2012-2013学年湛江二中九年级5月月考数学试题
- 格式:doc
- 大小:219.00 KB
- 文档页数:4
2024学年第一学期九年级学生学科素养检测 (数学试卷) 2024.09一、选择题(每题3分)1. 下列2024年巴黎奥运会的运动图标中,不是中心对称图形的是( )A .B .C .D .甲、乙、丙、丁四名射击运动员参加射击预选赛,每人射击发子弹.他们射击成绩的平均数及标准差如下表所示:若要选一名成绩较好且发挥稳定的运动员参奏,则应选择( )A. 甲 B .乙C .丙D .丁 5.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()247x +=- B .()249x +=-C .()247x +=D .()242x +=6. 如图,数轴上所表示的不等式组的解集是( )A .1->xB . 21≤<-xC. 21≤≤-x D . 2≤x7.据乘用车市场信息联席会数据显示,我国新能源车发展迅速,2024年4月至6月,新能源车月销量由68.3万辆增加到82.7万辆.设2024年4月至6月新能源车销量的月平均增长率为x ,则列( )A.7.82)213.68=+x ( B .7.82)123.68=+⨯x (C .[]7.82)1()1(13.682=++++x x D .7.82)13.682=+x (8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°.如图,在平面直角坐标系中,OABC的边OC个单位的速度向下平移,经过的值为()C.对角线AC与BD交于点D.4(第8题)(第9题)(第10题)二、填空题(每题3分)15.将正方形纸片ABCD对折,展开得到折痕MN,再次折叠,使顶点D与点M重合,折痕交AD于点E,MN交折痕于点H,已知正方形的边长为4,则MH的长度为.(第13题)(第15题)(第16题)三、解答题(17-21每题8分,22、23每题10分,24题12分)18.解方程:(1) 9)12(2=-x (2)0542=--x x .19.如图,在小正方形网格中,△ABC 的顶点均在格点上,仅用无刻度的直尺在给定网格中完成作图.(1)在图1中,过点B 作AC 的平行线BD ,使得AC =BD ; (2)在图2中,找出格点E ,F ,画出正方形BCEF .20. 如图,在ABC ∆中,D,E 分别是边AB,AC 的中点,延长BC 至点F,使得BC CF 21=,连结CD,DE,EF.(1)求证:四边形CDEF 是平行四边形. (2)若四边形CDEF 的面积为8,求BCD ∆的面积.21.某社区开展了一次爱心捐款活动,为了解捐款情况,社区随机调查了部分群众的捐款金额,并用得到的数据绘制了如下不完整的统计图1和图2.请根据相关信息,解答下列问题:(1)本次被调查的有 人,扇形统计图中m = .(2)本次抽取的群众捐款的众数是 元,中位数是 元,并补全条形统计图(无需注明计算过程);(3)若该社区有2000名群众,根据以上信息,试估计本次活动捐款总金额.22. 如图,一次函数 = 2的图象与反比例函数 =( )的图象交于点 ( 1 ) 和点 ( 1).(1)求反比例函数的解析式;(2)当y >y 时,直接写出 的取值范围. (3)求ABO ∆的面积。
浙江省温州市第十二中学2024-2025学年九年级上学期九月月考数学试题一、单选题1.下列各式中,y 是x 的二次函数的是( )A .2y x =B .31y x =+C .221y x =-D .y =2.函数2361y x x =-+的一次项系数是( )A .6-B .1C .3D .63.下列二次函数图象经过原点的是( )A .21y x =+B .23y x x =-C .()21y x =+D .231y x x =--+ 4.把抛物线23y x =向左平移2个单位,再向上平移1个单位,所得抛物线的解析式是( ) A .()2321y x =-+B .()2321y x =--C .()2321y x =++ D .()2321y x =+- 5.二次函数24y x x c =-+的最小值是0,那么c 的值等于( )A .2B .4C .2-D .86.下列图象中,函数()20y ax a a =-≠的图象可能是( )A .B .C .D .7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠3 8.已知()11,A y -,()22,B y ,()34,C y 是二次函数224y x x =-++的图象上的三个点,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .132y y y <<D .312y y y <<9.若三个方程()()()()()()232833284328x x x x x x -+-=-+-=-+-=,,的正根分别记为123x x x ,,,则下列判断正确的是( )A .123x x x <<B .321x x x <<C .231x x x <<D .312x x x <<10.已知二次函数()20y ax bx c a =++≠图象上部分点的坐标(),x y 对应值列表如下,则关于x 的方程220ax bx ++=的解是( )A .10x =,22000x =B .12500x x ==C .121000x x ==D .1500x =,21500x =二、填空题11.抛物线2241y x x =--+的对称轴为直线.12.若一条抛物线与29y x =图象的形状相同且开口向下,顶点坐标为()1,5,则这条抛物线的解析式为.13.已知二次函数222y x x -=-+中,当14x -≤≤时,y 的最小值是.14.某超市一月份的营业额为200万元,一月、二月、三月的营业额共y 万元,如果平均每月增长率为x ,则营业额y 与月平均增长率x 之间的函数关系式为.15.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是.16.图1是一个瓷碗,图2是其截面图,碗体DEC 呈抛物线状(碗体厚度不计),碗口宽12cm CD =,此时面汤最大深度8cm EG =.(1)当面汤的深度ET 为4cm 时,汤面的直径PQ 长为;(2)如图3,把瓷碗绕点B 缓缓倾斜倒出部分面汤,当45ABM ∠=︒时停止,此时碗中液面宽度CH =.三、解答题17.如图,已知抛物线21y x mx =-++经过点 1,4 .(1)求m 的值及此抛物线的顶点坐标.(2)试判断点()1,4P --是否在此函数图象上.18.已知二次函数()20y ax bx c a =++≠的y 与x 的部分对应值如表:(1)在平面直角坐标系中画出这个函数图象,并求出函数表达式.(2)由图象可得,当x 为______时,3y >-.19.已知抛物线22y ax ax c =-+的图象经过点()1,0-,()0,3.(1)求这个二次函数的表达式.(2)当2x t -≤≤时,函数的最大值为m ,最小值为n ,若9m n -=,求t 的取值范围. 20.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具的销售单价为x 元(x >40),请将销售利润w 表示成销售单价x 的函数;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元?(3)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.21.学科实践任务驱动:2024年世界泳联跳水世界杯第三站暨超级总决赛于4月19日至21日在中国陕西省西安市成功举办,中国国家跳水队以8金1银总奖牌9枚完美收官,进一步激发各地跳水运动员训练的热情.数学小组对跳水运动员跳水训练进行实践调查.研究步骤:如图,某跳水运动员在10米跳台上进行跳水训练,水面与y 轴交于点()0,10E -,运动员(将运动员看成一点)在空中运动的路线是经过原点О的抛物线,在跳某个规定动作时,运动员在空中最高处点A 的坐标为39,416⎛⎫ ⎪⎝⎭.正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员人水后,运动路线为另一条抛物线.问题解决:请根据上述研究步骤与相关数据,完成下列任务.(1)求运动员在空中运动时对应抛物线的解析式及入水处点B 的坐标.(2)若运动员在空中调整好入水姿势时,恰好与y 轴的水平距离为3米,问该运动员此次跳水会不会失误?说明理由.(3)在该运动员人水处点B 的正前方有M ,N 两点,且68EM EN ==,,该运动员人水后运动路线对应的抛物线的解析式为2()y x h k =-+.若该运动员出水处点D 在MN 之间(包括M ,N 两点),请求出k 的取值范围.。
1期中、期末、月考命题试卷的格式要求 1、纸张:16开 2、页边距:上下左右均为1 .5厘米 3、正文字体:五号,试卷标题字体:小二、加粗、黑体 4、行距:命题老师根据实际设置,试卷的页码数应为偶数(如4、6、8、10页),最好不要设置成奇数页(如5、7、9页等) 5、要求在页脚中间插入页码。
6、在标题下面要写明:①命题人、审题人(备课组长) ②考试时间、考试范围 ③题量说明(如本份试卷共**道大题,共**道小题)④其他注意事项,根据本学科需要设置。
7、在试卷的左边(或是答题卡的左边)设置装订线(装订线请按统一的格式要求,见本份资料左边的范本),在试卷的右上角(或是答题卡的右上角)设置座位号的填写位置。
8、标题的设置格式: 湛江二中2012—2013学年第一学期初一级期末考试(或第*次月考) 语文试卷 校区________________班别_________________姓名________________学号_______________试室……………………………………………………装………………………………………………订………………………………………………线………………………………………………2。
江苏省连云港海宁中学2024-2025学年初中九上数学第一次月考试题一.选择题(共8小题)1.已知任意实数满足等式x=a2﹣4ab+4b2,y=4a﹣8b﹣5,则x,y的大小关系是()A.x=y B.x>y C.x<y D.x≥y2.一元二次方程x2﹣8x﹣a=0的两实数根都是整数,则下列选项中a可以取的值是()A.12B.16C.20D.243.在平面直角坐标系中,已知点P(m﹣1,n2)、Q(m,n2﹣1),其中m≥0,则下列函数的图象可能同时经过P、Q两点的是()A.y=2x+b B.y=ax2+2ax+c(a>0)C.y=ax+2(a>0)D.y=﹣x2﹣2x+c(c>0)4.已知二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,其中对称轴为:x=1,下列结论:①abc>0;②a+c>b;③2a+3b>0;④a+b>am2+bm(m≠1);⑤c<﹣2a,上述结论中正确结论的个数为()A.1个B.2个C.3个D.4个5.如图1,在平行四边形ABCD中,BC⊥BD,点F从点B出发,以1cm/s的速度沿B→C→D匀速运动,点E从点A出发,以1cm/s的速度沿A→B匀速运动,其中一点停止时,另一点随之停止运动,图2是△BEF的面积S(cm2)随时间t(s)变化的函数图象,当△BEF的面积为10cm2时,运动时间t为()A.s B.4s或s C.5s D.3s或7s6.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1B.a=3,b=1C.,b=﹣1D.,b=17.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k取值范围是()A.k≥﹣2B.k>2C.k<2且k≠1D.k>2且k≠18.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0二.填空题(共7小题)9.已知(a2+b2)(a2+b2﹣6)=16,则a2+b2的值为.10.若关于x的方程(m﹣2)x2﹣2x+1=0有两个不等的实根,则m的取值范围是.11.已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,则该方程的根是.12.当m=时,关于x的方程x2﹣6x﹣m=0有两个相等的实数根.13.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=1,则一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0必有一根为.14.如图,二次函数y=a(x﹣1)2的图象经过点A(﹣1,4),与y轴交于点B,C、D分别为x轴、直线x=1上的动点,当四边形ABCD的周长最小时,则点D的坐标为.15.抛物线y=ax2﹣4ax﹣3(其中a>0,a为常数),若当4≤x<5时,对应的函数值y恰好有3个整数值,则a的取值范围是.三.解答题(共9小题)16.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.17.我们在求代数式y2+4y+8的最小值时,可以考虑用如下法求得:解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.请用上面的方法解决下面的问题:(1)代数式m2+10m﹣6的最小值为;(2)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为24m的栅栏围成.如图,设AB=x(m),①AB的取值范围是;②当x取何值时,花园的面积最大?最大面积是多少?18.商场某种商品平均每天可销售40件,每件盈利60元,为了尽快减少库存,商场决定采取适当的降价措施.经调查,每件商品每降价1元,商场平均每天可多销售2件.(1)当每件盈利50元时,每天可销售件.(2)每件商品降价多少元时,商场日盈利可达到3072元?19.已知关于x的方程x2+ax+a﹣1=0.(1)若该方程的一个根为2,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有实数根.20.已知二次函数y=ax2+c的图象经过点(8,10),.(1)求二次函数的表达式;(2)点P为二次函数图象上一点,点F在y轴正半轴上,将线段PF绕点P逆时针旋转90°得到PE,点E恰好落在x轴正半轴上,求点P的坐标.21.某数学兴趣小组研究函数y=|x﹣1|的图象:首先根据式子结构采用分类的数学方法:当x≥1时,y=x﹣1;当x<1时,y=1﹣x.然后根据一次函数图象的画法分别画出图象,如图(1)所示.类似的,研究函数y=x|x﹣2|的图象时,他们已经画出了x≤2时的图象.(1)请你用描点法补全此函数的图象;(2)根据图象,直接写出当x为何值时,y随着x的增大而减小?(3)当0≤x≤a时,y的最大值是1,最小值是0,请你直接写出a的取值范围.22.如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C;(1)用配方法将二次函数y=2﹣2x﹣3化为y=a(x+h)2+k的形式;(2)观察图象,当0≤x<4时,y的取值范围为;(3)设二次函数y=x2﹣2x﹣3的图象的顶点为M,求△ACM的面积.23.如图,抛物线y=﹣x2+bx+c的图象与y轴交于点C,与x轴交于A、B两点,已知A(﹣2,0),B (4,0),点Q为射线OB上一点,过点Q作y轴的平行线,分别交抛物线、直线BC于点D、E.(1)求抛物线的表达式;(2)连接CD、AC,是否存在△CDE与△ABC相似,若存在,请求出点Q的坐标,若不存在,请说明理由;(3)是否存在以点C、D、G、E为顶点的四边形是平行四边形,若存在,请直接写出点D的坐标,若不存在,请说明理由.24.