开关电源“Y电容”的计算及RS485的上下拉电阻的选择
- 格式:docx
- 大小:462.07 KB
- 文档页数:6
开关电源电容选择计算方法选择开关电源的电容时,需要考虑以下几个因素:工作频率、负载要求、稳压要求、体积和成本。
第一步:确定工作频率工作频率对电容的选择非常重要,因为电容器的容性会随频率的变化而变化。
通常,电容的容性与频率成反比,因此在高频范围内选择合适的电容值非常关键。
第二步:计算负载要求负载要求包括负载电流和纹波电流两个方面。
负载电流是指电容器需要提供给负载的电流,而纹波电流是指从电容器流过的交流电流。
负载电流通常可以从电路图或负载手册中获取,纹波电流则可以通过计算或测量获得。
根据负载电流和纹波电流的数值,可以计算所需的最小电容值。
一般来说,较大的负载电流和纹波电流需要更大的电容值才能满足系统要求,而较小的负载电流和纹波电流则可以选择相对较小的电容值。
一般的经验法则是,选择的电容值应该大于所需电容值的两倍。
第三步:考虑稳压要求稳压要求是指在负载变化或输入电压变化时,输出电压的稳定性。
稳压要求一般通过纹波电压来衡量,即输出电压的波动幅度。
如果稳压要求较高,则需要选择较大容值的电容器。
一般来说,电容器的容值越大,输出电压的稳定性越好。
但是,较大的电容值通常会增加系统的体积和成本,因此需要在稳压要求和系统成本之间进行权衡。
第四步:考虑体积和成本电容器的体积和成本是选择电容值时需要考虑的重要因素。
较大的电容值通常会增加系统的体积和成本,因此需要根据系统的要求和预算来选择合适的电容值。
此外,还需要考虑电容器的封装形式和温度特性,因为这些因素也会影响系统的体积和成本。
总之,选择开关电源的电容时需要考虑工作频率、负载要求、稳压要求、体积和成本等因素。
根据这些因素的要求和约束,可以计算出所需的最小电容值,并在此基础上进行合理的选择。
在选择电容器时,还需要考虑电容器的封装形式、温度特性和可靠性等因素,以确保系统的性能和可靠性。
RS-485总线广泛应用于通信、工业自动化等领域,在实际应中,通常会遇到是否需要加上下拉电阻以及加多大的电阻合适的问题,下面我们将对这些问题进行详细的分析。
一、为什么需要加上下拉电阻?1)当485总线差分电压大于+200mV时,485收发器输出高电平。
2)当485总线差分电压小于-200mV时,485收发器输出低电平。
3)当485总线上的电压在-200mV~+200mV时,485收发器可能输出高电平也可能输出低电平。
但一般总处于一种电平状态,若485收发器的输出低电平,这对于UART通信来说是一个起始位,此时通信会不正常。
当485总线处于开路(485收发器与总线断开)或者空闲状态(485收发器全部处于接收状态,总线没有收发器进行驱动)时,485总线的差分电压基本为0,此时总线就处于一个不确定的状态。
同时由于目前485芯片为了提高总线上的节点数,输入阻抗设计的比较高,例如输入阻抗为1/4单位阻抗或者1/8单位阻抗(单位阻抗为12kΩ,1/4单位阻抗为48kΩ),在管脚悬空时容易受到电磁干扰。
因此为了防止485总线出现上述情况,通常在485总线上增加上下拉电阻(通常A接上拉电阻,B总线下拉电阻)。
若使用隔离RS-485收发模块(例如RSM485PCHT),由于模块内部具有上下拉电阻(对于RSM485PCHT,内部上下拉电阻为24kΩ),因此在模块外部一般不需要增加上下拉电阻。
二、什么情况下需要加上下拉电阻?当遇到信号反射问题时,通常会通过增加匹配电阻来避免信号反射,以1对1通信为例,如图1所示。
由于485总线通常使用特性阻抗为120Ω的双绞线,因此在485总线的首尾两端增加120Ω终端电阻来避免信号反射问题。
