高一数学:《交集和并集》
- 格式:ppt
- 大小:219.52 KB
- 文档页数:9
3.1交集与并集学习目标 1.理解并集、交集的概念.2.会用符号、V enn图和数轴表示并集、交集.3.会求简单集合的并集和交集.知识点一并集思考某次校运动会上,高一(1)班有10人报名参加田赛,有12人报名参加径赛.已知两项都报的有3人,你能算出高一(1)班参赛人数吗?答案19人.参赛人数包括参加田赛的,也包括参加径赛的,但由于元素互异性的要求,两项都报的不能重复计算,故有10+12-3=19人.梳理(1)定义:一般地,由属于集合A或属于集合B的所有元素组成的集合,称为集合A 与B的并集,记作A∪B(读作“A并B”).(2)并集的符号语言表示为A∪B={x|x∈A,或x∈B}.(3)图形语言:、,阴影部分为A∪B.(4)性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆A∪B.知识点二交集思考一副扑克牌,既是红桃又是A的牌有几张?答案1张.红桃共13张,A共4张,其中两项要求均满足的只有红桃A一张.梳理(1)定义:一般地,由既属于集合A又属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”).(2)交集的符号语言表示为A∩B={x|x∈A,且x∈B}.(3)图形语言:,阴影部分为A∩B.(4)性质:A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.类型一求并集命题角度1数集求并集例1(1)已知集合A={3,4,5},B={1,3,6},则集合A∪B是()A.{1,3,4,5,6} B.{3}C.{3,4,5,6} D.{1,2,3,4,5,6}答案 A解析A∪B是将两集合的所有元素合并到一起构成的集合(相同元素算一个),因此A∪B ={1,3,4,5,6},故选A.(2)A={x|-1<x<2},B={x|1<x<3},求A∪B.解如图:由图知A∪B={x|-1<x<3}.反思与感悟有限集求并集就是把两个集合中的元素合并,重复的保留一个;用不等式表示的,常借助数轴求并集.由于A∪B中的元素至少属于A,B之一,所以从数轴上看,至少被一道横线覆盖的数均属于并集.跟踪训练1(1)A={-2,0,2},B={x|x2-x-2=0},求A∪B.解B={-1,2},∴A∪B={-2,-1,0,2}.(2)A={x|-1<x<2},B={x|x≤1或x>3},求A∪B.解如图:由图知A∪B={x|x<2或x>3}.命题角度2点集求并集例2集合A={(x,y)|x>0},B={(x,y)|y>0},求A∪B,并说明其几何意义.解A∪B={(x,y)|x>0或y>0}.其几何意义为平面直角坐标系内去掉第三象限和x轴、y轴的非正半轴后剩下的区域内所有点.反思与感悟求并集要弄清楚集合中的元素是什么,是点还是数.跟踪训练2A={(x,y)|x=2},B={(x,y)|y=2}.求A∪B,并说明其几何意义.解A∪B={(x,y)|x=2或y=2},其几何意义是直线x=2和直线y=2上所有的点组成的集合.类型二求交集例3(1)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B等于()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案 A解析在数轴上将集合A,B表示出来,如图所示,由交集的定义可得A∩B为图中阴影部分,即A∩B={x|-3<x<2},故选A.(2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0} B.{1}C.{0,1,2} D.{0,1}答案 D解析M={x|-2≤x<2},N={0,1,2},则M∩N={0,1},故选D.(3)集合A={(x,y)|x>0},B={(x,y)|y>0},求A∩B并说明其几何意义.解A∩B={(x,y)|x>0且y>0},其几何意义为第一象限所有点的集合.反思与感悟两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.数轴是集合运算的好帮手,但要画得规范.跟踪训练3(1)集合A={x|-1<x<2},B={x|x≤1或x>3},求A∩B;(2)集合A={x|2k<x<2k+1,k∈Z},B={x|1<x<6},求A∩B;(3)集合A={(x,y)|y=x+2},B={(x,y)|y=x+3},求A∩B.解 (1)A ∩B ={x |-1<x ≤1}. (2)A ∩B ={x |2<x <3或4<x <5}. (3)A ∩B =∅.类型三 并集、交集性质的应用例4 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =B ,求a 的取值范围. 解 A ∪B =B ⇔A ⊆B .当2a >a +3,即a >3时,A =∅,满足A ⊆B . 当2a =a +3,即a =3时,A ={6},满足A ⊆B . 当2a <a +3,即a <3时,要使A ⊆B ,需⎩⎪⎨⎪⎧ a <3,a +3<-1或⎩⎪⎨⎪⎧a <3,2a >5,解得a <-4,或52<a <3.综上,a 的取值范围是{a |a >3}∪{a |a =3}∪{a |a <-4或52<a <3}={a |a <-4,或a >52}.反思与感悟 解此类题,首先要准确翻译,诸如“A ∪B =B ”之类的条件.在翻译成子集关系后,不要忘了空集是任何集合的子集.跟踪训练4 设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .解 ∵A ∩B ={12},∴12∈A ,∴2×(12)2+3p ×12+2=0,∴p =-53,∴A ={12,2}.