如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.参考答案与试题解析一.选择题(共8小题)1.【解答】解:∵x﹣y=a2﹣4ab+4b2﹣(4a﹣8b﹣5)=(a﹣2b)2﹣4(a﹣2b)+4+1=[(a﹣2b)﹣2]2+1,∴[(a﹣2b)﹣2]2+1>0,∴x>y.故选:B.2.【解答】解:当a=12时,方程为x2﹣8x﹣12=0,解得不是整数,故A选项不符合题意;当a=16时,方程为x2﹣8x﹣16=0,解得不是整数,故B选项不符合题意;当a=20时,方程为x2﹣8x﹣20=0,解得x=10或x=﹣2是整数,故C选项符合题意;当a=24时,方程为x2﹣8x﹣24=0,解得不是整数,故D选项不符合题意;解法二:x=4±,由选项可知,a=20,符合题意.故选:C.3.【解答】解:∵m>0,∴m﹣1<m,∵n2>n2﹣1,∴当m>0时,y随x的增大而减小,A、y=2x+b中,y随x的增大而增大,故A不可能;B、y=ax2+2ax+c(a>0)中,开口向上,对称轴为直线x=﹣=﹣1,∴当x>﹣1时,y随x的增大而增大故B不可能;C、y=ax+2 中,a>0,y随x的增大而增大,故C不可能;D、y=﹣x2﹣2x+c中,开口向下,对称轴为直线x==﹣1,∴当x>﹣1时,y随x的增大而减小,故D有可能,故选:D.4.【解答】解:∵抛物线的开口向下,∴a<0,∵对称轴为:x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴交于y轴的正半轴,∴c>0,∴abc<0,故①不正确,∵2×1﹣3=﹣1,当x=3时,y=0,∴当x=﹣1时,a﹣b+c=0,∴a+c=b,故②不正确,∵b=﹣2a,∴2a+3b=2a﹣6a=﹣4a>0,故③正确,∵当x=1时,y=a+b+c,a<0,∴函数的最大值为:a+b+c,∴a+b+c>am2+bm+c(m≠0),∴a+b>am2+bm,故④正确,由上知,a﹣b+c=0,b=﹣2a,∴c=﹣3a>﹣2a,故⑤不正确,∴③④正确,故选:B.5.【解答】解:由图1、图2可知,当t=6时,点F与点C重合;当6<t≤10时,点F在CD上运动,而点E继续在AB上运动4s,∵四边形ABCD是平行四边形,点F、点E的速度都是1cm/s,∴CD=AB=1×10=10(cm),BC=1×6=6(cm),∵BC⊥BD,∴∠CBD=90°,∴BD===8(cm),当0<t≤6时,如图3,作FG⊥AB,交AB的延长线于点G,则∠G=∠CBD=90°,∵AB∥CD,∴∠GBF=∠C,∴△BGF∽△CBD,∴=,∴GF=•BF=×t=t(cm),∴S=×t(10﹣t)=﹣t2+4t,当S=10时,则﹣t2+4t=10,解得t1=t2=5;当6<t≤10时,如图4,作CH⊥AB,交AB的延长线于点H,∵CD•CH=BC•BD=S△CBD,∴×10CH=×6×8,解得CH=,∴S=×(10﹣t)=﹣t+24,当S=10时,则﹣t+24=10,解得t=,不符合题意,舍去,综上所述,运动时间t为5s,故选:C.6.【解答】解:∵x1,x2是一元二次方程x2+2ax+b=0的两根,∴x1+x2=﹣2a,x1x2=b,∵x1+x2=3,x1x2=1,∴﹣2a=3,b=1,即a=﹣,b=1,故选:D.7.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣4=0有两个不相等的实数根,∴,解得:k<2且k≠1.故选:C.8.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故A、B错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a﹣2b+c=0,∵b=﹣2a,∴4a+4a+c=0,即8a+c=0,故D正确,故选:D.二.填空题(共7小题)9.【解答】解:设a2+b2=y,则原方程换元为y(y﹣6)=16,即y2﹣6y﹣16=0∴(y﹣8)(y+2)=0,解得:y1=8,y2=﹣2,即a2+b2=8或a2+b2=﹣2(不合题意,舍去),∴a2+b2=8.故答案为:8.10.【解答】解:根据题意得m﹣2≠0且Δ=(﹣2)2﹣4(m﹣2)>0,解得m<3且m≠2.故答案为m<3且m≠2.11.【解答】解:∵关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,∴该方程的根是x1=1,x2=﹣2.故答案为:x1=1,x2=﹣2.12.【解答】解:∵关于x的方程x2﹣6x﹣m=0有两个相等的实数根,∴Δ=(﹣6)2﹣4×1×(﹣m)=36+4m=0,解得:m=﹣9.故答案为:﹣9.13.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0,设t=x﹣1,所以at2+bt﹣1=0,而关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=1,所以at2+bt﹣1=0有一个根为t=1,则x﹣1=1,解得x=2,所以a(x﹣1)2+b(x﹣1)﹣1=0必有一根为x=2.故答案为:x=2.14.【解答】解:作点A关于对称轴x=1的对称点E,则E(3,4),作点B关于x轴的对称点F,连接EF交x轴于点C,交对称轴于点D,此时四边形ABCD的周长取得最小值,将点A(﹣1,4)代入y=a(x﹣1)2得4a=4,解得a=1,∴抛物线解析式为y=(x﹣1)2=x2﹣2x+1,∴点B坐标为(0,1),则点F(0,﹣1),设CD所在直线解析式为y=mx+n,将E(3,4),F(0,﹣1)代入得,解得,所以CD所在直线解析式为y=x﹣1.当x=1时,y=,∴D(1,).故答案为:(1,).15.【解答】解:∵抛物线y=ax2﹣4ax﹣3(其中a>0,a为常数),∴对称轴为直线x=﹣=2,∴当4≤x<5时,y随x的增大而增大,∴当x=4时,y=﹣3,x=5时,y=5a﹣3,∵当4≤x<5时,对应的函数值y恰好有3个整数值,∴它的三个整数分别是﹣3,﹣2,﹣1,∴﹣1≤5a﹣3≤0,∴;故答案为:.三.解答题(共9小题)16.【解答】解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=[﹣2(m+1)]2﹣4×1×(m2﹣3)=16+8m>0,解得:m>﹣2;(2)根据根与系数的关系可得:x1+x2=2(m+1),∵(x1+x2)2﹣(x1+x2)﹣12=0,∴[2(m+1)]2﹣2(m+1)﹣12=0,解得:m1=1或m2=﹣(舍去)∵m>﹣2;∴m=1.17.【解答】解:(1)m2+10m﹣6=m2+5m+25﹣25﹣6=(m+5)2﹣31,∵(m+5)2≥0,∴(m+5)2﹣31≥﹣31,∴m2+10m﹣6的最小值是﹣31,故答案为:﹣31;(2)①设AB=x m,则BC=(24﹣2x)m,∵墙长15m,∴0<24﹣2x≤15,解得≤x<12,∴AB的取值范围是≤x<12.故答案为:≤x<12;②设花园的面积为S,由题意得:S=x(24﹣2x)=﹣2x2+24x=﹣2(x2﹣12x)=﹣2(x2﹣12x+36﹣36)=﹣2(x﹣6)2+72,∵﹣2(x﹣6)2≤0,∴﹣2(x﹣6)2+72≤72,∴当x=6时,S最大=72,答:当x=6时,花园的面积最大,最大面积是72平方米.18.【解答】解:(1)40+2×(60﹣50)=60(件).故答案为:60.(2)设每件商品降价x元,则每件盈利(60﹣x)元,平均每天可售出(40+2x)件,依题意得:(60﹣x)(40+2x)=3072,整理得:x2﹣40x+336=0,解得:x1=12,x2=28,又∵要尽快减少库存,∴x=28.答:每件商品应降价28元.19.【解答】解:(1)将x=2代入方程x2+ax+a﹣1=0得,4+2a+a﹣1=0,解得,a=﹣1;方程为x2﹣x﹣2=0,解得x1=﹣1,x2=2,即方程的另一根为1;(2)∵Δ=a2﹣4(a﹣1)=a2﹣4a+4=a2﹣4a+4=(a﹣2)2≥0,∴不论a取何实数,该方程都有实数根.20.【解答】解:(1)∵二次函数y=ax2+c的图象经过点(8,10),,∴,解得:,∴二次函数的表达式为y=+2;(2)过点P作P A⊥x轴于点A,PB⊥y轴于点B,如图,∵线段PF绕点P逆时针旋转90°得到PE,点E恰好落在x轴正半轴上,∴∠FPE=90°,PF=PE∴∠FP A+∠EP A=90°.∵作P A⊥x轴,PB⊥y轴,OF⊥OE,∴四边形APBO为矩形,∴∠APB=90°,∴∠BPF+∠FP A=90°,∴∠FPB=∠EP A.在△BPF和△APE中,,∴△BPF≌△APE(AAS),∴PB=P A.∴点P的横纵坐标相等,设P(m,m),∵点P为二次函数图象上一点,∴2=m,解得:m1=m2=4,∴点P的坐标为(4,4).21.【解答】解:(1)当x≥2时,y=x|x﹣2|=y=x(x﹣2)=x2﹣2x,∴当x=2时,y=0,当x=3时,y=3,当x=4时,y=8,补全此函数的图象如下:(2)根据图象,当1<x<2时,y随着x的增大而减小;(3)当y=1时,x2﹣2x=1,解得x=+1或﹣+1∴a的取值范围为1≤a≤.22.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4;(2)由(1)知,二次函数的顶点坐标为(1,﹣4),在将x=4代入二次函数解析式中的y=5.当0≤x≤4时,y的取值范围为:﹣4≤y<5.故答案为:﹣4≤y<5;(3)由(1)知,二次函数的顶点坐标为M(1,﹣4),由二次函数图象与x轴交于点B,所以x2﹣2x﹣3=0,得到点A(﹣1,0),由二次函数图象与y轴交于点C,所以点C(0,﹣3),所以三角形ACM的面积=×2×4﹣×(1+4)×1﹣×1×1=1.23.【解答】解:(1)设抛物线的表达式为:y=a(x﹣x1)(x﹣x2),则y=﹣(x+2)(x﹣4)=y=﹣x2+x+4,故抛物线的表达式为:y=﹣x2+x+4①;(2)存在,理由:过点C作直线l∥y轴交抛物线于点R,设∠ECR=α,则∠RCE=CBO=45°,即∠DCE=45°+α,由OB=OC=4知,∠OCB=∠OCB=45°,∵QD∥y轴,则∠DEC=∠OCB=∠ABC=45°,∵△CDE与△ABC相似,则∠DCE=∠ACB或∠CAB;①∠DCE=∠ACB时,∵∠ACB=∠ACO+∠BCO=∠ACO+45°,∠DCE=45°+α,∴∠ACO=α,∴tan∠ACO==tanα,故直线CD的表达式为:y=x+4②,联立①②得:﹣x2+x+4=x+4,解得:x=0(舍去)或1,即点D(1,4.5),则点Q(1,0);②∠DCE=∠CAB时,延长DC交x轴于点H,则∠CHO=∠DCE=α,∵∠OAC=∠ACH+∠AHC=α+∠ACH,∠DCE=45°+α,∴∠ACH=45°,在△ACH中,过点H作AC的垂线交CA的延长线于点M,∵tan∠HAM=tan∠CAO==2,设AM=m,则HM=2m,在等腰Rt△CMH中,HM=CM,即2m=m+,解得:m=2,在Rt△AMH中,AH==m=10,即点H(﹣12,0),由点C、H的坐标得,直线CH的表达式为:y=x+4③,联立①③得:﹣x2+x+4=x+4,解得:x=0(舍去)或,则点Q(,0)综上,点Q的坐标为:(,0)或(1,0);(3)存在,理由:设点D的坐标为(m,﹣m2+m),由点A、D的坐标得,直线AD的表达式为:y=﹣(m+4)(x+2),则点G(0,﹣m﹣4),同理可得,直线BC的表达式为:y=﹣x+4,则点E(m,﹣m+4),当以点C、D、G、E为顶点的四边形是平行四边形,则CG=DE,即4+m+4=|﹣m2+m+4+m﹣4|,解得:m=2或6,即点D(2,4)或D(6,﹣8).24.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C,∴点C(0,3)∴OA=OC=3,设点P(x,﹣x2﹣2x+3)∵S△P AO=2S△PCO,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若BC为边,且四边形BCFE是平行四边形,∴CF∥BE,∴点F与点C纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若BC为边,且四边形BCEF是平行四边形,∴BE与CF互相平分,∵BE中点纵坐标为0,且点C纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若BC为对角线,则四边形BECF是平行四边形,∴BC与EF互相平分,∵BC中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).。
第五节二次函数与一元二次方程、不等式课标要求1.会从实际情景中抽象出一元二次不等式,了解一元二次不等式的现实意义.2.结合二次函数的图象,会判断一元二次方程根的个数,以及二次函数的零点与一元二次方程根的关系.3.掌握利用二次函数的图象解一元二次不等式.必备知识·整合〔知识梳理〕1.一元二次不等式只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(a,b,c为常数,且a≠0).提醒解不等式ax2+bx+c>0(<0)时,不要忘记讨论当a=0时的情况.2.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b2−4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+ bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=−b2a没有实根ax2+bx+c>0(a> 0)的解集{x|x<x1或x>x2}{xx≠−b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}⌀⌀提醒a>0时的一元二次不等式的解法口诀:大于取两边,小于取中间. 知识拓展1.简单分式不等式(1)f(x)g(x)≥0(≤0)⇔{f(x)g(x)≥0(≤0),g(x)≠0.(2)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0).2.不等式ax2+bx+c>0(<0)恒成立的条件要结合其对应的函数图象决定.(1)不等式ax2+bx+c>0对任意实数x恒成立⇔{a=b=0, c>0或{a>0,Δ<0.(2)不等式ax2+bx+c<0对任意实数x恒成立⇔{a=b=0,c<0或{a<0,Δ<0.〔课前自测〕1. 概念辨析(正确的打“√”,错误的打“×”).(1)ax2+bx+c<0为一元二次不等式.( × )(2)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( × )(3)如果二次函数y=ax2+bx+c的图象开口向下,那么不等式ax2+bx+ c<0的解集一定不是空集.( √ )(4)x−ax−b≥0等价于(x−a)(x−b)≥0.( × )2. [2020全国Ⅰ,1,5分]已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=( D )A. {−4,1}B. {1,5}C. {3,5}D. {1,3}[解析]由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},因为B={−4,1,3,5},所以A∩B={1,3}.3. [2021辽宁大连质检]若不等式ax2+bx+2>0的解集为{x−12<x<13},则a−b的值是( A )A. −10B. −14C. 10D. 144. 