机组励磁变故障原因分析和防范措施
- 格式:pdf
- 大小:237.79 KB
- 文档页数:3
事故案例/案例分析励磁变温度保护误动,造成机组跳闸1、事故经过及处理情况:6月12日17:25分,某厂巡检人员就地发现#3机励磁变温控装置面板上温度变化在33~160℃乱闪,用对讲机汇报机组长的同时“1DL主线圈跳闸”、“1DL 副线圈跳闸”、“汽轮机跳闸”、“MFT”光字牌亮,#3机2203主开关、灭磁开关、厂用工作电源63A、63B开关跳闸,厂用备用电源03A、03B开关联动成功;#3机组CRT报警信号:“励磁变温度过高跳闸”;#3发变组保护动作信号:A、B柜发“发电机失磁保护动作”;#3机励磁调节器AVR面板动作信号:“外部指令跳灭磁开关”信号。
17:30分,检查励磁变未发现异常;查看#3机故障录波器事故报告:励磁变电压电流正常;查看DCS事故追忆系统和故障录波器均为“励磁变温度高跳闸”;检查开入发变组保护装置的“励磁变温度高”控制电缆绝缘电阻均合格;使用对讲机对励磁变温控装置进行抗干扰试验,发现使用对讲机会造成励磁变温控装置误动。
退出“励磁变温度高跳闸”保护,19:50分定速,20:13分机组并网。
2、暴露问题原因分析:运行人员就地巡检#3机励磁变,使用对讲机干扰使#3机励磁变温控装置示数33~160℃乱闪,造成#3机组“励磁变温度高跳闸”。
设计上励磁变温度130℃报警;150℃全停Ⅱ。
暴露出反措执行不到位,变压器压力释放、线圈温度高等辅助保护出口不得投跳闸方式。
电子设备抗干扰措施不完善。
3、防范及预防措施:3.1变压器压力释放、线圈温度高等辅助保护出口不得投跳闸方式。
3.2加强励磁变温控装置的巡检。
3.3完善电子设备抗干扰的措施,规范现场通讯设备的使用。
装设在励磁变温控装置面板前1米范围内禁止使用通讯工具标示牌。
励磁系统常见故障及应对措施摘要:保持励磁系统良好状态,对于水电站安全生产具有十分重要的作用,因此本文对励磁系统工作原理、常见故障及其应对措施进行了探讨。
关键词:故障;措施;励磁系统;水轮发电机励磁系统(excitation system)是向水轮发电机转子绕组提供磁场电流的装置,其主要作用是维持发电机电压在给定水平上、合理分配无功以及提高电力系统运行稳定性[1]。
可见,维护和调试好励磁系统对于保障水电生产的安全运行意义重大。
但是我们也知道任何设备在运行中都可能出现故障,如何针对故障快速诊断和排除是维护人员重要职责和任务,励磁系统自然也不例外,因此本文对水轮发电机励磁系统常见故障与应对措施进行了探讨。
1 水轮发电机励磁系统工作原理1.1 关于励磁方式水轮发电机的励磁方式分他励和自励两大类。
他励主要是以励磁机作为励磁电源的一种励磁方式,自励的励磁电源取自发电机自身。
虽然他励方式不受发电机运行状态影响,励磁可靠性较高,但是结构较为复杂,多出现在旧式励磁系统中,目前基本上采用自励方式。
在自励方式中,应用较多的是可控硅静态励磁方式,它没有旋转部分,维护相对简单。
可控硅静态励磁方式又分为自并励和自复励两种形式,两者比较起来自并励方式从技术、维护、可靠性和造价等方面都更为成熟和适用,因而应用更广泛,故此本文将自并励方式作为讨论的基础。
1.2 自并励系统的原理与构成如图1所示,自并励系统利用接在发电机端的励磁变压器励磁交流电源,通过晶闸管整流装置变换为直流励磁电源。
再结合图2,水轮发电机励磁系统由励磁调节器、励磁整流装置、起励装置、灭磁装置、励磁变压器以及保护、测量等装置组成。
其中励磁系统由励磁调节器与功率灭磁单元构成,励磁调节器根据所检测到的发电机电压、电流等信号,按照一定的控制准则自动调节功率灭磁单元的输出;而励磁控制系统则涵盖了励磁系统和同步发电机,通过励磁控制系统可以实现对发电机电压、电力系统无功分配的控制。
励磁系统故障导致跳机事故的分析励磁系统是电力发电机组中的重要部分,用于提供发电机转子的电流供应,保持其磁励磁势。
