流体力学_第7章_不可压缩流体动力学基础
- 格式:ppt
- 大小:515.00 KB
- 文档页数:36
第七章不可压缩流体动力学基础在询面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的 观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等 流动参数在二个或三个坐标轴方向上的分布情况。
本章的容介绍流体运动的基本 规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移 和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则 是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
(b)谥.A n(d)一. 平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成(c)A B(a)A了液体基体的单纯位移,其移动速度为心、®、“,。
基体在运动中可能沿直线也 可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不 变)。
二、 线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比 A 点和D 点大了竺如 而比就代表〃y = l 时液体基体运动时,在单位时间沿勿dyy 轴方向的伸长率。
du x °"、. du : dxdydz三、 角变形(角变形速度)—BIA ■ dp -------------------------------- Jda-0 = dp + 00 =J"些+些k dz. dx四、旋转(旋转角速度)1O = —0 =—21勿du vdx—dx角变形:血 A那么,代入欧拉加速度表达式,得:du r du Tdu r八 八5=说=古叫 云+"卑+"0+-叭巴加、6仇 du Ya v = ----- = — + u v ---------- + U.0, +ii t a ). -iLCoydt dt dy “'2 …加.du diL q 。
流体动力学基础习题答案流体动力学基础习题答案一、流体静力学1. 压力是流体静力学中的重要概念。
它定义为单位面积上的力的大小,可以用公式P = F/A表示,其中P表示压力,F表示作用在面积A上的力。
2. 流体静力学中的另一个重要概念是压强。
压强定义为单位面积上的压力大小,可以用公式P = F/A表示,其中P表示压强,F表示作用在面积A上的力。
3. 流体静力学中的重要定理之一是帕斯卡定律。
帕斯卡定律指出,在静止的流体中,任何一个点的压力改变都会传递到整个流体中。
这意味着,如果在一个封闭容器中施加了压力,那么容器中的每一个点都会受到相同大小的压力。
4. 流体静力学中的另一个重要定理是阿基米德原理。
阿基米德原理指出,浸没在流体中的物体所受到的浮力等于物体排开的流体的重量。
这一原理解释了为什么物体在浸没在流体中时会浮起来。
二、流体动力学1. 流体动力学是研究流体在运动状态下的行为和性质的学科。
与流体静力学不同,流体动力学关注的是流体在运动中的力学特性。
2. 流体动力学中的重要概念之一是流速。
流速定义为流体通过某一点的体积流量除以通过该点的横截面积。
可以用公式v = Q/A表示,其中v表示流速,Q表示体积流量,A表示横截面积。
3. 流体动力学中的另一个重要概念是雷诺数。
雷诺数定义为流体的惯性力与黏性力的比值。
雷诺数越大,流体的惯性力相对于黏性力越大,流体的流动趋向于湍流;雷诺数越小,流体的惯性力相对于黏性力越小,流体的流动趋向于层流。
4. 流体动力学中的伯努利定理是一个重要的定理。
伯努利定理指出,在不可压缩、黏性、稳定的流体中,沿着流线的总能量保持不变。
这一定理解释了为什么飞机的机翼能够产生升力,以及水管中的水流速度和压力之间的关系。
三、流体力学习题答案1. 问题:一个直径为0.1米的管道中的水流速度为2米/秒,求水流的体积流量。
解答:体积流量可以用公式Q = Av表示,其中Q表示体积流量,A表示横截面积,v表示流速。