易错题不等式(x−2)(3−2x)≥0的解集为( B )A. (32,+∞) B. [32,2] C. [2,+∞) D. (−∞,32][解析]由(x−2)(3−2x)≥0,得(x−2)(2x−3)≤0,解得32≤x≤2,故原不等式的解集为[32,2].易错提醒本题容易忽视二次项的符号致错.5. (新教材改编题)若关于x的不等式x2−2ax+18>0恒成立,则实数a的取值范围为(−3√2,3√2).[解析]由题意得4a2−4×18<0,解得−3√2<a<3√2.关键能力·突破考点一一元二次不等式的解法角度1 简单分式不等式的解法例1≥0的解集为( C )(1)不等式1−x2+xA. [−2,1]B. (−∞,−2)∪(1,+∞)C. (−2,1]D. (−∞,−2]∪(1,+∞)≥2的解集为( B )(2)[2022山东烟台二中模拟]不等式3x−2x+3A. (−∞,−3]∪[8,+∞)B. (−∞,−3)∪[8,+∞)C. (−3,8]D. (−∞,−3)∪(8,+∞)−2≥0,[解析]原不等式可化为3x−2x+3≥0,即(x−8)(x+3)≥0且x+3≠0,即x−8x+3∴x<−3或x≥8.所以原不等式的解集为(−∞,−3)∪[8,+∞).方法感悟将分式不等式进行同解变形,利用不等式的同解原理将其转化为整式不等式(组)即可求解.角度2 不含参数的不等式的解法例2(1)[2022重庆八中模拟]已知集合A={3,8},B={x|x2−x−6≤0},则A∩(∁R B)=( B )A. {3}B. {8}C. {−2,3,8}D. {−2}[解析]由x2−x−6≤0,得−2≤x≤3,则B ={x|x 2−x −6≤0}=[−2,3],∁R B ={x|x <−2或x >3} ,则A ∩(∁R B)={8} .(2) [2022广东潮州月考]不等式0<x 2−x −2≤4 的解集为{x|−2≤x < −1或2<x ≤3} .[解析]原不等式等价于{x 2−x −2>0,x 2−x −2≤4,即{x 2−x −2>0,x 2−x −6≤0,即{(x −2)(x +1)>0,(x −3)(x +2)≤0,解得{x >2或x <−1,−2≤x ≤3. 借助数轴,如图所示,原不等式的解集为{x|−2≤x <−1或2<x ≤3} .方法感悟解一元二次不等式的步骤角度3 含参数的不等式的解法例3 解关于x的不等式ax2−2≥2x−ax(a∈R).[答案]原不等式可化为ax2+(a−2)x−2≥0.①当a=0时,原不等式可化为x+1≤0,解得x≤−1.②当a>0时,原不等式可化为(x−2a )(x+1)≥0,解得x≥2a或x≤−1.③当a<0时,原不等式化为(x−2a)(x+1)≤0.当2a >−1,即a<−2时,解得−1≤x≤2a;当2a=−1,即a=−2时,解得x=−1;当2a <−1,即−2<a<0时,解得2a≤x≤−1.综上所述,当a=0时,不等式的解集为{x|x≤−1};当a>0时,不等式的解集为{x|x≥2a 或x≤−1};当−2<a<0时,不等式的解集为{x|2a≤x≤−1};当a=−2时,不等式的解集为{−1};当a<−2时,不等式的解集为{x|−1≤x≤2a}.方法感悟含参数的一元二次不等式的解题策略(1)二次项中若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式;(2)当不等式对应方程的根的个数不确定时,需要讨论判别式Δ与0的关系;(3)确定无根时可直接写出解集,确定方程有两个根时,需要讨论两根的大小关系,从而确定解集的形式.1. [2023广东湛江模拟]已知全集U=R,集合A={x|2x2−3x−2<0,x∈R},B={x12<x<3},则(∁U A)∩B=( B )A. (12,1)∪(1,3) B. [2,3) C. {0,1} D. {1}[解析]由2x2−3x−2=(2x+1)(x−2)<0,得−12<x<2,所以A={x−12<x<2},则∁U A={xx≤−12或x≥2},又B={x12<x<3},则(∁U A)∩B={x|2≤x<3}=[2,3).2. [2023山东济南一模]不等式x−12x+1≥0的解集为(−∞,−12)∪[1,+∞).[解析]x−12x+1≥0⇒{(x−1)(2x+1)≥0,2x+1≠0⇒x≥1或x<−12.3. 求不等式12x2−ax>a2(a∈R)的解集. [答案]原不等式可化为12x2−ax−a2>0,即(4x+a)(3x−a)>0,令(4x+a)(3x−a)=0,解得x1=−a4,x2=a3.当a>0时,不等式的解集为{x<x−a4或x>a3};当a=0时,不等式的解集为{x|x≠0};当a<0时,不等式的解集为{x|x<a3或x>−a4}.考点二三个两次的关系例4 [2021广东东莞高三期末]多选题若不等式ax2−bx+c>0的解集是(−1,2),则( AD )A. 相应的一元二次函数的图象开口向下B. b >0 且c >0C. a +b +c >0D. 不等式ax 2−cx +b ≤0 的解集是R[解析]由题意知a <0 ,所以A 正确;由题意可得−1 ,2是方程ax 2−bx +c =0 的两个根,所以{−1+2=ba ,−1×2=c a ,所以{b =a,c =−2a ,得b <0,c >0 ,所以B 不正确;因为−1 是方程ax 2−bx +c =0 的根,所以把x =−1 代入方程得a +b +c =0 ,所以C 不正确;把b =a ,c =−2a 代入不等式ax 2−cx +b ≤0 ,可得ax 2+2ax +a ≤0 ,因为a <0 ,所以x 2+2x +1≥0 ,此时不等式的解集为R ,所以D 正确. 方法感悟(1)一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.(2)给出一元二次不等式的解集,相当于知道了相应一元二次函数的图象开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.4. 已知关于x 的不等式ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,则不等式cx 2+bx +a <0 的解集是( A ) A. {x −1<x <12} B. {x <x −1或x >12} C. {x −12<x <1}D. {x <x −12或x >1}[解析]因为ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,所以−1 ,2是方程ax 2+bx +c =0 的两实数根,且a <0 ,由根与系数的关系得{−1+2=−ba ,−1×2=ca , 所以b =−a ,c =−2a ,所以不等式cx 2+bx +a <0⇒−2ax 2−ax +a <0 ,即2x 2+x −1<0 ,解得−1<x <12 ,故不等式cx 2+bx +a <0 的解集为{x −1<x <12} .考点三 一元二次不等式恒成立问题角度1 在R 上的恒成立问题例5 不等式ax(x +1)−1<0 对任意x ∈R 恒成立,则实数a 的取值范围是 (−4,0] .[解析]由ax(x +1)−1<0 ,得ax 2+ax −1<0 .当a =0 时,−1<0 恒成立;当a ≠0 时,有{a <0,Δ=a 2+4a <0⇒−4<a <0 .综上所述,实数a 的取值范围是(−4,0] .角度2 在给定区间上的恒成立问题例6 [2022广东深圳月考]若对于任意的x ∈[0,2] ,不等式x 2−2x +a >0 恒成立,则a 的取值范围为( B ) A. (−∞,1)B. (1,+∞)C. (0,+∞)D. [1,+∞)[解析]不等式x 2−2x +a >0 可化为a >−x 2+2x ,设f(x)=−x 2+2x ,x ∈[0,2] ,则f(x)=−(x −1)2+1 ,当x =1 时,f(x)max =f(1)=1 ,所以实数a 的取值范围是(1,+∞) .角度3 给定参数范围的恒成立问题例7 若mx2−mx−1<0对任意m∈[1,2]恒成立,则实数x的取值范围是(1−32,1+32).[解析]设g(m)=mx2−mx−1=(x2−x)m−1,其图象是直线,当m∈[1,2]时,图象为一条线段,则{g(1)<0, g(2)<0,即{x2−x−1<0, 2x2−2x−1<0,解得1−√32<x<1+√32,故x的取值范围为(1−√32,1+√32).方法感悟(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.(2)一元二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.对第一种情况,恒大于0就是相应的二次函数的图象全部在x轴上方,恒小于0就是相应的二次函数的图象全部在x轴下方;对第二种情况,要充分结合函数图象进行分类讨论(也可采用分离参数的方法求解).5. 函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;[答案]当x∈R时,x2+ax+3−a≥0恒成立,只需Δ=a2−4(3−a)≤0,即a2+4a−12≤0,解得−6≤a≤2,∴实数a的取值范围是[−6,2].(2)当x∈[−2,2]时,f(x)≥a恒成立,求实数a的取值范围;[答案]由题意,可得x2+ax+3−a≥0在[−2,2]上恒成立,令g(x)=x2+ ax+3−a,则有①g(x)中Δ≤0或②{Δ>0,−a2<−2,g(−2)=7−3a≥0或③{Δ>0,−a2>2,g(2)=7+a≥0,解①得−6≤a≤2,解②得无实数解,解③得−7≤a<−6.综上可得,满足条件的实数a的取值范围是[−7,2].(3)当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围. [答案]令ℎ(a)=xa+x2+3.当a∈[4,6]时,ℎ(a)≥0恒成立,只需{ℎ(4)≥0,ℎ(6)≥0,即{x2+4x+3≥0, x2+6x+3≥0,解得x≤−3−√6或x≥−3+√6.∴实数x的取值范围是(−∞,−3−√6]∪[−3+√6,+∞).考点四一元二次方程根的分布例8 [2023湖南益阳开学考]已知关于x的二次方程x2+2mx+2m+1=0. [解析]设函数f(x)=x2+2mx+2m+1.(1)若方程有两根,其中一根在区间(−1,0)内,另一根在区间(1,2)内,求m 的取值范围;[答案]易知f(x)的图象与x轴的交点分别在区间(−1,0)和(1,2)内,画出示意图,得{ f(0)=2m +1<0,f(−1)=2>0,f(1)=4m +2<0,f(2)=6m +5>0,∴{m <−12,m ∈R m <−12,m >−56,∴−56<m <−12 .(2) 若方程两根均在区间(0,1) 内,求m 的取值范围.[答案]易知f(x) 的图象与x 轴的交点在区间(0,1) 内,画出示意图,得{ f(0)>0,f(1)>0,Δ≥0,0<−m <1,∴{ m >−12,m >−12,m ≥1+√2或m ≤1−√2,−1<m <0,∴−12<m ≤1−√2 .方法感悟一元二次方程根的分布一般要考虑以下几点: (1)一元二次函数图象的开口方向; (2)一元二次函数对应方程的根的判别式;(3)一元二次函数图象的对称轴与区间的关系; (4)一元二次函数在区间端点处函数值的符号.6. [2023广东茂名期中]已知方程2x 2−(m +1)x +m =0 有两个不等的正实根,则实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) . [解析]设f(x)=2x 2−(m +1)x +m , 由{Δ>0,−−(m+1)2×2>0,f(0)>0,得{(m +1)2−8m >0,m >−1,m >0,∴{m <3−2√2或m >3+2√2,m >−1,m >0,∴0<m <3−2√2 或m >3+2√2 ,即实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) .分层突破训练 基础达标练1. 不等式−x 2+3x +10>0 的解集为( A ) A. (−2,5) B. (−∞,−2)∪(5,+∞) C. (−5,2)D. (−∞,−5)∪(2,+∞)[解析]由x 2−3x −10<0 ,解得−2<x <5 .2. 多选题 下列不等式的解集为R 的是( BC ) A. x 2+2√5x +5>0 B. x 2+6x +10>0 C. −x 2+x −2<0D. 2x 2−3x −3<0[解析]对于A 选项,x 2+2√5x +5=(x +√5)2>0 ,故解集为{x|x ≠−√5} ; 对于B 选项,x 2+6x +10=(x +3)2+1>0 ,解集为R ; 对于C 选项,−x 2+x −2=−(x −12)2−74<0 ,解集为R ;对于D 选项,2x 2−3x −3<0 ,对应的二次函数图象开口向上,Δ=9−4×2×(−3)=33>0 ,故不等式的解集不是R .故选BC.3. [2023山东东营模拟]设x ∈R ,则“x ≤3 ”是“x 2≤3x ”的( B ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件[解析]由x 2≤3x ,得0≤x ≤3 ,所以“x ≤3 ”是“x 2≤3x ”的必要不充分条件.4. [2022江苏南通模拟]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,则实数a 的取值范围是( A ) A. (−∞,−2]B. (−∞,−2)C. (−∞,0]D. (−∞,0)[解析]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,故Δ=(−2)2+4(1+a)≤0 ,解得a ≤−2 ,故实数a 的取值范围是(−∞,−2] . 5. [2022湖北华中师大一附中模拟]不等式2x+1≤1 的解集是( A ) A. (−∞,−1)∪[1,+∞) B. (−∞,−1]∪[1,+∞) C. (−∞,−1)D. (−1,1)[解析]原不等式可化为2x+1−1≤0 ,即x−1x+1≥0 ,得(x −1)(x +1)≥0 且x +1≠0 ,得x <−1 或x ≥1 ,所以原不等式的解集为(−∞,−1)∪[1,+∞) . 6. [2022天津耀华中学模拟]对于任意实数x ,不等式(a −1)x 2−2(a −1)x −4<0 恒成立,则实数a 的取值范围是( D ) A. (−∞,3)B. (−∞,3]C. (−3,1)D. (−3,1][解析]当a =1 时,−4<0 恒成立; 当a ≠1 时,有{a −1<0,Δ<0, 解得−3<a <1 .综上,实数a 的取值范围是(−3,1] .7. 已知二次函数f(x)=(m +2)x 2−(2m +4)x +3m +3 的图象与x 轴有两个交点,一个大于1,一个小于1,则实数m 的取值范围为(−2,−12) . [解析]由题意得,(m +2)⋅f(1)<0 , 即(m +2)⋅(2m +1)<0 , ∴−2<m <−12 ,即m 的取值范围为(−2,−12) .8. [2023辽宁丹东期末]某种杂志以每本2.5 元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0.1 元,销售量就可能减少2 000本.要使提价后的销售总收入不低于20万元,则定价的最大值为4元.[解析]设定价为x 元,销售总收入为y 元,由题意得,y =(80 000−x−2.50.1×2 000)x =−2 0000x 2+130 000x ,因为要使提价后的销售总收入不低于20万元,所以y =−20 000x 2+130 000x ≥200 000 ,解得52≤x ≤4 ,所以要使提价后的销售总收入不低于20万元,则定价的最大值为4元.9. [2023河北保定模拟]已知集合A ={x ∈R ||x +2|<3} ,集合B ={x ∈R ∣x−m x−2<0} ,且A ∩B =(−1,n) ,则m = −1 ,n = 1.