励磁系统故障可能导致发电机失去电励磁,使其无法正常运行,甚至发生跳机事故。
本文将对励磁系统故障导致跳机事故的原因进行分析,并提出相应的解决方案。
1.励磁系统电源故障:励磁系统的电源故障可能导致电流供应中断,使得发电机失去电励磁。
电源故障的原因可能是电源线路短路、开路、接触不良等。
此外,电源设备本身的故障也可能导致电源供电异常,例如电源变压器烧坏、整流装置故障等。
2.励磁电枢线圈故障:励磁电枢线圈是励磁系统的核心部件,其故障可能导致励磁电流不稳定或无法正常供应。
线圈绝缘老化、断线、短路等是励磁电枢线圈故障的常见原因。
线圈故障会导致电励磁能力下降,进而导致发电机无法正常工作。
3.励磁调节器故障:励磁调节器用于调节励磁电流的大小和稳定性。
当励磁调节器故障时,无法对励磁电流进行有效控制,可能导致电励磁能力不足或过大。
励磁调节器的故障原因可能是控制电路故障、元件老化、调节器调节参数设置错误等。
针对励磁系统故障导致跳机事故的问题,可以采取以下解决方案:1.定期进行励磁系统设备的检查维护:定期对励磁系统的电源线路、变压器、整流装置、电枢线圈等进行检查,确保设备正常运行。
及时替换老化的设备和部件,完善设备的维护计划。
2.加强励磁系统的绝缘保护:对励磁电枢线圈的绝缘进行定期检查,发现绝缘老化或破损应及时更换。
根据发电机的使用寿命和运行状况,制定相应的绝缘保护措施。
3.设备备份和冗余设计:在关键部件上设置备份设备,例如备用电源、备用整流装置等。
采用冗余设计,确保发电机在部分设备故障的情况下仍能正常运行,避免因单点故障导致的跳机事故。
4.加强励磁系统的监测与控制:引入现代化的监测与控制系统,实时监测励磁系统的工作状态和各项参数。
当检测到异常情况时能够及时报警,并自动切换到备用设备,避免跳机事故的发生。
5.培训操作人员和维护人员:加强对操作人员和维护人员的培训,使其熟悉励磁系统的工作原理和故障处理方法。
发电机励磁系统常见的故障的分析及处理摘要:发电机励磁控制具有其自身的独特优势,即经济性良好,稳定性较好。
不同的设施设备在运行过程中,都可能会出现不同的故障,但是励磁系统在运行时,如果发生故障,既会直接影响水电机运行的安全性与稳定性,还会导致发生严重的事故。
所以,想要全面促进水电站励磁系统的安全稳定运行,必须根据励磁系统的常见故障类型和原因等进行详细分析,并据此提出有效的处理措施。
关键词:发电机;励磁;故障;处理一、发电机励磁系统的优势(一)电压调节自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。
无功电流是发电机端电压下降的主要原因,当励磁电流恒定时,发电机端电压随无功电流的增大而减小。
然而,为了满足电能质量的要求,发电机的端电压应保持不变,实现这一要求的途径是根据无功电流的变化来调节发电机的励磁电流。
(二)无功功率当发电机与系统并联运行时,可视为具有无限电源运行的母线,发电机的励磁电流要改变,感应电位和定子电流也要改变,发电机的无功电流也要改变。
为了改变发电机的无功功率,发电机与无穷大系统并联运行时,必须调整发电机的励磁电流。
发电机的可变励磁电流不是电压调节,而是只改变输入系统的无功功率。
(三)无功负荷发电机的并联运行依据其各自的额定容量,无功电流按比例分配。
大容量发电机应承担更多的无功负荷,而较小的发电机容量将提供较少的无功负荷。
为了实现无功负荷的自动分配,通过高压自动调压励磁装置,可以改变发电机励磁电流以维持相同的端电压,还可以调节发电机调压特性的倾斜度,从而实现并联运行发电机无功负荷的合理分配。
二、发电机励磁系统的常见故障(一)发电机失磁故障转子电流表显示的数值为零或者接近零,校正装置和复励电流会有所增加。
定子电流明显增加并出现摆动。
当发电机出现失磁现象,定子电流会越来越少,达到一个数值后又慢慢增大,甚至超过规定数值。
这时,只有从电网中吸收大量的无功,才能保持发电机的正常运行,随之也会引起定子电流的增大。
