为常数B、无粘性C、不可压缩D、符合RT=。
pρ8.水力学中,单位质量力是指作用在单位_____液体上的质量力。
A、面积B、体积C、质量D、重量9.单位质量力的量纲是A、L*T-2B、M*L2*TC、M*L*T(-2)D、L(-1)*T10.单位体积液体的重量称为液体的______,其单位。
A、容重N/m2B、容重N/M3C、密度kg/m3D、密度N/m311.不同的液体其粘滞性_____,同一种液体的粘滞性具有随温度______而降低的特性。
A、相同降低B、相同升高C、不同降低D、不同升高12.液体黏度随温度的升高而____,气体黏度随温度的升高而_____。
B、增大,减小;C、减小,不变;D、减小,减小13.运动粘滞系数的量纲是:A、L/T2B、L/T3C、L2/TD、L3/T14.动力粘滞系数的单位是:A、N*s/mB、N*s/m2C、m2/sD、m/s15.下列说法正确的是:A、液体不能承受拉力,也不能承受压力。
流体力学期末复习第一章绪论基本知识点:1.连续介质的概念。
2.流体的主要物理力学性质—实际流体模型:实际流体是由质点组成的连续体,具有易流动性、粘滞性、不可压缩性、不计表面张力的性质。
3.牛顿内摩擦定律。
4.理想流体模型:不考虑粘滞性。
5.物理量的基本量纲,M、L、T6.作用在液体上的力:质量力、表面力。
考核要求:1.理解连续介质和理想流体的概念及其在流体力学研究中的意义。
2.理解流体的主要物理力学性质,重点掌握流体粘滞性、牛顿内摩擦定律及其适用条件。
3.掌握物理量的基本量纲、基本单位及导出量的单位。
4.理解质量力、表面力的定义,掌握其表示方法。
如判断某说法的对错:流体的质量力是作用在所考虑的流体表面上的力。
单位质量力X、Y、Z第二章流体静力学基本知识点:1.静压强及其两个特性,等压面概念。
2.静压强基本公式及其物理意义。
3.相对压强、绝对压强、真空压强的概念。
4.测压管水头的概念。
—位能(位置水头)—压能(压强水头、测压管高度)—总势能(测压管水头)5.点压强的计算。
①找已知点压强、②找等压面、③利用静压强基本方程推求点压强6.相对静压强分布图的绘制。
7.作用于平面上静水总压力的计算。
(1)解析法静水总压力的大小:静水总压力的作用点:(2)(图解法)8.作用在曲面上静水总压力的计算。
水平方向的分力:铅垂方向的分力:总压力:总压力作用线(与水平面的夹角)9.压力体图。
考核要求:1.理解静压强的两个特性和等压面的概念。
如判断某说法的对错:静止的液体和气体接触的自由面,它既是等压面,也是水平面。
2.掌握静压强基本公式,理解该公式表达的物理意义。
3.理解绝对压强和相对压强,以及绝对压强、相对压强、真空压强之间的相互关系,理解位置水头、压强水头、测压管水头的概念。
4.掌握点压强的计算。
5.掌握静压强(相对压强)分布图的绘制。
6.掌握作用在矩形平面上静水总压力的计算,包括图解法和解析法。
7.掌握压力体图的绘制和作用在曲面上的静水总压力的计算方法。