[解析]A ={x ∈R ||x +2|<3}={x|−5<x <1} ,B ={x ∈R ∣x−m x−2<0}={x ∣(x −m)(x −2)<0} ,因为A ∩B =(−1,n) ,所以−1 是方程(x −m)(x −2)=0 的根,则−1−m =0 ,解得m =−1 ,所以B ={x|−1<x <2} ,A ∩B =(−1,1) ,则n =1 .10. [2022广东化州第三中学月考]已知集合A ={−5,−1,2,4,5} ,请写出一个一元二次不等式,使得该不等式的解集与集合A 有且只有一个公共元素,这个不等式可以是(x +4)(x −6)>0 (答案不唯一).[解析]不等式(x +4)(x −6)>0 的解集为{x|x >6或x <−4} ,解集中只有−5 在集合A 中.11. [2021江西南昌莲塘第一中学模拟]已知f(x)=−3x 2+a(6−a)x +6 . (1) 解关于a 的不等式f(1)>0 ; [答案]∵f(x)=−3x 2+a(6−a)x +6 , ∴f(1)=−3+a(6−a)+6=−a 2+6a +3 , ∴ 原不等式可化为a 2−6a −3<0 , 解得3−2√3<a <3+2√3 .∴ 原不等式的解集为{a|3−2√3<a <3+2√3} .(2) 若不等式f(x)>b 的解集为(−1,3) ,求实数a ,b 的值.[答案]f(x)>b 的解集为(−1,3) 等价于方程−3x 2+a(6−a)x +6−b =0 的两根为−1 ,3, 即{−1+3=a(6−a)3,−1×3=−6−b3,解得{a =3±√3,b =−3.能力强化练12. [2022重庆南开中学模拟]三位同学合作学习,对问题“已知不等式xy ≤ax 2+2y 2 对任意x ∈[1,2] ,y ∈[2,3] 恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析.” 乙说:“寻找x 与y 的关系,再进行分析.” 丙说:“把字母a 单独放在一边,再进行分析.”参考上述思路,或自己的其他解法,可求出实数a 的取值范围是( B ) A. [1,+∞)B. [−1,+∞)C. [−1,4)D. [−1,6][解析]选择用丙的方法.因为xy ≤ax 2+2y 2 ,x ∈[1,2] ,y ∈[2,3] , 所以xy −2y 2≤ax 2 等价于xy−2y 2x 2≤a ,即yx −2(yx )2≤a . 令y x =t ,则t ∈[1,3] .原式化为t −2t 2≤a 对任意t ∈[1,3] 恒成立,因为t −2t 2=−2(t −14)2+18 ,所以当t =1 时,(t −2t 2)max =−1 . 所以−1≤a ,即a ∈[−1,+∞) . 故选B.13. [2022重庆质量检测]若方程x 2+(m −2)x +6−m =0 的两根都大于2,则m 的取值范围是(−6,−2√5] .[解析]令f(x)=x 2+(m −2)x +6−m ,其图象的对称轴方程为x =2−m 2,由题意得,{2−m2>2,f(2)>0,Δ≥0,即{2−m2>2,4+2m −4+6−m >0,(m −2)2−4(6−m)≥0,解得−6<m ≤−2√5 ,故m 的取值范围是(−6,−2√5] .14. [2023江苏南京二模]已知定义在R 上的奇函数f(x) 满足f(1−x)+f(1+x)=2 ,当x ∈[0,1] 时,f(x)=2x −x 2 ,若f(x)≥x +b 对一切x ∈R 恒成立,则实数b 的最大值为−14 .[解析]因为f(1+x)+f(1−x)=2 ,所以f(x) 的图象关于点(1,1) 中心对称, 当x ∈[−1,0] 时,f(x)=−f(−x)=x 2+2x ,作出f(x) 的图象和直线y =x +b ,如图所示,结合图象可得,只需当x ∈[−1,0] 时,f(x)=x 2+2x ≥x +b 即可, 即b ≤(x +12)2−14 , 故b ≤−14 .故b的最大值为−1.415. 某地区上年度电价为0.8元/kW⋅h,年用电量为a kW⋅h.本年度计划将电价降到0.55元/kW⋅h至0.75元/kW⋅h之间,而用户期望电价为0.4元/kW⋅h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW⋅h.(1)写出本年度电价下调后,电力部门的收益y(元)与实际电价x(元/kW⋅h)的函数关系式;kW⋅h,∴下调电价后的总用电量为(a+ [答案]下调电价后新增的用电量为kx−0.4k)kW⋅h,x−0.4)(x−0.3)(0.55≤x≤0.75).∴y=(a+kx−0.4(2)设k=0.2a,问:电价最低定为多少时,仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价−成本价).)(x−0.3)≥a×(0.8−0.3)×(1+20%),0.55≤x≤[答案]由已知得(a+0.2ax−0.40.75,整理得x2−1.1x+0.3≥0,0.55≤x≤0.75,解得0.60≤x≤0.75.故电价最低定为0.60元/kW⋅h时,仍可保证电力部门的收益比上年度至少增长20%.+b,关于x的不等式xf(x)<0的解集为(1,3). 16. 已知函数f(x)=x+ax(1)求实数a,b的值;[答案]因为关于x的不等式xf(x)<0的解集为(1,3),所以不等式x2+bx+a<0的解集为(1,3),所以{1+3=−b,1×3=a,解得{a=3,b=−4,所以f(x)=x+3x−4.(2)求关于x的不等式xf(x)<(m−3)(x−1)(m∈R)的解集;[答案]由xf(x)<(m−3)(x−1)(m∈R),得x2+3−4x<(m−3)(x−1),即x2−(m+1)x+m<0,即(x−1)(x−m)<0.所以当m<1时,不等式的解集为(m,1);当m=1时,不等式无解;当m>1时,不等式的解集为(1,m).(3)若不等式f(2x)−k⋅2−x−2k≥0在R上恒成立,求实数k的取值范围.[答案]令t=2x(t>0),则f(t)−kt−2k≥0在(0,+∞)上恒成立,即t+3t −4−kt−2k≥0在(0,+∞)上恒成立,即t 2−(2k+4)t+3−kt≥0在(0,+∞)上恒成立,即t2−(2k+4)t+3−k≥0在(0,+∞)上恒成立,令g(t)=t2−(2k+4)t+3−k.当2k+42≤0,即k≤−2时,g(t)图象的对称轴在y轴的左侧,所以g(0)=3−k≥0,即k≤3,所以k≤−2;当2k+42>0 ,即k >−2 时,g(t) 图象的对称轴在y 轴的右侧,则Δ=(2k −4)2−4(3−k)≤0 ,所以3−√52≤k ≤3+√52 .综上,k ≤−2 或3−√52≤k ≤3+√52 .素养综合练17. [2022河北石家庄二中模拟]若函数f(x) 满足对任意的x ∈[n,m](n <m) ,都有n k ≤f(x)≤km 成立,则称函数f(x) 在区间[n,m](n <m) 上是“被k 约束的”.若函数f(x)=x 2−ax +a 2 在区间[1a ,a](a >0) 上是“被2约束的”,则实数a 的取值范围是( A )A. (1,2]B. (1,√323]C. (1,√2]D. (√2,2] [解析]由题意得12a ≤x 2−ax +a 2≤2a 对任意的x ∈[1a ,a](a >0) 都成立.由a >1a 且a >0 ,得a >1 ,则f(1a )=1a 2−1+a 2>2−1=1>12a 恒成立. 由f(a)=a 2−a 2+a 2=a 2≤2a ,且a >1 ,得1<a ≤2 .因为a >1 ,所以f(1a )=1a 2−1+a 2<1−1+a 2=a 2 .f(x)=x 2−ax +a 2 图象的对称轴方程为x =a 2 ,由f(a 2)=3a 24≥12a , 得a ≥√233 .因为√233<1 ,所以a 的取值范围为(1,2] .故选A.。
吉林省第二实验学校2024-2025学年九年级上学期第一次月考数学试题一、单选题1.根据有理数减法法则,计算()23--过程正确的是( ) A .()23+-B .()32+-C .()23-+D .23+2.如图所示的几何体,它的俯视图是( )A .B .C .D .3.如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A .80°B .50°C .30°D .20°4.下列运算一定正确的是( ) A .339a a a ⋅= B .235a a a ⋅= C .()22ab ab =D .()235a a =5.若a b >,则下列不等式中成立的是( ) A .55-<-a b B .55a b< C .55a b +>+D .a b ->-6.许多大型商场购物中心为了引导人流前往目标楼层,会考虑使用“飞梯”(可以跨楼层抵达的超高超长的自动扶梯).上海大悦城的“飞梯”从3层直达7层,“飞梯”的截面如图,AB的长为50米,AB 与AC 的夹角为24︒,则高BC 是()A .50sin24︒米B .50cos24︒米C .50sin24︒米 D .50cos24︒米 7.如图,在ABC V 中,90ACB ∠=︒.小聪同学利用直尺和圆规完成了如下作图: ①分别以点,A B 为圆心,以大于12AB 长为半径画弧,两弧交于点,M N ,过点,M N 作直线与AB 交于点D ;②连接CD ,以点D 为圆心,以一定长为半径画弧,交MN 于点E ,交CD 于点F ,以点C 为圆心,以同样定长为半径画弧,与CD 交于点G ,以点G 为圆心,以EF 长为半径画弧与前弧交于点H .作射线CH 与AB 交于点K . 请根据以上操作,下列结论不一定成立的是( )A .CDM DCK ∠=∠B .CK 平分ACD ∠C .MN 垂直平分ABD .90CKD ∠=︒8.如图,在平面直角坐标系中,直线4y kx =+与y 轴交于点C ,与反比例函数my x=,在第一象限内的图像交于点B ,连接OB ,若4OBC S =V ,1tan 3BOC ∠=,则m 的值是( )A .6B .8C .10D .12二、填空题9.单项式22ax -的系数是.10.11.若抛物线22y x x k =-+和x 轴有交点,则k 的取值范围是.12.如图,一次函数y ax b =+与x 轴、y 轴分别交于A 、B 两点,()3,0A 、()0,2B ,那么不等式2ax b +<的解集为.13.如图,A ,B 是O e 上的两点,OA OB ⊥,点C 在优弧»AB 上,则ACB ∠=度.14.二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线1x =-,则下列结论中: ①0abc >;②2am bm a b +≤-(m 为任意实数); ③31a c +<;④若()()12,,M x y N x y 、是抛物线上不同的两个点,则121x x +=-. 其中正确的结论有.三、解答题15.先化简,再求值:21111x x x -⎛⎫-⋅⎪+⎝⎭,其中1x = 16.如图,在平面直角坐标系中,O 为坐标原点,C e 经过点O ,且与两坐标轴分别交于点A 与点B ,点A 的坐标为 0,4 ,M 是圆上一点,135BMO ∠=︒.(1)求ABO ∠的度数. (2)圆心C 的坐标为______.17.有甲、乙两种车辆参加来宾市“桂中水城”建设工程挖渠运土,已知5辆甲种车和4辆乙种车一次可运土共140立方米,3辆甲种车和2辆乙种车一次可运土共76立方米.求甲、乙两种车每辆一次可分别运土多少立方米?18.函数21115424y x x =-++的图象如图所示,结合图象回答下列问题:(1)方程211150424x x -++=的两个根为1x =______,2x =______;(2)当0y >时,则x 的取值范围为______;当32x -<<时,自变量y 的取值范围为______; (3)若方程21115424x x k -++=有实数根,k 取值范围是______.19.如图,已知AB 是O e 的直径,弦AC 平分DAB ∠,过点C 作直线CD ,使得CD AD ⊥于D .(1)求证:直线CD与Oe相切;(2)若3AD=,AC=AB的长.20.图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A B、均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作格点图形.(1)在图①中,作ABCV,使其面积为32;(2)在图②中,作ABD△,使其面积为2;(3)在图③中,作四边形ABEF,使其是轴对称图形且面积为3.21.“绿色出行,低碳环保”,共享电动车是一种新理念下的交通工具,现有甲、乙两种品牌的共享电动车,收费标准y(元)与骑行时间x(分)之间的函数关系如图所示,请根据图象信息,解答下列问题:(1)甲品牌共享电动车每分钟收费_____________元.(2)当骑行时间不低于10分钟时,求乙品牌共享电动车y与x之间的函数关系式.(3)已知两种品牌共享电动车的平均行驶速度均为20/hkm,若小明需要骑行共享电动车去上班,小明家到单位的距离为6km ,请通过计算帮小明选择哪个品牌的共享电动车更省钱. 22.【问题原型】如图1,线段AB 是O e 一条弦,2AB =,点D 在O e 上,30ADB ∠=︒,求O e 的半径长.小元的解法如下,请你帮他补全适当的理由:解:连结BO 并延长交O e 于点C ,连结AC ,BC Q 为O e 直径,点A 在圆上,90CAB ∴∠=︒,(______)»»AB AB =Q ,30ACB ADB ∴∠=∠=︒,(______)∴在Rt ABC △中,30ACB ∠=︒, 1sin 2C ∴∠=, 12AB BC =∴. 2AB =Q .4BC ∴=, 2OB ∴=.即O e 的半径长为2. 【逆向思考】如图2,线段AB 是O e 一条弦,若C 、D 在AB 的异侧,60ADB ∠=︒,O e 的半径为1,求弦AB 的长.【模型应用】如图3,P 为ABC V 边BC 上一点,以AP 为直径作圆,交直线AB 于点E ,交直线AC 于点F ,连结EF .30B ∠=︒,15C ∠=︒,AB x =,则线段EF 的最小值为______(有含x 的代数式表示).23.如图,在ABC V 中,7AB =,5AC =,3tan 4A ∠=,点P 为边AC 上一点,当点P 不与点A 重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右侧作正方形PQMN .(1)tan B ∠=______;(2)当QBC △是等腰直角三角形时,求线段AP 的长; (3)连接BN ,求线段BN 的最小值;(4)连接PM QC 、,设线段PM 与线段QC 交点为O ,当点O 为线段QC 的三等分点时,直接写出此时的线段AP 的长.24.在平面直角坐标系中,二次函数2y x bx c =++(b c 、为常数)经过点()0,3-和点()3,0,点P 是抛物线上一动点,其横坐标为m ,过点P 作x 轴垂线交直线2y x =于点Q ,分别作点P Q 、关于y 轴的对称点N M 、,构造矩形PQMN .(1)求此二次函数的解析式.(2)当抛物线顶点落在矩形PQMN的边上时,求矩形PQMN的面积.(3)当抛物线在矩形内部的图象y随x的增大而减小时,求m的取值范围.(4)抛物线在矩形内部(包括边界)的最高点与最低点的纵坐标之和的绝对值为2时,直接写出m的值.。
广东省湛江二中2013-2014学年八年级9月月考语文试题一、积累与运用(20分)1.下列词语中加点字的读音,完全正确的一项是()(2分)A、匀称.(chèn g)惟妙惟肖.(qiào)B、河堤.(tī) 矗.立(chù)C、纤.(qiān)维推崇.(chóng)D、模.(mú)样庸俗.(sú)2.请选出下列句子中没有语病的一项()(2分)A.面对人生的不如意,一个人所要做的,就是尽量改变自己能够改变的部分。