又∵A ∩B ={12},∴12∈B ,∴2×(12)2+12+q =0,∴q =-1.∴B ={12,-1}.∴A ∪B ={-1,12,2}.1.已知集合M={-1,0,1},N={0,1,2},则M∪N等于()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}答案 B2.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B等于()A.{0} B.{0,1}C.{0,2} D.{0,1,2}答案 C3.已知集合A={x|x>1},B={x|0<x<2},则A∪B等于()A.{x|x>0} B.{x|x>1}C.{x|1<x<2} D.{x|0<x<2}答案 A4.已知A={x|x≤0},B={x|x≥1},则集合A∩B等于()A.∅B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}答案 A5.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3 B.0或3C.1或 3 D.1或3答案 B1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B 但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.课时作业一、选择题1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆M B.M∪N=MC.M∩N=N D.M∩N={2}答案 D解析∵-2∈N,但-2∉M,∴A,B,C三个选项均不对.2.设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C等于()A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}答案 D解析A∩B={1,2},(A∩B)∪C={1,2}∪{2,3,4}={1,2,3,4}.3.已知集合A={x|-1≤x≤1}和集合B={y|y=x2},则A∩B等于()A.{y|0<y<1}B.{y|0≤y≤1}C.{y|y>0}D.{(0,1),(1,0)}答案 B解析∵B={y|y=x2},∴B={y|y≥0},A∩B={y|0≤y≤1}.4.已知M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么M∩N为()A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}答案 D解析 由⎩⎪⎨⎪⎧ x +y =2,x -y =4,解得⎩⎪⎨⎪⎧x =3,y =-1.∴M ∩N ={(3,-1)}.5.设A ,B 是非空集合,定义A *B ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤3},B ={y |y ≥1},则A *B 等于( ) A .{x |1≤x <3} B .{x |1≤x ≤3} C .{x |0≤x <1或x >3} D .{x |0≤x ≤1或x ≥3} 答案 C解析 由题意知,A ∪B ={x |x ≥0}, A ∩B ={x |1≤x ≤3}, 则A *B ={x |0≤x <1或x >3}.6.若集合A ={x |x ≥0},且A ∩B =B ,则集合B 可能是( ) A .{1,2} B .{x |x ≤1} C .{-1,0,1} D .R答案 A解析 ∵A ∩B =B ,∴B ⊆A , 四个选项中,符合B ⊆A 的只有选项A.二、填空题7.若集合A ={0,1,2,x },B ={1,x 2},A ∪B =A ,则满足条件的实数x 有________个. 答案 2解析 ∵A ={0,1,2,x },B ={1,x 2},A ∪B =A , ∴B ⊆A ,∴x 2=0或x 2=2或x 2=x , 解得x =0或2或-2或1.经检验当x =2或-2时满足题意.8.已知集合P ={x ||x |>x },Q ={x |y =1-x },则P ∩Q =________. 答案 {x |x <0} 解析 |x |>x ⇒x <0,∴P ={x |x <0},1-x ≥0⇒x ≤1, ∴Q ={x |x ≤1},故P ∩Q ={x |x <0}.9.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________. 答案 {a |a ≤1}解析 A ={x |x ≤1},B ={x |x ≥a },要使A ∪B =R ,只需a ≤1.如图.10.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =________. 答案 {(0,1),(-1,2)}解析 A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可. 三、解答题11.已知集合A ={x |⎩⎪⎨⎪⎧3-x >0,3x +6>0,},集合B ={m |3>2m -1},求A ∩B ,A ∪B .解 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3}, 解不等式3>2m -1得m <2, 则B ={m |m <2}.用数轴表示集合A 和B ,如图所示,则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.12.已知集合A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)若A ∩B ={x |1≤x ≤3},求实数m 的值; (2)若A ∩B =∅,求实数m 的取值范围. 