发电厂发电机励磁系统常见故障分析一、励磁系统概述发电机励磁系统是指通过电磁感应原理,使发电机旋转部分在运行时产生电势,将电势加至励磁绕组上,在发电机工作时,通过励磁系统确保发电机在负载变化时保持稳定的电压输出。
励磁系统主要由励磁发电机、励磁控制设备和励磁绕组构成,励磁发电机主要通过电源提供励磁电流,励磁控制设备主要通过调节励磁电流大小来控制发电机的电压输出,励磁绕组则是产生励磁电流的重要部分。
二、常见故障分析1. 励磁绕组短路励磁绕组短路是发电机励磁系统中比较常见的故障之一,它可能是由于绕组内部绝缘老化、损坏或发生短路引起的。
当发生励磁绕组短路时,会导致励磁电流异常增大,发电机电压失控,甚至导致发电机过热、烧损。
针对励磁绕组短路故障,通常可以通过检测绕组电阻来判断绕组是否短路,还需要检查绕组的绝缘情况,并在必要时进行绝缘处理或更换绕组。
2. 励磁电源故障励磁电源故障是指发电机励磁系统中供电设备工作异常,无法正常输出励磁电流。
励磁电源故障可能是由于电源设备内部故障、供电线路断开或接触不良等原因引起的。
对于励磁电源故障,首先需要检查励磁电源设备的工作状态,确保电源设备本身无故障。
需检查供电线路是否存在断开或接触不良的情况,必要时及时修复。
3. 励磁控制设备故障针对励磁控制设备故障,首先需要检查控制设备的工作状态,确保控制设备本身无故障。
需要检查控制信号的传输和接收情况,确保控制系统正常工作。
4. 励磁系统接地故障对于励磁系统接地故障,需要对励磁系统的接地线路进行定期检查,确保接地线路的连接可靠,接地电阻符合要求。
5. 其他故障除了上述几种常见的励磁系统故障外,还可能出现其他一些故障,如励磁绕组过热、励磁系统振动过大等。
这些故障可能是由于设备老化、运行环境恶劣或操作不当引起的。
针对这些故障,需要及时进行维护保养,确保励磁系统的正常运行。
三、故障处理及预防措施针对发电厂发电机励磁系统的常见故障,工程师需要采取相应的处理方法并加强预防措施,以确保励磁系统的稳定运行。
发电厂发电机励磁系统常见故障分析
发电厂的发电机励磁系统是发电厂中重要的一部分,其稳定性和可靠性直接关系到发电厂的正常运行。
然而,由于设备老化、操作不当、负载变化等因素,励磁系统也会出现一些故障。
本文将介绍发电机励磁系统常见故障和分析方法。
Ⅰ. 励磁电源故障
1. 电源断电
当供电设备故障或停电时,励磁电源断电,导致发电机无法励磁,无法输出电能。
此时,需要对电源进行检修或及时切换备用电源。
2. 电源电压不稳定
当电源电压不稳定时,会导致励磁电流不稳定,从而影响发电机输出电压和频率的稳定性。
此时,需要对电源进行调整或更换电源。
3. 电源保护装置触发
电源保护装置会在电源过载或短路时触发,从而使励磁电源断电。
此时,需要检查保护装置的设置和调整,或修复故障并重新启动。
1. 控制器故障导致励磁电流不稳定
2. 控制器设置不正确
励磁控制器的设置不正确会导致励磁电流、电压和频率不稳定。
此时,需要对控制器进行重新设置和调整。
3. 控制器硬件故障
1. 励磁电极损坏
2. 励磁电极接触不良
励磁电极接触不良会导致无法形成良好的励磁磁场,从而影响发电机输出电压和频率的稳定性。
此时,需要清洁和检查电极接触是否牢固。
总之,发电厂的发电机励磁系统常见故障包括电源、控制器和电极方面的问题。
要及时检查、排除故障,确保励磁系统的稳定和可靠性。
探讨励磁变压器故障原因与防范措施由于励磁变压器的安全运行关乎着机组的整体稳定性,与发电厂中稳定发电有直接的关系,应当维持其正常运转保证发电厂的经济效益,但是在实际运转中,由于一些因素导致励磁变发生故障出现机组跳闸现象。
因此应当对励磁变故障种类加以总结,积极分析其原因,并提出相關防范对策从而减少其故障频率。
一、励磁变压器在发电厂中的重要作用励磁变压器可控制发电机端的电流,在发电机出口装设电压互感器,然后其达到采样、调节、跟给励磁装置电源的作用,可为发电机的励磁系统提供三相交流励磁电源。