B.《富春山居图》描绘的富春江两岸初秋的山光水色,被誉为中国十大传世名画之一。
C.国家质检总局发布了全面暂停进口台湾方面通报的问题产品。
D.深圳大学城体育中心在设计上结合了充分的地形地貌特点。
3.从下面备选词语中选用两个或两个以上的词语,至少运用一种修辞手法,写一段描写某人神态动作的话。
(80字之内)(4分)凝视憔悴来势汹汹张皇失措磨磨蹭蹭镇定自若手舞足蹈4、名著导读(6分)阅读下列文段,回答后面问题。
因为东关离城远,大清早大家就起来。
昨夜预定好的三道明瓦窗的大船,已经泊在河埠头,船椅、饭菜、茶炊、点心盒子,都在陆续搬下去了。
我笑着跳着,催他们要搬得快。
忽然,工人的脸色很谨肃了,我知道有些蹊跷,四面一看,父亲就站在我背后。
“去拿你的书来。
”他慢慢地说。
这所谓“书”,是指我开蒙时候所读的《鉴略》。
因为我再没有第二本了。
我们那里上学的岁数是多拣单数的,所以这使我记住我其时是七岁。
我忐忑着,拿了书来了。
他使我同坐在堂中央的桌子前,教我一句一句地读下去。
我担着心,一句一句地读下去。
两句一行,大约读了二三十行罢,他说:——“给我读熟。
背不出,就不准去看会。
”他说完,便站起来,走进房里去了。
我似乎从头上浇了一盆冷水。
但是,有什么法子呢?自然是读着,读着,强记着,——而且要背出来。
“粤有盘古,生于太荒首出御世,肇开混茫。
”就是这样的书,我现在只记得前四句,别的都忘却了;那时所强记的二三十行,自然也一齐忘却在里面了。
广东省湛江市吴川市广大实验学校2023-2024学年九年级上学期期末数学试题一、单选题1.关于x 的方程()21230m x x -+-=是一元二次方程,则m 的取值是( )A .23m >B .1m ≠C .任意实数D .1m ≠-2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.一元二次方程2330x x -+=根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根D .不能确定4.将抛物线22y x =向左平移1个单位长度,再向下平移3个单位长度,则所得图象的函数解析式是( ) A .()221y x =- B .()2213y x =-- C .()2213y x =+-D .()2213y x =-+5.半径为5的⊙O ,圆心在直角坐标系的原点O ,则点P (3,4)与⊙O 的位置关系是( ). A .在⊙O 上B .在⊙O 内C .在⊙O 外D .不能确定6.下列成语所描述的事件是必然发生的是( ) A .水中捞月B .拔苗助长C .守株待兔D .瓮中捉鳖7.广州南站到江门站距约84.3km 则动车由广州南站行驶到江门站所用时间y (小时)与行驶速度x (千米/时)之间的函数图象大致是( )A .B .C .D .8.如图,一次函数y ax b =+的图象与反比例函数ky x=的图象交于点()()232A B m -,,,,则不等式kax b x+>的解是( )A .30x -<<或2x >B .3x <-或02x <<C .20x -<<或2x >D .30x -<<或3x >9.如图,O e 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切O e 于点Q ,则PQ 的最小值为( )A B C .3 D .210.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =,下列结论:①<0abc ;②20a b +=;③420a b c ++<;④若13,2y ⎛⎫- ⎪⎝⎭,210,3y ⎛⎫ ⎪⎝⎭是抛物线上两点,则12y y <其中结论正确的是( )A .①②B .②③C .②④D .①②④二、填空题11.写出以14x =为其中一根的一个一元二次方程.(写出一个即可) 12.若反比例函数3k y x+=的图像径过点(3,2)-,则k 的值为. 13.二维码具有储存量大,保密性高,追踪性高,抗损性强,备援性大,成本便宜等特性,手机二维码已经被各大手机厂商使用开发.如图是一张边长为5cm 的正方形二维码的示意图,在正方形区域内随机掷点,通过大量重复试验,发现点落在黑色部分的频率稳定在0.7左右,由此可以估计该二维码黑色部分的总面积为2cm .14.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是步.15.对于两个不相等的实数a ,b ,我们规定符号{}max a b ,表示a ,b 中较大的数,如:{}max 133-=,.(1)方程{}22max 01x x +=-,的解为; (2)方程{}2max 21x x x -=,的解为.三、解答题16,其侧面展开图的圆心角为120°,则圆锥的母线长是 cm .17.解方程:3x (x -2)=4(2-x )18.如图,在平面直角坐标系中,ABC V 的三个顶点坐标分别为()1,4A ,()4,2B ,()3,5C ,(每个方格的边长均为1个单位长度).(1)请画出111A B C △,使111A B C △与ABC V 关于x 轴对称;(2)将ABC V 绕点O 逆时针旋转90︒,画出旋转后得到的222A B C △,并直接写出点2B 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路线长.(结果保留π)19.如图,PA ,PB 是O e 的切线,A ,B 为切点,AC 是O e 的直径,55ACB ∠=︒,求ABP ∠和P ∠的度数.20.如图,把一个直角三角形ACB 绕着30°角的顶点B 顺时针旋转,使得点A 与CB 的延长线上的点E 重合.(1)三角形旋转了多少度? (2)连接CD ,求BDC ∠的度数.21.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是 ;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A 、B 、C 、D 表示) 22.已知关于x 的方程220x ax a ++-=(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.23.如图,已知(4,)A n -,(2,4)-B 是一次函数y ax b =+的图象和反比例函数ky x=的图象的两个交点.(1)求反比例函数和一次函数的解析式; (2)求AOB V 的面积;(3)求不等式0kax b x+-<的解集(请直接写出答案).24.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米. (1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.25.如图抛物线212y x mx n =-++与x 轴交于A 、B 两点与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知()1,0A -,()0,2C .(1)求抛物线的表达式;(2)若在抛物线的对称轴上有一点P ,使PCD V 是以CD 为腰的等腰三角形,请直接写出所有符合条件的P 点坐标;(3)点F 是第一象限抛物线上的一个动点,当点F 运动到什么位置时,CBF V 的面积最大?求出CBF V 的最大面积及此时F 点的坐标.。
黑龙江省齐齐哈尔市龙江县部分学校联考2024-2025学年九年级上学期九月月考数学试题一、单选题1.下列方程中,是一元二次方程的个数有( )(12+2x +1=0;(2)21x +1x+2=0;(3)x 2-2x +1=0;(4)(a -1)x 2+bx +c =0;(5)x 2+x =4-x 2. A .2个 B .3个 C .4个 D .5个2.若a ,b 是方程2220160x x +-=的两根,则23a a b ++=( )A .2016B .2017C .2014D .20193.关于x 的方程x ²+mx +6=0的一个根为-2,则另一个根是( )A .-3B .-6C .3D .64.若二次函数()22y mx x m m =++-的图象经过原点,则m 的值为( )A .2B .1C .0或2D .1或2 5.一次函数(0)y ax b a =+≠与二次函数2(0)y ax bx a =+≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .6.2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .97.如图,已知抛物线2y ax c =+与直线y kx m =+交于()13,A y -,()21,B y 两点,则关于x 的不等式2ax c kx m ++≤的解集是( )A .31x -≤≤B .13x -≤≤C .1x ≥或3x ≤-D .3x ≥或1x ≤-8.二次函数2y ax bx c =++的图象的顶点坐标是()2,1,且图象与y 轴交于点()0,9.将二次函数2y ax bx c =++的图象以x 轴为对称轴进行折叠,则折叠后得到的函数解析式为( ) A .()2221y x =-+B .()2221y x =---C .()2221y x =-+-D .()2221y x =-++ 9.方程21(2)04m x -+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠ 10.已知二次函数2(0)y ax bx c a =++≠的图象如图,下列5个结论:①0abc <,②30a c +>,③420a b c ++<,④20a b +=,⑤24b ac >.其中正确的结论有( )A .2个B .3个C .4个D .5个二、填空题11.设1x ,2x 是方程2450x x +-=的两根,则1211x x +=. 12.函数()2323m m y m x +-=+为开口向下的抛物线,则m =.13.二次函数的267y x x =++图象向右平移2个单位长度后,再向上平移5个单位长度,平移后的图象对应的二次函数解析式为.14.已知二次函数()231y x k =-+的图象上三点A (2,1y ),B (3,2y ),C (﹣4,3y ),则1y 、2y 、3y 的大小关系是.15.若分式2781x x x --+的值是0,则x =. 16.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2024个图案中有白色六边形地面砖块.三、解答题18.解方程:(1)23520x x --=;(2)()3122x x x -=-.19.已知关于x 的方程21504x mx +-=. (1)求证:不论m 为何值,该方程总有两个不相等的实数根.(2)若方程有一个根是32-,求方程的另一个根和m 的值. 20.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m 2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m ,另外三面用69m 长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).求这个茶园的长和宽.21.某商店要销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨1元,月销售量就减少10千克.(1)写出月销售利润y(单位:元)与售价(单位:元/千克)之间的函数解析式。
湛江市2024届中考联考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.192.点P(﹣2,5)关于y轴对称的点的坐标为()A.(2,﹣5)B.(5,﹣2)C.(﹣2,﹣5)D.(2,5)3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE4.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.1785.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在()A.第一象限B.第二象限C.第三象限D.第四象限6.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104B.1.07×105C.1.7×104D.1.07×1047.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()A.()12n n+B.()22n n+C.()32n n+D.()42n n+8.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>09.矩形具有而平行四边形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对边相等10.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A.26°.B.44°.C.46°.D.72°二、填空题(本大题共6个小题,每小题3分,共18分)11.正六边形的每个内角等于______________°.12.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.13.计算(-2)×3+(-3)=_______________. 14.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 15.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 .16.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =_____.三、解答题(共8题,共72分)17.(8分)如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x 交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x 的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.18.(8分)如图,经过点C (0,﹣4)的抛物线2y ax bx c =++(0a ≠)与x 轴相交于A (﹣2,0),B 两点.(1)a 0, 0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.19.(8分)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .求证:AB =DC ;试判断△OEF 的形状,并说明理由.20.(8分)如图1,在四边形ABCD 中,AD ∥BC ,AB=CD=13,AD=11,BC=21,E 是BC 的中点,P 是AB 上的任意一点,连接PE ,将PE 绕点P 逆时针旋转90°得到PQ .(1)如图2,过A 点,D 点作BC 的垂线,垂足分别为M ,N ,求sinB 的值;(2)若P 是AB 的中点,求点E 所经过的路径弧EQ 的长(结果保留π);(3)若点Q 落在AB 或AD 边所在直线上,请直接写出BP 的长.21.(8分)解分式方程:- =22.(10分)如图,△ABC 中AB=AC ,请你利用尺规在BC 边上求一点P ,使△ABC ~△PAC 不写画法,(保留作图痕迹).23.(12分)(1)计算:|﹣3|162sin30°+(﹣12)﹣2 (2)化简:22222()x x y x y x y x y x y +--÷++-. 