根据RSM485PCHT的具体参数(如表1)可以得到如图2所示等效电路,其中RPU、RPD为模块内部在485总线上加的上下拉电阻,RIN为模块的输入阻抗。
当两个模块都处于接收状态时,可以根据基尔霍夫电流定律对节点A和节点B列出下列公式:根据上述公式可以计算AB之间的差分电压为:此时模块已处于不确定状态,模块接收器可能输出为高电平,也可能输出为低电平,这时就需要在模块外部增加上下拉电阻保证模块在空闲时不处于不确定状态。
开关电源“Y电容”的计算及RS485的上下拉电阻的选择开关电源中的“Y电容”是指输入电源(Vin)和地(GND)之间的电容。
它在开关电源的工作中起到滤波和隔离的作用,使得开关电源能够更好地工作。
下面将介绍Y电容的计算以及RS485的上下拉电阻的选择。
Y电容的计算:Y电容的计算方法主要受到电源需要滤波的频率范围和电容的选择范围的限制。
一般来说,大功率开关电源需要挂载的电容较大,而小功率开关电源需要挂载的电容较小。
Y电容的计算公式为:C = I/(dv/dt)其中,C为电容的大小,单位为法拉(F);I为电流的大小,单位为安培(A);dv/dt为电压变化率,单位为伏特/秒(V/s)。
RS485的上下拉电阻的选择:RS485通信协议是一种常用的工业控制和数据采集的应用,它能够实现远距离的串行通信。
在RS485通信中,为了保证信号的完整性和减少误码率,需要选择合适的上下拉电阻。
在RS485通信中,上拉电阻和下拉电阻的选择范围通常在120欧姆到180欧姆之间。
在选择上拉和下拉电阻时,需要考虑通信距离、总线上的终端数和通信速率等因素。
上拉电阻和下拉电阻的选择原则如下:1.距离越短,上拉电阻和下拉电阻的值越小,通常选取120欧姆;2.距离越长,上拉电阻和下拉电阻的值越大,通常选取180欧姆;3.总线上的终端数越多,上拉电阻和下拉电阻的值越小,通常选取120欧姆;4.通信速率越高,上拉电阻和下拉电阻的值越小,通常选取120欧姆。
综上所述,Y电容的计算方法与RS485的上下拉电阻的选择原则有助于我们更好地设计和应用开关电源和RS485通信系统。
我们可以根据具体的应用需求和规范要求,选择合适的电容和电阻参数,以确保开关电源和RS485通信系统的稳定性和可靠性。
开关电源电容选择计算方法开关电源的寿命很大程度受到电解电容的制约,而电解电容的寿命取决于其内核温升。
本文从纹波电流计算、纹波电流实测、电解电容选型、温度测试方法、寿命估算等方面,对电解电容作了全面的分析。
纹波电流产生的热量引起电容的内部温升,加速电解液的蒸发,当容值下降20%或损耗角增大为初始值的2~3倍时,预示着电解电容寿命的终结。
通过检查电容器上的纹波电流,可预测电容器的寿命。
本文以连续工作模式的反激变换器输出电容分析为例,重点从纹波电流角度全面分析电解电容的选型与寿命。
1、纹波电流计算假设已知连续工作模式的反激变换器,其输出电流Io 为1.25A,纹波率r为1.1,占空比D为0.62,开关频率为60kHz,由此可以计算次级纹波电流ΔIo和有效值电流Io.rms。
次级纹波电流ΔIo:有效值电流Io.rms:最终得到流过输出电容的纹波电流:图1直观的显示了该电容的纹波电流波形:图1 纹波电流波形2、电解电容选型由上述计算分析得到流过电容的纹波电流为1.72A,综合考虑体积和成本,选择了纹波电流为1.655A的电解电容。
该纹波电流需在电源开关频率下选择,如下列图某厂家电容手册的纹波电流有频率因子,不同频率下的纹波电流不同。
高频低阻电容均会给出100kHz下的纹波电流,本设计开关频率为60kHz,频率因子为0.96~1之间,在此取1即可。