励磁变压器是保证发电机励磁系统安全运行的重要工具,励磁系统一般通过可控硅将三相的电源转化为发电机转子所需要的直流电源,然后形成发电机的励磁磁场,最后通过励磁系统调节可控硅触发角。
由于发电机出口处的电压通常较高,而励磁系统的额定电压较低,因此通过励磁变压器可降低电压,调节电机端电压符合实际生产需求。
励磁变压的安全运行是保证发电机组稳定发电和满负荷发电的前提,也是励磁系统可靠运行的关键,其重要性显而易见[1]。
二、励磁变压器常见的故障种类分析(一)CT故障CT是指电流互感器,电流互感器发生故障是励磁变压器出现的故障种类之一,由于励磁变压器的高压旁的CT的内部存在一些问题或者缺憾,会引发爆炸接连引起励磁变压器高压两侧的两相短路,进一步会引发三相短路导致机组自动保护进行跳闸。
三相中破损保障的一相CT变形严重并且脱落;临近的CT受到影响外部会部分破损;在CT至变压器的各相之间的引线也会受到波及变形或者熔断;励磁变压器的外壳在爆炸中会出现烧黑的恒基,由于其材质为环氧树脂一般无明显变形情况,在低压处损害程度相对较轻;但是在高压处爆炸会引发其侧封目严重变形,并破坏其周边设施,例如天花板、窗户等。
据相关数据显示在2011年湖南某发电厂发生过由于励磁变压器侧的CT爆炸事故,在2012年国际某电厂的2号机组也发生了由于励磁变压力侧的CT爆炸引发的短路事故,经检查为该相的某根线的绝缘体发生损坏而引起的[1]。
水电站励磁系统的故障及处理水电站励磁系统是水电站的重要组成部分,它起到控制和稳定水轮发电机运行的作用。
然而,励磁系统也存在着一些故障问题,需要及时进行处理。
本文将从故障分析、故障处理和故障预防等方面,对水电站励磁系统的故障及处理进行探讨。
一、故障分析1. 励磁机故障励磁机是励磁系统的核心部件,如果出现故障,会导致整个励磁系统无法正常工作。
故障原因主要有绝缘破损、励磁机线圈短路、励磁电枢烧坏等。
2. 励磁电源故障励磁电源是供给励磁机工作电源的设备,如果出现电源故障,会导致励磁机无法正常工作。
故障原因主要有电源线路故障、电源开关故障等。
3. 励磁调节器故障励磁调节器是控制励磁电流、电压的设备,如果出现调节器故障,会导致励磁电流或电压过高或过低,影响水轮发电机的正常运行。
故障原因主要有调节器元件损坏、调节器控制电路故障等。
二、故障处理1. 励磁机故障处理对于励磁机的故障,首先需要检查励磁机的绝缘情况,如果发现有绝缘破损,需要及时更换绝缘件。
如果是励磁机线圈短路或励磁电枢烧坏的情况,需要进行修复或更换,确保励磁机正常运作。
2. 励磁电源故障处理对于励磁电源的故障,需要检查电源线路是否接触良好,排除线路故障。
如果是电源开关故障,需要检查开关的工作状态,及时进行维修或更换。
同时,还可以考虑备用电源的应用,确保励磁系统的稳定供电。
3. 励磁调节器故障处理对于励磁调节器的故障,需要检查调节器元件和控制电路的工作状态,如有损坏或故障,需要进行修复或更换。
此外,还可以使用备用调节器进行替换,保证励磁电流和电压的稳定控制。
三、故障预防1. 定期检查维护定期对励磁系统进行检查和维护,及时发现和处理潜在故障,确保系统的正常运行。
包括检查励磁机的绝缘情况、检查电源线路的接触状态、检查调节器的工作状态等。
2. 加强培训和技术指导对水电站运维人员进行励磁系统的培训和技术指导,提升其对励磁系统故障处理能力。
增加工作经验和技术水平,能够在故障发生时快速准确地诊断和处理问题。
浅谈同步发电机励磁系统及常见故障分析同步发电机励磁系统是电力发电系统中非常重要的一部分,它对发电机的稳定运行和电网的稳定运行起着至关重要的作用。
励磁系统的运行状态直接关系到发电机的发电能力和负载能力,因此对励磁系统的运行状态进行监测和分析,及时处理常见的故障是非常重要的。
本文将从同步发电机励磁系统的原理、组成和常见故障进行浅谈。
一、同步发电机励磁系统的原理和组成励磁系统是用来给同步发电机的励磁绕组提供直流电源,以产生磁场,使发电机能够稳定地产生交流电。