解 A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B ={x |1≤x ≤3},∴⎩⎪⎨⎪⎧m -2=1,m +2≥3,解得m =3.(2)A ∩B =∅,A ⊆{x |x <m -2或x >m +2}. ∴m -2>3或m +2<-1.∴实数m 的取值范围是{m |m >5或m <-3}.13.已知集合A ={x |x 2-8x +15=0},B ={x |x 2-ax -b =0}. (1)若A ∪B ={2,3,5},A ∩B ={3},求a ,b 的值; (2)若∅B A ,求实数a ,b 的值.解 (1)因为A ={3,5},A ∪B ={2,3,5},A ∩B ={3},所以3∈B,2∈B ,故2,3是一元二次方程x 2-ax -b =0的两个实数根, 所以a =2+3=5,-b =2×3=6,b =-6.(2)由∅B A ,且A ={3,5},得B ={3}或B ={5}. 当B ={3}时,解得a =6,b =-9; 当B ={5}时,解得a =10,b =-25.综上,⎩⎪⎨⎪⎧ a =6,b =-9或⎩⎪⎨⎪⎧a =10,b =-25.四、探究与拓展14.已知集合A ={(x ,y )|y =x 2,x ∈R },B ={(x ,y )|y =x ,x ∈R },则A ∩B 中的元素个数为________. 答案 2解析 由⎩⎪⎨⎪⎧ y =x 2,y =x ,得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.15.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人? 解 设参加数学、物理、化学小组的人数构成的集合分别为A 、B 、C ,同时参加数学和化学小组的有x 人,由题意可得如图所示的Venn 图.由全班共36名同学参加课外探究小组可得(26-6-x )+6+(15-10)+4+(13-4-x )+x =36,解得x=8,即同时参加数学和化学小组的有8人.。
交集、并集、区间知识归纳和梳理:1.交集:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做A 与B 的交集,记作:B A ⋂。
即:}|{B x A x x B A ∈∈=⋂且 通俗理解:公共部分 韦恩图理解:2.并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集,记作:B A ⋃。
即:}|{B x A x x B A ∈∈=⋃或 通俗理解:合并 韦恩图理解:3.交集、并集的性质:φφ=⋂A ,A A =⋃φ,)()()(C B A C A B A ⋂⋃=⋃⋂⋃, )()()(C B A C A B A ⋃⋂=⋂⋃⋂A B A A B =⇔⊆,A B A A B =⇔⊇;(重要)()U U U C A C B C A B =,()U U U C A C B C A B =.4.区间开区间:}10|{<<x x =)1,0(, 数轴表示:闭区间:}10|{≤≤x x =[]1,0, 数轴表示:半开半闭区间:[)1,0}10|{=<≤x x , 数轴表示:无穷区间:}1|{≤x x =(]1,∞-, 数轴表示:间断点区间:}10|{≠>x x x 且=),1()1,0(+∞⋃, 数轴表示:【典型例题】:例1.设}9,1,5{},4,12,{2x x B x x A --=--=若A ∩B={9},求A ∪B.经典练习:已知 },,2,1{3a a M -==N }3,1,0{2a a -+,且M ∩N={0,1},求实数a 的解集。
{0}例2.设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0}.(1)若A ∩B =B ,求实数a 的值;(2)若A ∪B =B ,求实数a 的值.(1)1-≤a 或1=a ;(2)1=a经典练习:1.已知集合}086|{2=+-=x x x A ,}01|{=+=ax x B ,且A ∪B=A ,求实数a 的取值集合。
高一数学第一章交集、并集1.3.1交集1 •理解交集的概念及其交集的性质;2 •会求已知两个集合的交集;3 •理解区间的表示法;4 •提高学生的逻辑思维能力.1 •交集的定义:(1)对两个集合A和B,定义A与B的交集为集合C,其中C={x|x属于A且x属于B},记作:A A B o(2)交集的venn图表示为:(3)由交集的定义,我们知道若C为A和B的交集,则有C包含于A且C包含于B o做一做 1 : A={1,2,3} , B={1,4,5},贝U A A B={1,2,4,5}注意:(1)交集(A A B)实质上是A与B的公共元素所组成的集合.(2)当集合A与B没有公共元素时,不能说A与B没有交集,而是A A B=._ .2 •交集的常用性质:(1 )A A A:=A ;(2 )A A0=.一;(3 )A A B:=B A A;(4 )(AA B)A C=A A(B AC);(5 )A A B-A, A A B=B3 •集合的交集与子集:思考:A A B=A可能成立吗?结论:A AB = A = A B4•区间的表示法:设a, b是两个实数,且a<b,我们规定:[a , b] = _____________________(a, b ) = ________________________ [a , b) = ______________________(a , b] = _____________________(a, +8)= ________________________(-8, b) = ________________________(-8, +8)=其中[a , b], (a, b )分别叫闭区间、开区间;[a , b) ,( a , b]叫半开半闭区间;a, b叫做相应区间的端点.