24.如图所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD . (1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】∵DE 垂直平分AC ,∴AD=CD ,AC=2EC=8,∵C △ABC =AC+BC+AB=23,∴AB+BC=23-8=15,∴C △ABD =AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.2、D【解题分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【题目详解】点(25)P ,关于y 轴对称的点的坐标为(25),, 故选:D .【题目点拨】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.3、B【解题分析】先证明四边形DBCE 为平行四边形,再根据矩形的判定进行解答.【题目详解】∵四边形ABCD 为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【题目点拨】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.4、B【解题分析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.5、B【解题分析】依题意在同一坐标系内画出图像即可判断.【题目详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【题目点拨】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.6、D【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:10700=1.07×104,故选:D.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、C【解题分析】由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=()32n n+.【题目详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=()32n n+个.【题目点拨】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.8、C【解题分析】分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.【题目详解】解:①a>1时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,②a<1时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,综上所述,表达式正确的是a(y1﹣y2)>1.故选:C.【题目点拨】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.9、C【解题分析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C.10、A【解题分析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【题目详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【题目点拨】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.二、填空题(本大题共6个小题,每小题3分,共18分)11、120【解题分析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.12、4【解题分析】试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等边△ABC的边长为6,∵EF∥BC,∴△ADE是等边三角形,∴EF=AE=2BE,∴EF==,故答案为4考点:等边三角形的判定与性质;平行线的性质.13、-9【解题分析】根据有理数的计算即可求解.【题目详解】(-2)×3+(-3)=-6-3=-9【题目点拨】此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.14、k>1【解题分析】根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.【题目详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-1>0,解得:k>1,故答案为:k>1.【题目点拨】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.15、0或1【解题分析】分析:需要分类讨论:①若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1是二次函数,根据题意得:△=4﹣4m=0,解得:m=1。
新疆乌鲁木齐市第126中学2024-2025学年九年级上学期第一次月考数学试题一、单选题1.下列方程是一元二次方程的是( )A .20ax bx c ++=B .20x =C .211x x +=D .22(1)1x x -+= 2.用配方法解方程2810x x -+=,变形后的结果正确的是( )A .()245x -=B .()2416x -= C .()347x -= D .()2415x -= 3.关于x 的方程24410x x -+=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根4.在长为30m ,宽为20m 的长方形田地中开辟三条宽度相等的道路,已知剩余田地的面积为2468m ,求道路的宽度.设道路的宽度为(m)x ,则可列方程( )A .(302)(20)468x x --=B .(202)(30)468x x --=C .302023020468x x ⨯-⋅-=D .(30)(20)468x x --=5.二次函数2y ax bx c =++的部分图象如图所示,可知方程20ax bx c ++=的一个根为5x =,则方程的另一个根为( )A .=1x -B .0x =C .1x =D .2x = 6.若()11,A y -,()21,B y ,()34,C y 三点都在二次函数()22y x k =--+的图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .132y y y <<C .312y y y <<D .321y y y << 7.一次函数y ax b =+与二次函数2y ax bx =+在同一坐标系中的图象大致为( ) A . B .C .D .8.某机械长今年生产零件50万个,计划明后两年共生产零件132万个,设该厂每年的平均增长率为x ,那么x 满足方程( )A .()2501132x +=B .()250132x +=C .()()2501501132x x +++=D .()()25015012132x x +++=9.二次函数2222y x x c c =--+-在32x -≤≤的范围内有最小值为5-,则c 的值( ) A .3或1- B .1- C .3-或1 D .3 10.对称轴为直线1x =的抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论:①0abc >,②24b ac <,③420a b c ++>,④30a c +>⑤当1x <时,y 随x 的增大而减小.其中结论正确为( )A .①②④B .①③⑤C .①②③D .①④⑤二、填空题11.二次函数()234y x =---的顶点坐标是.12.“六一”儿童节上,某小队建议每位同学向其他同学赠送1句祝福语,结果小队内共收到210句祝福语,设小队共有x 人,那么根据题意所列方程为.13.若抛物线222y x x k =-+-与x 轴有公共点,则k 的取值范围是.14.若αβ,是方程2220260x x +-=的两个实数根,则23ααβ++的值为.15.某段公路上汽车紧急刹车后前行的距离s (单位:m )关于行驶时间t (单位:s )的函数解析式是2305s t t =-,遇到刹车时,汽车从刹车后到停下来前进了m .16.如图,已知抛物线242y x x =-+-和线段MN ,点M 和点N 的坐标分别为()()0,4,5,4,将抛物线向上平移()0k k >个单位长度后与线段MN 仅有一个交点,则k 的取值范围是.三、解答题17.解下列方程:(1)()22118x +=;(2)2611x x -=;(3)23420x x --=;(4)()2155x x --=.18.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?19.如图,要使用长为27米的篱笆,一面利用墙(墙的最大可用长度为12米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为54平方米的花圃,那么AD 的长为多少米?(2)能否围成面积为90平方米的花圃?若能,请求出AD 的长;若不能,请说明理由. 20.2022年11月29日,神舟十五号发射升空,中国首次实现空间站三船三舱构型,以及6名航天员同时在轨驻留.某网店为满足航空航天爱好者的需求,特推出了“中国空间站”模型.已经知该模型平均每天可售出20个,每个盈利40元.为了扩大销售,该网店准备适当降价,经过一段时间测算,每个模型每降低1元,平均每天可以多售出2个.(1)若每个模型降价4元,平均每天可以售出多少个模型?此时每天获利多少元?(2)在每个模型盈利不少于25元的前提,要使“中国空间站”模型每天获利1200元,每个模型应降价多少元?21.已知二次函数2(0)y ax bx c a =++≠图象上部分点的横坐标x ,纵坐标y 的对应值如下表所示:(1)求二次函数的解析式及顶点坐标;(2)直接写出当0y >时,x 的取值范围.22.阅读下面的材料,回答问题.解方程:421090x x -+=.这是一个一元四次方程,它的解法通常是:设2x y =,那么42x y =,∴原方程可变为21090y y -+=.解得:1219y y ==,. 当11y =时,21x =,∴1x =±.当29y =时,29x =,∴3x =±.∴原方程有4个根:12341133x x x x ==-==-,,,.请参照例题解方程()()2223100x x x x -+--=. 23.如图,在平面直角坐标系中,二次函数2y x bx c =-++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C ,点A 在原点的左侧,点B 的坐标为()3,0,点P 是抛物线上一个动点.(1)求这个二次函数的解析式;(2)在抛物线上是否存在点P ,使得ABP V 的面积等于10.若存在,请求出点P 的坐标,若不存在,请说明理由.(3)若点P 在直线BC 的上方,当点P 运动到什么位置时,BPC V 的面积最大?请求出点P 的坐标.。
广东省湛江二中2013届高三第一次月考文科综合试题说明:1.本试卷共12页,共41小题,满分300分,考试时间150分钟。
2.答案须做在答题卷上,考试结束后只交答题卷。
一.选择题:本大题共35小题,每小题4分,共140分。
在每小题列出的四个选项中,只有一项是符合题目要求的。
下图中甲、乙两地的纬度相同,读图回答:1.b处气温比同纬度平原地区低的主要原因是()①到达b处的太阳辐射少②b处的地面辐射弱③b处大气吸收的地面辐射少④b处大气的保温效益差A.①② B.③④ C.①④ D.②④2.若右图为热力环流侧视图,则下列说法正确的是()A.温度:a>b>c>d B.气压:d>a>b>c C.引起该环流形成的原因是地面冷热不均D.热力环流是大气运动最复杂的形式3.右图是我国夏至日大连、太原、乌鲁木齐三地气温日变化图,则该图中的a、b、c三条曲线分别代表的城市是() A.大连、太原、乌鲁木齐B.太原、乌鲁木齐、大连C.太原、大连、乌鲁木齐D.乌鲁木齐、太原、大连4.右图中若该天气系统位于北京市正北方向时,北京市吹()A.东北风B.西北风C.东南风D.西南风5.实现海陆间水循环必须经过的途径是()①洋流②大气中的水汽输送③陆地上的径流输送④人类活动A.①② B.②③C.②③④ D.①④6.右图为一广阔海区的海面等温线图,该海区应是()A.处于北半球且有暖流流经B.处于北半球且有寒流流经C.处于南半球且有暖流流经D.处于南半球且有寒流流经下图为某科学考察队路线示意图,据此完成第7题。
7.航行途中记载的下列现象,不可信的是()A.水温和气温越来越高B.接近目的地时遇上热带气旋C.有时正午阳光照射时没有影子D.过日界线时日期将增加一天如图:北京时间2004年12月26日8时58分,印度尼西亚苏门答腊岛西北近海(3.9 °N、96°E)发生地震并引起海啸。
据此完成第8题:8.地震发生期间,印度东部沿岸的洋流流向是()A.从南往北流B.从西向东流C.从北向南流D.从东向西流9.关于外力作用的叙述,正确的是()A.我国西北地区,化学风化作用明显B.干旱地区的戈壁、裸岩荒漠是流水侵蚀作用的结果C.黄河三角洲是流水沉积作用的结果D.渭河谷地是一个巨大的向斜10.双河并流奇观与地质构造或地貌有关,试分析下图四幅图表示正确的是()A.甲 B.乙 C.丙 D.丁11.该“姊妹河”与塔里木河均在夏季进入汛期,原因是()A.均受夏季风影响 B.均受高温影响C.分别受夏季风和高温影响 D.分别受高温和夏季风影响12、唐代诗人林杰《乞巧》诗云:“七夕今宵看碧霄,牵牛织女渡河桥,家家乞巧望秋月,穿尽红丝几万条。