图2 电容纹波电流频率因子注:纹波电流还有一个温度系数,例如105℃电容,在85℃环境温度下,允许的最大纹波电流约为额定最大纹波电流的1.73倍,该参数一般不在电容手册中表达。
3、纹波电流实测测试电解电容纹波电流时,需将电容引脚穿入电流探头中,通过示波器可读得交流有效值。
本设计实例的纹波电流测试结果如图3所示,示波器读得有效纹波电流为1.64A,与理论设计接近。
因此理论计算具有较大的工程指导意义。
图3 实测电容纹波电流4、温度测试方法测量容体表面温度Ts:需在电容器侧面的中间位置开展,如果由于外部影响导致电容器表面温度不均匀、不稳定,需综合测量电容器表面4个点的温度,再取平均值。
近年来,随着工业自动化的不断发展,RS485通信作为一种常用的工业通信协议也变得越来越重要。
在RS485通信中,短路保护电阻的取值是一个非常重要的问题,因为它直接关系到通信线路的稳定性和可靠性。
在本文中,我们将深入探讨RS485短路保护电阻取值的相关问题,希望能够为读者提供一些有价值的信息和思考。
1. RS485通信简介RS485是一种常用的工业通信协议,它具有高抗干扰能力、支持多点通信、传输距离远等特点,因此在工业自动化领域得到了广泛应用。
在RS485通信中,为了保证通信线路的稳定性和可靠性,通常需要在通信线路两端加上短路保护电阻。
2. 短路保护电阻的作用短路保护电阻的作用是在通信线路出现短路时,限制大电流通过,起到保护其他设备的作用。
选择适当数值的短路保护电阻对于保护通信设备和确保通信质量至关重要。
3. 短路保护电阻的取值一般情况下,短路保护电阻的取值需要考虑通信线路的特性、长度、工作环境等因素。
在实际应用中,通常可以通过以下公式来计算短路保护电阻的取值:R = (Vcc-2V) / (0.25A)其中,Vcc为总线电压,V为每个节点的输入电压,A为总线的驱动能力。
4. 个人观点和理解在选择短路保护电阻的取值时,需要根据实际情况综合考虑各种因素,不能片面追求小电阻值或者大电阻值。
还需要注意短路保护电阻的功率耗散和热量问题,确保设备稳定可靠运行。
总结回顾通过本文的探讨,我们对RS485短路保护电阻的取值有了一定的了解。
在实际应用中,选择适当数值的短路保护电阻对于保护通信设备和确保通信质量非常重要。
在选择短路保护电阻的取值时,需要综合考虑通信线路的特性、长度、工作环境等因素,选择合适的取值方案。
希望本文的内容能够给读者带来一些有价值的信息和思考。
在探讨了RS485短路保护电阻的取值的基础上,我对于这一问题有了更深入的了解。
在实际应用中,我们需要综合考虑各种因素,选择合适的短路保护电阻取值方案,以确保通信线路的稳定性和可靠性。
上拉电阻和下拉电阻的选型和计算1.上拉电阻的选型和计算:上拉电阻是指在输入信号引脚与Vcc之间连接一个电阻,用于将输入信号拉高到高电平。
选型和计算上拉电阻时,需要考虑以下几个因素:-输入电流需求:根据输入引脚的规格书或芯片数据手册,确定输入电流的最小要求。
一般情况下,使用的上拉电阻的电阻值应小于输入电流要求。
-电阻范围:根据所使用的电阻范围选择合适的上拉电阻。
一般而言,常用的电阻值为1kΩ到10kΩ,但在一些特殊应用中,也可能需要其他电阻值。
- 上拉电阻计算:上拉电阻的计算可以根据公式R = (Vcc - Vih) / Iin 得到。
其中,R为上拉电阻的电阻值,Vcc为供电电压,Vih为输入高电平阈值,Iin为输入电流。
根据具体输入信号的电压要求和设计要求,可以计算得到合适的上拉电阻值。
2.下拉电阻的选型和计算:下拉电阻是指在输入信号引脚与地之间连接一个电阻,用于将输入信号拉低到低电平。