注意:(1)区间是数轴上某一线段或数轴上的点所对应的实数的取值集合又一种符号语言•(2)区间符号内的两个字母或数之间用“,”号隔开(3 )8读作无穷大,它是一个符号,不是一个数.【精典范例】一、求已知两个集合的交集例1.(1 )设A={-1 , 0, 1}, B={0 , 1, 2, 3},求 A A B;(2)设A={x|x>0} , B={x|x W 1},求A A B;【解】(1) A A B={0 , 1};(2) A A B={x|0<x W 1};名师点评:不等式的集合求交集时,运用数轴比较直观,形象例2:已知数集A={a 2, a+1, -3},数集B={a-3,a-2 , a2+1},若A A B={-3},求a 的值.【解】A A B={-3}-3 € A -3 € B当a-3=-3 时,即a= 0 时,B={-3 , -2, 1},A={0 , 1, -3}满足题意;当a-2=-3 时,即a=-1 时,B={-4 , -3, 2},A={1 , 0, -3}不满足题意;a = 0名师点评:在集合的运算中,求有关字母的值时,要注意分类讨论及验证集合的特性.例3:(1)设集合A={y|y=x 2-2x+3 , x € R},2B={y|y=-x +2x+10 , x € R},求 A A B ;(2)设集合A={(x,y)|y=x+1 , x € R},2 3B={(x,y)|y=-x +2x+ , x€ R},4求 A A B ;分析:先求出两个集合的元素,或者集合中元素的范围,再进行交集运算.特别注意( 1)、(2)两题的区别,这是同学们容易忽视的地方.【解】(1) 两个集合表示的是y的取值范围,2••• A={y|y=x -2X+3 , x € R}= {y|y > 2},B={y|y=-x +2X+10 , x € R}= {y|y < 11},A n B={y|2 w y < 11};3(2) A n B= {(x,y)|y=x+1 , x€ R} n {(x,y)|y=-x2+2X+, x € R}4y =x 1={(x,y)| 2 c 3}|y=—x +2X+—I 4名师点评:求集合的交集时,注意集合的实质,是点集还时数集•是数集求元素的公共部分,是点集的求方程组的解所组成的集合.二、运用交集的性质解题例4:已知集合A={2 , 5}, B={x|x +px+q=O , x € R}.若B={5},求p, q 的值.分析:由B={5},知:方程x2+px+q=0有两个相等,再用一元二次方程的根与系数的关系容易求的值.【解】•/ A n B={5}•••方程x2+px+q=0有两个相等的实根5••• 5+5=-p 5 ?5=q• p=-10 , q=25点评:利用性质:A n B = Au A B是解题的关键,提防掉进空集这一陷阱之中.1.3.并集i.理解并集的概念及其并集的性质;2 •会求已知两个集合的并集;3.初步会求集合的运算的综合问题;4•提高学生的分析解决问题的能力.1.并集的定义:(1)对两个集合A和B,定义A与B的并集为集合C,其中C={x|x属于A或x属于B}, 记作:A U B。
高一上册数学《交集并集》知识点
1.并集
并集的定义
由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A∪B;
并集的符号表示
A∪B={x|x∈A或x∈B}.
并集定义的数学表达式中"或"字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.
x∈A,或x∈B包括如下三种情况:
①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.
由集合A中元素的互异性知,A与B的公共元素在A∪B 中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.
例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.
2.交集
利用下图类比并集的概念引出交集的概念.
交集的定义
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B.
交集的符号表示
A∩B={x|x∈A且x∈B}.。
数学并集和交集
数学中,并集和交集是非常重要的概念,在很多学科中都有用到,尤其是在统计和概率论等研究中。
本文的目的是阐述这两个概念的概况,以及它们之间的联系。
首先要了解的是什么是并集和交集,它们在数学上的含义是什么以及它们之间的关系。
并集指的是两个或多个集合中,由包含它们所有元素的总集合。
一般来说,它用大写字母A,B,C……表示,将其简写为AUB,CUB,…。
而交集指的是两个或多个集合之间有共同元
素的集合,一般用符号来表示,如A∩B,C∩D……。
要想更好地理解这两个概念,我们可以来看看例子:设A和B是两个集合,A={1,2,3},B={2,3,4},那么AUB={1,2,3,4}就是A和B
的并集,A∩B={2,3}就是A和B的交集。
从上面的例子可以看出,两个集合的并集是它们所有元素的总集合,而交集则是它们之间有共同元素的集合。
这两个概念在统计学中有很大的用处,可以帮助我们做出有效的决策。
此外,在日常生活中,我们也经常用到并集和交集的概念。
例如,你和你的朋友有一些共同的兴趣,你们可以将这些共同的兴趣取出来,形成一个共同的集合,用来表示你们之间的交集;而如果你们想要找出所有的兴趣点,可以将你们每个人的兴趣点组合起来,形成一个总集合,用来表示你们之间的并集。
以上就是关于数学中并集和交集的概况以及它们之间的关系,希望可以帮助大家学习。
这两个概念一旦理解,会对统计学和概率论等
学科有非常大的帮助,而且在生活中也经常会用到,希望大家能够利用这些知识更好地解决问题。