2023—2024学年度第一学期第一次质量自查试卷九年级数学(总分120分,120分钟)一、选择题(本大题共10小题,每题3分,共30分)1. 下列方程是一元二次方程的是 ( )A. 3x+1=0B. 5x 2-6y-3=0C. ax 2-x+2=0D. 3x 2-2x-1=0 2. 关于x 的方程20x k +=有实根,则( )A. 0k <B. 0k >C. 0k ≥D. 0k ≤ 3. 已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为( )A −2 B. 2 C. −4 D. 44. 一元二次方程()()250x x +−=的根是( ) A. 2− B. 5 C. 不能确定 D. 2−或5 5. 方程22690x x -+=的二次项系数、一次项系数、常数项分别为( )A. 6,2,9B. 2,6−,9C. 2,6−,9−D. 2,6,9 6. 如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是A. 2(1)2y x =−+B. 2(1)2y x =++C. 21y x =+D. 23y x =+7. 把方程2830x x +−=化成2()x m n +=的形式,则m ,n 的值分别是( ) A. 4,13 B. 4−,19 C. 4−,13 D. 4,19 8. 在设计人体雕像时,使雕像的上部与下部的高度比,等于下部与全部的高度比, 可以增加视觉美感.如果雕像高度为 2 m ,设雕像下部高为 x m ,则 x 满足( )A. x 2=2(2-x)B. (2-x)2=2xC. x 2=2(2+x)D. (2+x)2=2x9. 在实数范围内定义一种运算“*”,使2*a b a ab =−,则方程()2*50x +=的解为( ) A. 2x = B. 12x =−,23x =C. x =D. x = 10. 在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( ) .A. B. C. D.二、填空题(本大题共 7小题,每小题 3分,共 21分)11. 已知抛物线2y ax =开口向上,则a 的取值范围是_____.12. 已知点(2,y 1),(﹣3,y 2)均在抛物线y =x 2﹣1上,则y 1、y 2的大小关系为______.13. 已知3x =是关于x 一元二次方程2250ax bx −−=的一个根,则965a b −+的值是________. 14. 以x 为未知数的一元二次方程的两个根为2和3−,这个方程是________.15. 二次函数23y x bx =−++的对称轴是直线2x =,则b 的值是___________.16. 白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.17. 在平面直角坐标系中,抛物线2=y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1//AA x 轴交抛物线于点1A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A ,过点3A 作34//A A OA 交抛物线于点4A …,依次进行下去,则点99A 的坐标为________.三、解答题(一)(本大题共3小题,共18分)18. 解方程(1)()2516x −=.(2)2310x x −−=. 19. 已知关于x 的一元二次方程()215420a x x a −−+−=的一个根为3x =,求a 的值及方程的另一个根. 20. 已知24(2)kk y k x +−=+ 是二次函数,且函数图象有最高点.(1)求k 的值;的的(2)求顶点坐标和对称轴,并说明当x 为何值时,y 随x 增大而减少.四、解答题(二)(本大题共3小题,共27分)21. 关于x 的一元二次方程()22210x k x k +−+=有两个实数根1x ,2x . (1)求k 的取值范围;(2)是否存在实数k ,使得12x x +和12x x 互为相反数?若存在,请求出k 的值;若不存在,请说明理由. 22. 如图,某农户准备建一个长方形养鸡场ABCD ,养鸡场的一边靠墙,另三边用篱笆围成,若墙长为18m ,墙对面有一个2m 宽的门,篱笆总长为33m ,围成的长方形养鸡场除门之外四周不能有空隙.要使围成的养鸡场面积为2150m ,则AB 的长为多少?23. 某口罩生产厂生产的口罩7月份平均日产量为30000个,7月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从8月份起扩大产量,9月份平均日产量达到36300个. (1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计10月份平均日产量为多少?五、解答题(三)(本大题共2小题,共24分)24. 某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件降价4元,问商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,且让顾客尽可能多得实惠,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.25. 如图,顶点为D 的抛物线y =x 2+bx ﹣3与x 轴相交于A ,B 两点,与y 轴相交于点C ,连接BC ,已知△BOC 是等腰三角形. (1)求点B 的坐标及抛物线y =x 2+bx ﹣3的解析式;(2)求四边形ACDB 的面积;(3)若点E (x ,y )是y 轴右侧的抛物线上不同于点B 的任意一点,设以A ,B ,C ,E 为顶点的四边形的面积为S .①求S 与x 之间的函数关系式.②若以A ,B ,C ,E 为顶点四边形与四边形ACDB 的面积相等,求点E 的坐标.的的。
山东省聊城文轩初级中学2024-2025学年九年级上学期第一次月考数学试题一、单选题1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )A .B .C .D .2.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( )A .1:3B .1:4C .2:3D .1:23.如图,D 是ABC V 边AB 上一点,连接CD ,则添加下列条件后,仍不能判定ACD ABC △∽△的是( )A .ACDB ∠=∠ B .ADC ACB ∠=∠ C .AD CDAC BC= D .2AC AD AB =⋅4.在ABC V 中,90ABC ∠=︒,若100AC =,3cos 5C =,则AB 的长是( ) A .5003B .5035C .60D .805.如图,在平面直角坐标系内有一点()3,4P ,连接OP ,则OP 与x 轴正方向所夹锐角α的余弦值是( )A .34B .43C .35D .456.如图所示,ΔABC 的顶点在正方形网格的格点上,则tan A 的值为( )A .12B C .2D .7.如图,Rt ABC V 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A .94B .125C .154D .48.如图2中的矩形边长分别是将图1中的矩形边长4拉长2x ,边长5拉长x 得到的,若两个矩形相似(不全等),则x 的值是( )A .3B .4C .5D .69.如图,△AOC 中三个顶点的坐标分别为(4,0)、(0,0)、(4,3),AP 为△AOC 中线,以O 为位似中心,把△AOP 每条边扩大到原来的2倍,得到A OP ''V ,则PP '的长为( )A .54B .52C .54或154D .52或15210.如图,李老师用自制的直角三角形纸板去测“步云图”的高度,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边16cm DE =,12cm EF =,测得眼睛D 离地面的高度为1.8m ,他与“步云图”的水平距离CD 为104m ,则“步云图”的高度AB 是( )m .A .75.5B .77.1C .79.8D .82.5二、填空题11.在锐角ΔABC 中,如果A ∠,B ∠满足21|tan 1|cos 02A B ⎛⎫-+-= ⎪⎝⎭,那么C ∠=.12.如图,D 、E 分别是ABC V 的边AB 、BC 上的点,∥DE AC ,若:1:9DOE AOC S S =△△,则:BDE CDE S S △△的值为.13.如图,有一块形状为直角三角形的余料ABC .已知90A ∠=︒,6cm AB =,8cm AC =,要把它加工成个平行四边形工件DEFG ,使GF 在边BC 上,D ,E 两点分别在边AB ,AC 上,且5cm DE =,则平行四边形DEFG 的面积为.14.如图,ABC V 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是.15.如图,在ABC V 中,=60B ∠︒,45C ∠=︒,4AB =,E 为AC 中点,D 为AB 上一点,连接DE ,当60AED ∠=︒时,AD 的长为.三、解答题16.(1)计算:22cos 456sin603tan 454cos30-++︒︒︒︒;(2)计算:3013tan 30sin 4223π-⎛⎫⎛⎫︒--+︒+ ⎪ ⎪⎝⎭⎝⎭17.如图,AD 是ABC V 的中线,且DAC B ∠=∠,E 为AD 上一点,CD CE =.(1)求证:ACE BAD V V ∽;(2)若106AB BC ==,,求线段AC 和AD 的长.18.已知BD 是ABC V 的角平分线,ED BC ⊥,90BAC ∠=︒,AB =6BD =,(1)求证:CE BE =; (2)求ABC V 的面积.19.如图,在ABC V 中,30,45,A B BC ∠=︒∠=︒=(1)求AC 的值.(2)求ABC V 的面积(结果保留根号)20.周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳篷的宽度.如图,由于无法直接测量,小凯便在楼前地面上选择了一条直线EF ,通过在直线EF 上选点观测,发现当他位于N 点时,他的视线从M 点通过露台D 点正好落在遮阳篷A 点处;当他位于N ′点时,视线从M ′点通过D 点正好落在遮阳篷B 点处,这样观测到的两个点A 、B 间的距离即为遮阳篷的宽.已知AB ∥CD ∥EF ,点C 在AG 上,AG 、DE 、MN 、M ′N ′均垂直于EF ,MN =M ′N ′,露台的宽CD =GE .测得GE =5米,EN =12.3米,NN ′=6.2米.请你根据以上信息,求出遮阳篷的宽AB 是多少米?(结果精确到0.01米)。
一.解答题1.【广东省湛江二中2013-2014学年第一学期九年级9月月考数学试题】某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当月销售单价定为每千克55元时,计算月销售量和月销售利润.(2)设销售单价为每千克x 元,商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,求月销售单价应为多少?2.【温州市七校2013-2014学年上学期12月联考九年级数学试题】(本题10分) 一座拱桥的轮廓是抛物线型(如图1所示),拱高6 m ,跨度20 m ,相邻两支柱间的距离均为5 m.(1) 将抛物线放在所给的直角坐标系中(如图2所示),其表达式是c ax y +=2的形式, 请根据所给的数据求出a ,c 的值.(2) 求支柱MN 的长度.(3) 拱桥下地平面是双向行车道(正中间是一条宽2 m 的隔离带),其中的一条行车道能否并排行驶宽2 m 、高3 m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车考点:二次函数的应用.3.【温州市七校2013-2014学年上学期12月联考九年级数学试题】(本题l2分)为支持玉树搞震救灾,某市A、B、C三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D、E两县,根据灾区情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨,则A、B两地的赈灾物资运往D、E两县的方案有几种?(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:为即时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?4.【北京市海淀区九年级第一学期期中测评数学试题】列方程(组)解应用题:如图,有一块长20米,宽12米的矩形草坪,计划沿水平和竖直方向各修一条宽度相同的小路,剩余的草坪面积是原来的34,求小路的宽度.5.【衢州市衢江区2013-2014学年第一学期九年级第三次联考数学试题】(本题8分)在“二中60周年校庆”的活动中,其教学楼上悬挂着庆祝条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1≈1.414≈1.732.)6.【衢州市衢江区2013-2014学年第一学期九年级第三次联考数学试题】如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米(即NC=4.5米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求(1)大孔抛物线形的解析式;(2)此时大孔的水面宽度EF.7. 【浙江省温州市苍南县龙港镇第二中学第一学期初中九年级期中试题】随着生活水平的提高,小明家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了10分钟,现已知小明家距学校6千米,乘私家车平均速度是乘公交车平均速度的2倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.66102x x+= B.66102x x=+ C.66126x x=+ D.61662x x+=8. 【浙江省温州市苍南县龙港镇第二中学第一学期初中九年级期中试题】(本题9分)如图,中国渔民在南海黄岩岛附近捕鱼作业,中国海监船在A 地侦查发现,在南偏西60°方向的C 地,有一艘某国军舰正以每小时海里的速度向正东方向的B 地行驶,企图抓捕正在B 地捕鱼的中国渔民,BC=16海里,此时,B 地位于中国海监船A 地的南偏西45°方向处.若中国海监船要及时赶到B 处救援,那么中国海监船必须以每小时多少海里的速度赶往B 地?(精确到0.01,≈1.414≈1.732).解得x=8(3+1) ∴ AB=2AD=8(26+)又∵时间t=542016= ∴速度v=8(26+)÷54=10(26+)≈38.63 . 考点:解直角三角形.9.【浙江省温州市苍南县龙港镇第二中学第一学期初中九年级期中试题】(本题12分)温州某家电商场计划用5.88万元购进某品牌MP5、手机、游戏机共50件,三种产品的进价和售价如下表所示:(1)在不超出现有资金前提下,若购进MP5的数量和手机的数量相同,且MP5的数量不超过游戏机的2倍,请问商场有哪几种进货方案?(2)准备在“五一黄金周”促销活动,商家针对这三种产品推出“现金每购满1000元送50元家电消费券一张,多买多送”的活动,在(1)的条件下,若三种产品在活动期间全部售出,商家预估最多送出消费券多少张?25.【海宁市初中第三教研片2013-2014学年第一学期期中调研测试九年级数学试题】某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每天就少销售3只.(1)平均每天的销售量y(只)与销售价x(元/只)之间的函数关系式为;(2)求该批发商平均每天的销售利润W(元)与销售只x(元/只)之间的函数关系式;(3)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元试题解析:( 1)y=90-3(x-50)即y=-3x+240;(2)w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;10.【安徽省蚌埠六中2013—2014学年度第一学期11月阶段检测九年级数学试卷】(12分)中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(120≤≤且为整数)的捕捞与销售的相关信息如下:x x(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?⑵假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y (元)与x(元)之间的函数关系式;(当天收入=日销售额-日捕捞成本)⑶试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?试题解析:(1)该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10kg.(2)由题意,得11.【甘肃省张掖市民乐县第二中学2014届九年级上学期第一阶段考试数学试题】如图,学校要建一个面积为150平方米的长方形自行车棚,为节约经费,一边利用18米长的教学楼后墙,另三边利用总长为35米的铁围栏围成,求自行车棚的长和宽.12.【甘肃省张掖市民乐县第二中学2014届九年级上学期第一阶段考试数学试题】(2006十堰)某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如下图所示.(1)请直接写出这一函数表达式和自变量取值范围;(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板的面积至少要多大?13.【甘肃省张掖市民乐县第二中学2014届九年级上学期第一阶段考试数学试题】百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【答案】20.14.【甘肃省张掖市民乐县第二中学2014届九年级上学期第一阶段考试数学试题】云龙村2001年每人年平均收入为400元,至2003年时每人年平均收入为576元,求该村2001年至2003年的每人年平均收入的增长率是多少?15.【广西梧州市岑溪市波塘中学2014九年级(上)第一次月考数学试题】某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会?答:共有9家商家参加了交易会.考点: 一元二次方程的应用.16.【江苏省泰兴市济川中学初三数学阶段试题江苏省泰兴市济川中学初三数学阶段试题】(本题12分)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.5米的正方形ABCD.点E、F 分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的价格依次为每平方米30元、20元、10元.若将此种地砖按图(2)所示的形式铺设,则中间的阴影部分组成正方形...EFGH.已知烧制该种地砖平均每块需加工费...0.35元,要使BE长尽可能小,且每块地砖的成本价为4元(成本价=材料费用+加工费用),则CE长应为多少米?解:设CE=x,则S△CFE=,S△ABE=S四边形AEFD=(用含x的代数式表示,不需要化简)。