选型和计算下拉电阻时,需要考虑以下几个因素:-输入电流需求:根据输入引脚的规格书或芯片数据手册,确定输入电流的最大要求。
在选择下拉电阻时,要确保电流不会超过引脚的最大输入电流。
-电阻范围:根据所使用的电阻范围选择合适的下拉电阻。
一般而言,常用的电阻值为1kΩ到10kΩ,但在一些特殊应用中,也可能需要其他电阻值。
- 下拉电阻计算:下拉电阻的计算可以根据公式R = Vil / Iin 得到。
其中,R为下拉电阻的电阻值,Vil为输入低电平阈值,Iin为输入电流。
根据具体输入信号的电压要求和设计要求,可以计算得到合适的下拉电阻值。
需要注意的是,选型和计算上拉电阻和下拉电阻时,还需要考虑输入电流对电路性能的影响,以及电阻功率和稳定性的要求等因素。
总结:上拉电阻和下拉电阻的选型和计算需要根据具体的输入电流和电压要求、电阻范围以及电路设计需求等因素进行考虑。
通过使用适当的电阻值,可以将输入信号拉升或拉低到期望的电平,从而实现电子电路的正常工作。
rs485电路ab的上下拉电阻-回复什么是RS485电路?RS485是一种串行通信接口标准,它允许在相对远距离的设备之间进行高速数据传输。
RS485电路常用于工业控制系统、建筑自动化和多点数据采集等领域。
它具有多点传输、高速、抗干扰等优势。
RS485电路中的A、B线是如何连接的?在RS485电路中,A、B线是差分传输线,通过这两根线来实现数据的传输。
A线是正极,B线是负极。
通常将A线和B线两个节点连接到一个差分驱动器和一个差分接收器上,这样可以实现双向数据的传输。
上拉电阻在RS485电路中的作用是什么?上拉电阻是在RS485电路中常见的电阻之一。
它的作用是将A、B线的电平拉高,使其处于一个确定的电平状态。
上拉电阻能够防止通信线路上的干扰信号对数据传输的影响。
上拉电阻的大小如何选择?选择上拉电阻的大小要根据实际应用情况来决定。
一般来说,上拉电阻的阻值应该足够大,以确保A、B线的电平稳定,但又不能太大,否则会导致信号传输的速度变慢。
通常可以选择100欧姆到1千欧姆之间的上拉电阻。
下拉电阻在RS485电路中的作用是什么?下拉电阻也是在RS485电路中常见的电阻之一。
它的作用是将A、B线的电平拉低,使其处于一个确定的电平状态。
下拉电阻能够提供稳定的地线连接,确保信号的准确传输。
下拉电阻的大小如何选择?选择下拉电阻的大小同样需要根据实际应用情况来决定。
一般来说,下拉电阻的阻值也应该足够大,以确保A、B线的电平稳定,同时也不能太大,否则会导致信号传输的速度变慢。
通常可以选择100欧姆到1千欧姆之间的下拉电阻。
如何确定上拉和下拉电阻的值?确定上拉和下拉电阻的值需要考虑多个因素,包括通信距离、传输速率、外部干扰等。
通常可以根据RS485标准的要求来选择合适的电阻值。
此外,也可以根据实际测试和调试的结果来确定电阻的值。
总结RS485电路中的上下拉电阻对于数据传输的稳定和抗干扰能力非常重要。
合适的上下拉电阻可以保证信号传输的速度和准确性。
关于RS485上拉下拉电阻的说明一、上拉下拉电阻作用:接电阻就是为了防止输入端悬空减弱外部电流对芯片产生的干扰保护cmos内的保护二极管,一般电流不大于10mA上拉和下拉、限流1. 改变电平的电位,常用在TTL-CMOS匹配2. 在引脚悬空时有确定的状态3.增加高电平输出时的驱动能力。
4、为OC门提供电流那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
反之,尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通!二、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