励磁系统的主要组成部分包括励磁机、励磁变压器、励磁电路和励磁控制系统。
1. 励磁机励磁机是励磁系统中的核心部件,它是将机械能转化为电能的设备。
大部分发电机采用的是交流励磁机,通过旋转子在励磁绕组内感应出交流电,再通过整流装置将交流电转换为直流电,供给发电机的励磁绕组。
2. 励磁变压器励磁变压器是用来将主变压器的电压调整到适合励磁机的工作电压的变压器。
励磁变压器的工作原理和普通变压器一样,通过变换线圈的匝数来改变电压大小。
3. 励磁电路励磁电路是将励磁电源连接到发电机的励磁绕组的电路系统,包括励磁机、励磁变压器、整流装置和励磁绕组。
4. 励磁控制系统励磁控制系统是用来监测和控制励磁系统运行状态的系统,包括励磁机的调速和励磁电源的控制等。
二、常见的同步发电机励磁系统故障及分析励磁系统是发电机组运行的关键组成部分,因此励磁系统的故障将直接影响到发电机的运行状态。
以下是一些常见的励磁系统故障及分析:1. 励磁机故障励磁机常见的故障有励磁机内部的绕组断路、励磁机电枢和磁极之间的短路、励磁机的机械故障等。
这些故障都将导致励磁机不能正常工作,无法提供足够的励磁电流给发电机,从而导致发电机无法产生足够的电能。
2. 励磁电源故障励磁电源故障包括励磁变压器故障、整流装置故障等。
励磁变压器故障将导致励磁电压异常,从而影响发电机的励磁状态;整流装置故障将导致励磁电流异常,同样会影响发电机的励磁状态。
发电机励磁系统故障原因分析及改进摘要:现阶段而言,发电机设备对社会的发展越来越重要,如发电厂的生产运行过程中,需要结合发电机的有效运作,才能够提供可靠的电力。
励磁系统作为发电机设备中重要的组成部分,其运行质量,通常会对发电机的发电产生直接影响。
本文基于发电机励磁系统故障原因分析及改进展开论述。
关键词:发电机;励磁系统;故障原因分析及改进引言为了保障励磁系统的运行稳定、正常励磁,有关建设单位应严格确保各个元件的质量,并结合系统运行情况,给予及时的检测,从而真正减少励磁系统故障的发生,真正为发电机的可靠运行提供保障。
1案例分析(1)故障现象:2017-08-08T15:43,新氢压缩机107-K101A电机开关跳闸,现场6kV开关柜综保无故障显示,静态励磁柜“旋转模块故障”指示灯亮,后台监控发“新氢A机组励磁故障”报警。
(2)故障排查处理:测量同步电动机定子绕组绝缘电阻为2500MΩ,检查高压配电柜内接线无松动;检查励磁柜内中间继电器等元器件无异常,检查励磁柜内各线路无接线松动情况;将励磁柜内转换开关打在试验位置,对励磁柜各项参数进行检查均正常;打开现场交流励磁机端盖,检查旋转励磁系统;检测整流盘及主机转子绝缘电阻,值为10MΩ;检查励磁机接线端子紧固,本体无明显异常现象。
通过检查励磁系统并采取排除法,逐项分析来自励磁柜且能引起高压配电柜断路器分闸的跳闸信号:励磁调节器跳闸信号、空气开关跳闸和快熔断。
经检查空气开关和快熔正常,而静态励磁柜“旋转模块故障”指示灯亮,可判断跳闸信号由励磁调节器发送。
而静态励磁装置具有两套独立的控制单元(调节控制通道),手动切换试验时,A套和B套都无故障出现,由此可考虑失步保护、旋转模块故障和旋转快熔熔断保护引起的电机跳闸。
根据录波柜显示跳闸前电机电流波形正常,不存在失步情况;同时DCS记录显示最后一次励磁故障报警持续时间约为15s,与励磁机旋转模块故障延时跳机的时间设定15s吻合,综合分析判断,确认为励磁旋转模块故障。
发电机组励磁系统故障分析与处理摘要:在发电机系统中,励磁系统是重要组成部分,作用在于提供可进行调节的直流电流,确保机端电压稳定,从而满足发电机运行要求。
然而励磁系统在运行时由于受到诸多内外因素的影响常出现一些故障,影响其作用的发挥。
为此,有必要通过分析掌握励磁系统常见故障类型与产生原因,为故障防治提供参考。
关键词:发电机组;励磁系统;故障;处理一、故障及原因(一)失磁失磁是一种较为常见的故障,其会给系统的正常运行造成严重影响。