河北省邯郸经济技术开发区实验学校2024-2025学年九年级上学期第一次月考数学试卷一、单选题1.若方程3x -=□是关于x 的一元二次方程,则“W ”可以是( )A .2x -B .22C .22xD .2y2.抛物线2(3)5y x =--+与y 轴的交点坐标为( )A .()0,5B .()0,5-C .()0,4D .()0,4- 3.将一元二次方程23810x x -=-化成一般形式为2380x x c -+=,则c 的值为( ) A .10 B .−10 C .8 D .34.关于x 的一元二次2440x x ++=的解为( )A .12x =,22x =-B .122x x ==-C .2x =-D .11x =-,22x =- 5.老师设计了接力游戏,用合作的方式完成“求抛物线2284y x x =++的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有甲B .丙和丁C .甲和丁D .乙和丙 6.若关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则实数m 的值可以是( ) A .13 B .12 C .11 D .87.已知抛物线2y ax bx =+经过点(3,3)A --,且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .2123y x x =+B .2123y x x =+C .2123y x x =-D .y =2123x x -- 8.随着新能源电动汽车的快速增加,绵阳市正在快速推进全市电动汽车的充电桩建设,已知到2023年底,绵阳全市约有3.5万个充电桩,根据规划到2025年底,全市的充电桩数量将会达到5.04万个,则从2023年底到2025年底,全市充电桩数量的年平均增长率为( )A .10%B .15%C .20%D .25%9.在同一平面直角坐标系中,一次函数1122y ax a =+与二次函数2y ax a =-的图象可能是( ) A . B . C .D .10.已知三角形的两边长分别是3和5,第三边的长是一元二次方程212320x x -+=的一个实数根,则该三角形的面积是( )A .6或10B .10C .6D .12或1011.抛物线2y x bx c =++的图象与x 轴交于点()20A t -,,()20B t +,,t 为常数,则y 的最小值为( )A .1-B .2-C .3-D .4-12.在学习“二次函数的性质”时,初三某班数学兴趣小组的同学们做了以下研究:如图,将抛物线21:(1)2C y x =-++平移到抛物线22:(2)1C y x =---,点()1,P m n ,()2,Q m n 分别在抛物线1C ,2C 上.甲:无论m 取何值,都有20n <.乙:若点P 平移后的对应点为P ',则点P 移动到点P '的最短路程为丙:当31m -<<时,随着m 的增大,线段PQ 先变长后变短,下列判断正确的是( )A .只有丙说得错B .只有乙说得错C .只有甲说得对D .甲、乙、丙说得都对二、填空题13.将一元二次方程22125x x +=配方后得到22()x c b +=,则b c +=.14.已知抛物线24y x x k =++与x 轴没有交点,则k 的取值范围是.15.对于两个不相等的实数a b ,,我们规定符号{}max ,a b 表示a b ,中较大的数,如:{}max 1,33-=,则方程{}2max 21,6x x x x +=+的解为.16.如图,抛物线2y ax bx c =++的对称轴是1x =,下列结论:①0abc >;②20a b +=;③当0x >时,y 随x 的增大而减小;④30a c +>.则正确的结论是.(填序号即可)三、解答题17.解下列方程:(1)()()3121x x x -=-;(2)210x x +-=.18.已知二次函数2281y x x =-++.(1)求抛物线的开口方向、对称轴及顶点坐标;(2)若()()1122,,A x y B x y ,是二次函数图像上的两个点,且120x x <<,请比较1y 与2y 的大小.19.已知关于x 的方程()22320m x x --+=.(1)若1x =是方程的解,求m 的值;(2)若原方程有实数根,求m 的取值范围;(3)若方程的两根分别为12x x ,,且121x x =,求m 的值.20.如图,抛物线212y x bx c =-++经过()1,0A -、()3,0B 两点,与y 轴交于点C ,点G 为抛物线的顶点,(1)求抛物线的解析式及点G 的坐标;(2)连接AC ,将线段AC 向右水平移动m 个单位长度,若它与抛物线只有一个交点,求出m 的取值范围.21.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商销售A 品牌头盔,此种头盔的进价为30元/个,经测算,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个.(1)当售价为50元/个时,月销售量为______个.(2)为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?22.【新情境】如图1是一个高脚杯的剖面图,杯体CPD 呈抛物线形(杯体厚度不计),点P是抛物线的顶点,杯底AB =,点O 是AB 的中点,且6cm OP AB OP CD ⊥==,,杯子的高度(即CD ,AB 之间的距离)为15cm .以O 为原点,AB 所在直线为x 轴,OP 所在直线为y 轴建立平面直角坐标系(1个单位长度表示1cm )..(1)求杯体CPD 所在抛物线的解析式;(2)将杯子向右平移2cm ,并倒满饮料,如图2,过D 点放一根吸管,吸管底部碰触到杯壁后不再移动,喝过一次饮料后,发现剩余饮料的液面高度(即液面到点P 所在水平线的距离)低于1cm ,设吸管所在直线的解析式为y kx b =+,求b 的取值范围.23.为实现“全民健身”,某区政府准备开发城北一块长为32m ,宽为21m 的矩形空地.(1)方案一:如图1,将这块空地种上草坪,中间修一条弯曲的小路,则这块草坪的面积为________2m ;(2)方案二:如图2,将这块空地种上草坪,修纵横两条宽度为m x 的小路,使这块草地的面积为2620m ,求x 的值;(3)方案三:修建一个面积为2432m 的矩形篮球场,使相邻两边的差为6m ,若比赛用的篮球场要求长为m a ,宽为m b ,且满足24301320a b ≤≤≤≤,.这个篮球场能用做比赛吗?并说明理由.24.如图,二次函数2y x bx c =++的图像与x 轴交于A B ,两点,与y 轴交于C 点,其中()()1,00,3B C ,.(1)求这个二次函数的解析式;(2)在抛物线上有一点P ,使得3ABC ABP S S =V V ,求点P 的坐标;(3)在抛物线的对称轴上,是否存在点Q ,使QBC △的周长最小?若存在,求出点Q 的坐标及QBC △的周长的最小值,若不存在,请说明理由.。
2012-2013学年湛江二中九年级5月月考
数学试题
(总分150分 时间90分钟) 命题人:张爱华 审题人:储呈吉
考生注意:本学科考试有两张试卷,分别是试题和答题卷.试题答案要填在答题卷相应的答题栏
内,不得超出答题栏,否则不能得分,考试结束只交答题卷.
一、选择题(本大题共12小题,每小题4分,共48分.每小题只有一个正确选项) 1. 计算)3
1()1(-⨯-的结果是( ) A.
31 B. 3
1
- C.3 D.-3 2. 日前,《2012年湛江市国民经济和社会发展统计公报》发布,截止2012年底, 市民私人轿车保有量约为101000辆,101000用科学记数法表示正确的是( )
A .1.01×104
B .10.1×104
C .1.01×105
D .0.101×105
3. 下列运算正确的是( )
A .2
523a a a =+ B.02
2
=÷a a C .1)1(-=--a a D.a a a =⋅-21
4. 点A (4-m ,m 21-)在第三象限,则m 的取值范围是( ) A.21>
m B.4<m C.42
1
<<m D.4>m 5. 已知正比例函数y=k 1x(k 1≠0)与反比例函数y=2
k x
(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( ) A. (2,1)
B. (-2
,-1) C. (-2,
1)
D. (2
,-1)
6. 下图中几何体的左视图是 ( )
7. 下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C.
正面
第6
题
A C
B D
8. 下列命题中,正确的是( )
A. 菱形的四个内角相等
B. 平行四边形的对角线互相垂直
C. 等腰梯形的对角线互相平分
D. 矩形的对角线互相平分且相等
9. 下列事件一定为必然事件的是( )
A .重庆人都爱吃火锅 B.在数轴上,到原点距离相等的点所表示的数一定相等 C .内错角相等,两直线平行 D.某校随机检查20名学生的血型,其中必有A 型
10.小斌家买了一套新房正在进行装修,小斌陪父母一起到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设客厅地面(需无缝),则购买的瓷砖形状不可以...
是( ) A.三角形地砖 B.正方形地砖 C. 正六边形地砖 D. 正五边形地砖 11. 用半径为12㎝,圆心角为90°的扇形纸片,围成一个圆锥的侧面,圆锥的底面半径为( )
A .1.5㎝
B .3㎝
C .6㎝
D .12㎝
12. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,
4!=4×3×2×1,…,则100!
98!
的值为( ) A.
50
49
B. 99!
C. 9900
D. 2!
二、填空题(本大题共4小题,每小题4分,共16分) 13. 因式分解:y x xy 3
3
-= .
14. 某班40名同学的年龄情况如上表所示,则这40名同学年龄的中位数是__________岁.
15. 方程
x
x 5
27=-的解是 . 16. 如图,直线l 上有2个圆点A ,B .我们进行如下操作:第1次操作,在A ,B 两圆点间插入一个圆点C ,这时直线l 上有(2+1)个圆点;第2次操作,在A ,C 和C ,B 间再分别插入一个圆点,这时直线l 上有(3+2)个圆点;第3次操作,在每相邻的两圆点间再插入一个圆点,这时直线l 上有(5+4)个圆点;…第n 次操作后,这时直线l 上有 个圆点.
三、解答题(本大题共10小题,共86分)
17. (6分)已知a=sin60°,0
)12(-=b ,c=11()2-,2
1-=d ,
从a 、b 、c 、d 这4个数中任意选取3个数求和.
18. (6分)解一元二次方程: 0)3(2)3(2
=-+-x x
19. (8分)已知: ∠AOB,点M 、N. 求作:点P,使点P 在∠AOB 的平分线上,且PM=PN.(要求:用尺规作图,保留作图痕迹,不写作法)
第19题
(第16题)l l l l
A B C A B
C 第16题
20. (8分)如图,平行四边形ABCD 中,AE ⊥BD 于E
,
CF ⊥BD 于F.
求证:∠BAE =∠DCF.
21. (8分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日
至30日。
评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图如图所示,已知从左至右,各长方形的高的比为
2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加了评比? (2)哪组上交的作品数量最多?有多少件? (3)经过评比,第四组和第六组分别有10 件和2件作品获奖,问这两组哪组获奖 率较高?
22. (8分)下表是两个实践活动小组的实习报告的部分内容,请你任选一个....组的测量方案和数
23.(10分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下
花色和数字后将牌放回,洗匀后乙再抽取一张.先后两次抽得的数字分别记为s 和t ,求︱s -t ︱≥1的概率.
F
D
E
C B
A
第20题
1
6
11
16
21
26
31
日期
(每组含最小日期,不含最大日期)
24. (10分)如图,AB 是△ABC 的外接圆⊙O 的直径,
D 是⊙O 上的一点,D
E ⊥AB 于点E ,且DE 的延长线分别 交AC 、⊙O 、BC 的延长线于
F 、M 、G.
求证:(1)AE ·BE =EF ·EG ;
(2)若AE=3,DM=10,求直径AB 的长.
25. (10分)阅读材料:
使得函数值为零的自变量的值称为函数的零点。
例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点。
解决以下问题:
己知函数2
22(3)y x mx m =--+ (m 为常数)。
(1)当m =0时,求该函数的零点;
(2)证明:无论m 取何值,该函数总有两个零点; (3)设该函数的两个零点分别为1x 和2x ,且
12111
4
x x +=-,求m 值. 26. (12分)在平面直角坐标系中,
直线11
()22
y m k =
+-≤≤经过点A
(,4)
,且与y 轴相交于点C.点B 在y 轴上,O
为为坐标原点,且7OB OA =+-记ABC ∆的面积为S. (1)求m 的取值范围;
(2)求S 关于m 的函数关系式;
(3)设点B 在y 轴的正半轴上,当S 取得最大值时,将ABC ∆
沿AC 折叠得到C B A '∆,求点B '的坐标及S 的最大值.
第24题
M。