三、为什么要使用上下拉电阻:一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
RS-485上拉电阻下拉电阻A:如下图的两个 Bias Resaitor 电阻就是上拉电阻和下拉电阻。
图中,上部的一个Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是将电路节点A 的电平向低方向(地)拉;同样,图中,下部的一个Bias Resaitor 电阻因为是电源(正),因而叫做上拉电阻,意思是将电路节点A的电平向高方向(电源正)拉。
当然,许多电路中上拉下拉电阻中间的那个12k电阻是没有的或者看不到的。
我找来这个图是RS-485/RS-422总线上的,可以一下子认识上拉下拉的意思。
但许多电路只有一个上拉或下拉电阻,而且实际中,还是上拉电阻的为多。
上拉下拉电阻的主要作用是在电路驱动器关闭时给线路(节点)以一个固定的电平。
1 在RS-485总线中,它们的主要作用就是在线路所有驱动器都释放总线时让所有节点的A-B端电压在200mV或200mV以上(不考虑极性)。
不然,如果接收器输入端A和B间的电平低于±200mV(绝对值小于200mV),接收器输出的逻辑电平将被当作所传输数据的末位而被接收起来,这样显然是极容易产生通讯错误的。
2 最容易见到的上拉电阻应当是NE555电路7脚作为输出用的时候。
实际上,它和一个三极管的C极或MOS管的D极有一个电阻接到电源+上是一样道理的。
它的作用就是:当管子(晶体管或MOS管)输入关断电平时,C极或D极有一个高电平(空载时约等于电源电压);当管子(晶体管或MOS管)输入导通电平时,C极或D极将与电源地(-)接通,因而有一个低电平。
理想的应为0V,但因为管子有导通电阻,因而有一定的电压,不同的管子可能不一样,相同的管子也可能因参数差异而小有差别,即便是真正的金属接触的电源开关,也是有接触电阻/导通压降(虽然不同电流下压降不同)的;仅仅就导通而言,对于不同系列的集成电路来说,因为应用对象不同,导通后的输出电压有不同的规定,典型是TTL电平和CMOS电平的不同。
RS-485总线广泛应用于通信、工业自动化等领域,在实际应中,通常会遇
到是否需要加上下拉电阻以及加多大的电阻合适的问题,下面我们将对这些问
题进行详细的分析。
一、为什么需要加上下拉电阻?
1)当485总线差分电压大于+200mV时,485收发器输出高电平。
2)当485总线差分电压小于-200mV时,485收发器输出低电平。
3)当485总线上的电压在-200mV~+200mV时,485收发器可能输出高电平也可能输出低电平。
但一般总处于一种电平状态,若485收发器的输出低电平,这
对于UART通信来说是一个起始位,此时通信会不正常。
当485总线处于开路(485收发器与总线断开)或者空闲状态(485收发器全部处于接收状态,总线没有收发器进行驱动)时,485总线的差分电压基本
为0,此时总线就处于一个不确定的状态。
同时由于目前485芯片为了提高总
线上的节点数,输入阻抗设计的比较高,例如输入阻抗为1/4单位阻抗或者
1/8单位阻抗(单位阻抗为12kΩ,1/4单位阻抗为48kΩ),在管脚悬空时容易
受到电磁干扰。
因此为了防止485总线出现上述情况,通常在485总线上增加上下拉电阻(通常A接上拉电阻,B总线下拉电阻)。
若使用隔离RS-485收发模块(例如RSM485PCHT),由于模块内部具有上下拉电阻(对于RSM485PCHT,内部上下拉
电阻为24kΩ),因此在模块外部一般不需要增加上下拉电阻。
二、什么情况下需要加上下拉电阻?