失磁故障发生在录波环节,在此过程中电压会急剧下降,并且最终变为负值,之后电流和电压会处于极不稳定的状态,进而导致出现失磁现象。
之所以会出现这种故障,主要原因在于电压开关处的触点事先没有做好加固措施,因此使得接触电阻的值超出正常范围之外,进而对系统的运行产生影响。
(二)整流整流故障的表现形式为:在按照正常程序启动机组之后,其中没有任何电压存在,事先安装好的警报装置也没有发出警报。
之所以会发生这类故障,主要是因为电气回路出现了问题,因此必须在短时间内对回路进行检查,及时处理故障,同时还要对整流电源进行全面检查,因为故障也有可能是因为电源某相断裂而引起的,这种情况下系统就会变得较为迟钝,很难做出警报反应。
(三)自复励自复励是一种应用较为广泛的系统,其最大的优势在于系统在任何状态下都能保持电流的正常供应,但系统在进行电流补偿的过程中容易对机组的运行造成影响,进而使得励磁电流不断减少。
二、发电机励磁系统常见故障处理措施(一)发电机升不起电压的故障分析在励磁系统中,电压控制的主要作用是将发电机端的电压进行设定,确保系统在正常的状态下得到顺利的运行。
当发电机无法升起电压的时候,要分析励磁回路中是否产生断线,并对电刷位置是否一致进行检查,研究接触的是否良好。
当这些问题都未发现的时候,检查励磁电压表,若发现励磁电压表上的数值比较小,励磁的正负极方向是相反的。
因此,对励磁绕组正负极进行调整十分必要。
发电机及励磁系统常见故障及处理对有刷电机而言,常见的故障有定子绕组相间短路、匝间短路、绕组断路,转子励磁线圈断路、短路、电刷接触不良、电刷磨损过度等故障。
对于一般短路故障,解体后肉眼可以看出。
对于匝间短路,常见的有机壳局部发热严重,三相电压不对称的现象,一般不难判断,其主要原因一般是转子端部的热变形、线圈端部垫块的松动、小的导电粒子或碎渣进入线圈端部及通风等引起。
转子励磁线圈短路一般可归结为励磁电流增大,通过测量励磁回路或解体电机后用便可发现。
对于可控硅励磁调压系统,发生故障时,首先检查晶闸管电路是否正常,其次检查触发电路是否正常。
检修时,在电路原理图和实物图上找到实现上述功能的元件,然后按照工作过程来检查哪个环节电路不能实现自己应有的功能。
三相无刷同步发电机中的主发电机励磁绕组、励磁机电枢绕组及旋转整流装置同轴旋转,静止励磁系统提供直流励磁电流给励磁机定子绕组,在励磁机转子绕组上感应出三相交流电,再经旋转整流后提供给主发电机励磁绕组,最后在主发电机定子绕组上感应出三相交流电输出。
无刷同步发电机励磁系统常见的故障与处理方法如下:①旋转整流装置故障旋转整流模块和过压保护模块是旋转整流装置的两个组成部分,旋转整流模块主要作用是把三相交流电经整流给主发电机励磁。
过压保护模块是防止过压对旋转整流模块的损伤。
由于制造缺陷或安装接触不良造成发热使旋转整流模块和过压保护模块击穿是比较常见的故障。
当旋转整流模块发生故障时,电压下跌明显,1只二极管损坏,电压一般能跌至200V左右。
这种故障判断比较简单,用万用表检测即可。
②静止励磁系统元器件损坏由于元器件质量缺陷或整机振动过大等原因,静止励磁系统也会发生元器件损坏、导线接触不良等故障,使励磁系统无法提供足够的直流电流,造成主发电机电压不正常。
判断静止励磁系统有无故障时,需检测某一状况下通向励磁机定子绕组的电流是否与试验报告或铭牌上标注的标准值一致即可;若明显小于标准值,则可判定为励磁系统的故障。
励磁系统常见故障及其处理方法1、起励不成功原因1:起励按钮/按键接通时间短,不足以使发电机建立维持整流桥导通的电压。
处理方法:保持起励按钮持续接通5秒以上。
原因2:发电机残压太低,却仍然投入“残压起励”,这样即使按起励按钮超过5秒,也不会起励成功。
处理方法:切除“残压起励”功能,直接用辅助电源起励。
原因3:将功率柜的脉冲投切开关仍置于切除位置。
原因4:整流桥的交流电源未输入(励磁变高压侧开关或低压侧开关未合上)。
原因5:同步变压器的保险丝座开关未复位。
原因6:机组转速未到额定,而转速继电器提前接通,造成自动起励回路自动退出。
原因7:起励电源开关未合,起励电源未送入起励回路。
原因8:起励接触器未动作或主触头接触不良。
原因9:起励电源正负极输入接反,导致起励电流无法输入转子。
原因10:起励电阻烧毁开路。
原因11:转子回路开路。
原因12:转子回路短路。
原因13:始终存在“逆变或停机令”信号。
(近方逆变旋钮开关未复位;远方监控或保护的停机令信号未复位)原因14:灭磁开关控制回路的分闸切脉冲或分闸逆变信号始终保持。
原因15:调节器没有开机令信号输入。
原因16:可控硅整流桥脉冲丢失或可控硅损坏。
原因17:调节器故障原因18:调节器脉冲故障。
原因19:脉冲电源消失或电路接触不良。
原因20:灭磁开关触头接触不良。
2、起励过压原因1:励磁变压器相序不对。
原因2:PT反馈电压回路存在故障。
原因3:残压起励回路没有正确退出。
原因4:调节器输出脉冲相位混乱。
3、功率柜故障原因1:风压低,风压继电器接点抖动。
处理方法:调整风压继电器行程开关的角度。
原因2:风温过高,温度高于50度。
处理方法:对比两个功率柜,检查测温电阻是否正常。
原因3:电流不平衡,6个可控硅之间均流系数<0.85。
处理方法:检查是否有可控硅不导通或霍尔变送器测量误差。
4、PT故障条件:PT电压>10%,任一相电压低于三相平均值的83%。
原因1:PT高压侧保险丝熔断处理方法:测量PT输入端三相电压,检查电压是否平衡。
1、发电机励磁系统简介励磁系统是供给同步发电机励磁电流的电源及其附属设备的统称,主要由励磁功率单元以及励磁调节器两个部分组成。
励磁功率负责向同步发电机提供励磁电流,而励磁调节器则是根据电力系统中的信号来调节励磁功率单元的输出,进而保障电力系统的稳定性、可靠性、安全性。
2、励磁系统常见故障及处理办法2.1失磁故障在发电机的各类故障中励磁系统的失磁故障是最高的,大型发电机组原则上不允许失磁运行,失磁故障的发生会严重影响大型机组的安全运行。
据有关资料统计,失磁故障占发电机各类故障的比例很高。
引起失磁的原因包括励磁回路开路、短路或励磁调节器故障或转子绕组故障等(我厂7.12 #3机组甩负荷就属于励磁调节器故障引起)。
发电机发生失磁故障后,将从系统吸收大量无功,导致系统电压下降,以及引起发电机失步运行,并产生危及发电机安全的机械力矩;在转子回路中出现差频电流,引起附加温升等危害。
失磁故障的处理:当失磁保护动作跳闸,则应完成机组解列工作,查明失磁原因,经处理正常后机组重新并入电网,同时汇报调度;当失磁保护未动作,且危及系统及本厂厂用电的运行安全时,则应及时将失磁的发电机解列,并应注意厂用电应自投成功,若自投不成功,则按有关厂用电事故处理原则进行处理;当失磁保护未动作,短时未危及系统及本厂厂用电的运行安全,应迅速降低失磁机组的有功出力,切换厂用电;尽量增加其它未失磁机组的励磁电流,提高系统电压、增加系统的稳定性。
为了有效应对此类故障,并且能对发生故障的开关及时的处理,可以在励磁功率电源交流侧开关的辅助接点处设置一个故障记录装置,从而对该故障易发部位进行实时的监控,与此同时,由专人负责对开关进行定期检查,及时发现故障隐患。
2.2、励磁不稳发电机运行过程中,励磁波动过大,例如励磁系统运行数据增大,但有时又正常,无规律可循,并且仍可以进行加减磁的调节。
可能原因是:移相脉冲控制电压输出不正常;环境温度变化以及元器件受到振动、氧化等影响出现故障。
水电站机组励磁系统故障的分析及应对措施摘要:励磁系统是专门为同步发电机提供励磁电流的设备,用于励磁电压的建立、调整,维持机端电压稳定,调节并列运行各发电机间的无功功率分配,对提高电力系统的稳定性有举足轻重的作用,是发电厂必不可少的设备。