当遇到信号反射问题时,通常会通过增加匹配电阻来避免信号反射,以1
对1通信为例,如图1所示。
由于485总线通常使用特性阻抗为120Ω的双绞线,因此在485总线的首尾两端增加120Ω终端电阻来避免信号反射问题。
根据RSM485PCHT的具体参数(如表1)可以得到如图2所示等效电路,其
中RPU、RPD为模块内部在485总线上加的上下拉电阻,RIN为模块的输入阻抗。
当两个模块都处于接收状态时,可以根据基尔霍夫电流定律对节点A和节点B列出下列公式:
根据上述公式可以计算AB之间的差分电压为:
此时模块已处于不确定状态,模块接收器可能输出为高电平,也可能输出为低电平,这时就需要在模块外部增加上下拉电阻保证模块在空闲时不处于不确定状态。
三、上下拉电阻如何选择?
假设模块的输出电源电压V¬O相同,由于RGND接在一起,因此可以认为模块内部的上拉电阻是并联在一起的,为了方便解释,对图2的电路进行整理,如图3所示,在模块外部增加上下拉电阻可以选择只增加一组,也可以选择在每个模块都增加上下拉电阻,为了解释方便,我们在485总线上增加一组上下
开关电源基本原理图
1.一次电路(Primary Circuit) :
直接与外部电网电源连接的.
2.二次电路(Secondary Circuit):
位于设备内与一次侧相隔离的那部分电路.
3.Y-电容(Y-Capacitor):
跨接于一次电路与地或一,二次电路之间的高压电容. 开关电源接地、漏电流、耐压测试(安规)
1.接地连续性测试(Ground Continuity Test):
从Inlet PG 端上通过电流至使用者可接触的接地端,确保其阻值小于规格值,达到接地保护的功用.
B.标淮:
1.输入电流不大于25A,(DC or AC)电压不超过12V,时间至少3秒(TUV要求).
2.测试结果:电阻值不得大于100 mΩ.
2.接地泄漏电流测试(Earth Leakage Current Test):
A.定义:
通过一个被安规单位(UL,TUV,CSA…)认可的“人体阻抗模拟电路”,测量当待测物 (SPS)接通电源时在可触到的金属部件与地之间流经人体的电流量.
B.标淮:
1.输入电压为额定电压上限的106%.
2.测试结果:Class I≦
3.5mA;Class II≦0.25mA.
3.耐压测试(Dielectric Withstand Voltage Test):
A.定义:
又称高电压介电测试,即 Hi-pot(High Potential)Test,从一次侧对二次侧(或一次侧对地)之间实施高电压以确定内部绝缘层有隔离危险电压的功用.
B.标淮:
1.输入电压为下列所示:
2.测试结果:不可有绝缘击穿现象(Breakdown).
耐压测试交流与直流之区别
耐压测试之漏电流计算方法
1. DC 测试之漏电流设定:
DC 测试电流非常小(μA),一般一次侧对二次侧之间实施DC高电压,漏电流设定:0μA~100μA.
2. AC 测试之漏电流理论计算:
计算公式:I =2π*f*V*Cy
其中:
f—测试电压频率 ( 50Hz or 60Hz )
V—测试电压 ( unit : volt )
Cy—跨接于一次侧与地或一,二次侧之间的Y电容总和.
所以:Imin = 2π*f*V*Cymin
Imax = 2π*f*V*Cymax
Cy 电容计算 ::Cy =Cy1 Cy2 Cy3 …
若一次侧地与二次侧地之间跨接一颗Y电容(Cy0 ),则:
Y电容公差一般为:/-20% OR /-10%
3. 实际设定AC 测试漏电流时需考虑下列因素:
1.考虑初始漏电流:
初始漏电流即在无待测物状态下,所测得的漏电流.
2.考虑Y电容公差:
电源工程师在选择同一颗容量大小的Y电容时,往往有几个型号,但其公差不一样(有的是 /-10%;有的是 /-20%),给实际漏电流设置带来麻烦,因此我们应该按 /-20% 公差去设定.否则须依 /-10% 公差去设定.
3.考虑实际线路中存在的分散电容,因此漏电流范围设定:(下限取整 :上限入整)。