在当前工业现代化发展中,在水电站机组的运行当中机械设备以及技术有效的应用,在这当中,励磁系统在其中有着很重要的作用,确保励磁系统的良好在一定意义上能够保证水电站机组运行的稳定,并且还能够保证电能的质量合格。
然而其往往会受到很多因素的影响,造成其励磁系统产生相应的故障,对于机组的安全以及经济性都有很大的影响,所以,加强对于水电站励磁系统出现故障的原因以及应对措施分析有着很重要的意义。
关键词:水电站励磁系统;故障;原因;应对措施引言励磁系统故障对发电机的安全运行尤为不利,一些故障可直接导致发电机失磁、停机,严重的会造成包括励磁设备在内的一些主要设备损坏。
掌握励磁系统故障的分析及解决方法,及时消除励磁系统故障,对发电机稳定运行以及快速恢复发电有重要的意义。
1水电站励磁系统的工作原理水电站励磁系统的工作原理主要是:水电站励磁系统主要包括励磁调节器和励磁功率单元,由励磁电源和相关的附属设备组成,它是根据采集数据的变化同设定值相比较,来对励磁输出进行控制,从而保证输出励磁电流的质量,确保励磁系统和整个电力系统的稳定运行。
水电机组有很多种励磁形式,它们是根据水电机组的容量和励磁方式来划分的,分为永磁副励磁、双绕组电抗器分流自复励励磁、自并励可控硅励磁等,目前运用最广泛的是自并励可控硅励磁,它有变压器、隔离开关、灭磁开关、整流柜、非线性电阻、调节柜等设备组成,采用自动调压方式来实现励磁的调节,其中自动调压方式是运用PID调节器来进行调节的,根据机端电压和给定值做比较,保证输出电压的稳定性。
总之,要保证水电站励磁系统的质量,尽量避免出现各种故障,以保证水电站系统的正常运行。
2水电站励磁系统出现故障的原因以及应对措施水电站励磁系统出现故障的原因以及应对措施主要涉及以下几个方面:首先是失磁故障。
关于1号机组励磁调节器故障的原因分析与解决对策娄正李宏大张延风发布时间:2023-06-01T08:26:02.211Z 来源:《当代电力文化》2023年6期作者:娄正李宏大张延风[导读] 通过本次励磁系统故障处理,分析了1号机组励磁调节器进线电源CT回路设计,通过更换励磁电源进线母线A/C相母线CT二次线,更换走线位置,杜绝涡流发热影响,确保励磁监测功能工作正常,消除安全隐患。
辽宁清河发电有限责任公司辽宁铁岭摘要:通过本次励磁系统故障处理,分析了1号机组励磁调节器进线电源CT回路设计,通过更换励磁电源进线母线A/C相母线CT二次线,更换走线位置,杜绝涡流发热影响,确保励磁监测功能工作正常,消除安全隐患。
关键词:励磁调节器系统、CT回路、涡流发热Abstract:Through this excitation system fault treatment,The CT circuit design of the incoming power supply of the excitation regulator of unit 1 is analyzed. By replacing the CT secondary line of the A/C phase bus of the incoming bus of the excitation power supply and replacing the wiring position,the influence of eddy current heating is eliminated,so as to ensure the normal operation of the excitation monitoring function and eliminate potential safety hazards.Key words:Excitation regulator、CT circuit、Eddy current heating1、引言公司1号机组励磁调节器系统为UNITROL 5000型,是瑞士ABB公司UNITROL系列励磁系统产品,它运用最先进的微处理器系统并有机地结合了ABB近35年自动电压调节器及近10年的基于微处理器技术的微机励磁系统使用经验。