(完整)人教版八年级数学上全等三角形课时练习及答案.docx
- 格式:docx
- 大小:191.10 KB
- 文档页数:14
八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)姓名班级学号成绩一、选择题:1.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.SAS B.ASA C.SSS D.AAS 2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均错误3.如图,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.如图,AC是△ABC和△ADC的公共边,要判定△ABC≌△ADC,还需要补充的条件不能是()A.AB=AD,∠1=∠2,B.AB=AD,∠3=∠4C .∠1=∠2,∠3=∠4D .∠1=∠2, ∠B=∠D5.如图,AD 是ABC 的中线,//CE AB 交AD 的延长于点E ,AB=5,AC=7,则AD 的取值可能是( )A .3B .6C .8D .126.如图,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,FC||AB ,AB=5,BD=1,则CF 的长度为( )A .2B .2.5C .4D .57.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .208.如图,在△ABC 中,点D 为BC 的中点,△AEF 的边EF 过点C ,且AE=EF ,AB ∥EF ,AD 平分∠BAE ,CE=3,AB=13,则CF=( )A .10B .8C .7D .6二、填空题: 9.如图,在 ACB 中 ACB 90︒∠= , AC BC = 点 C 的坐标为 ()2,0- ,点 A 的坐标为 ()8,3- ,点 B 的坐标是 .10.如图,在ABC 中45ABC ∠=︒,F 是高AD 和BE 的交点8AC =cm ,则线段BF 的长度为 .11.如图,D 为Rt △ABC 中斜边BC 上的一点,且BD=AB ,过D 作BC 的垂线,交AC 于E ,若AE=12cm ,则DE 的长为 cm .12.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点,若∠A=60°,则∠BMN 的度数是 .三、解答题:13.已知,如图,∠C =∠D =90°,E 是CD 的中点,AE 平分∠DAB.求证:BE 平分∠ABC.14.如图,要测量池塘两岸相对的两点A,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C,D,使BC=CD,再画出BF 的垂线DE,使E 与A,C 在一条直线上,这时测得DE 的长就是AB 的长。
12.2三角形全等的判定
(第1课时)
1.如图所示,已知∠ABC,求作:∠A‘B’C‘,使得∠A‘B’C‘=∠ABC.
2.如图所示,AB=CD,AD=CB,求证:△ABD≌△CDB.
3.已知△ABC,求作△A‘B‘C’,使得△A‘B‘C’≌△ABC.
4. 已知如图所示,EF=BC,ED=BA,FA=CD.
求证:①△EDF≌△BAC.
②EF∥BC.
③DE∥AB.
5.已知如图所示,AB=AC,BD=CD.
求证:∠BAD=∠CAD.
6.如图所示,AB=AC,AE=AD,BD=CE.找出图中的全等三角形,并给予证明.
参考答案
1.略
2. 在△ABD 与△CDB 中,
因为:⎪⎩
⎪⎨⎧===CB AD BD BD CD AB ,
所以△ABD ≌△CDB.
3.略;
4. ①因为FA=CD ,
所以FA+AD=CD+AD ,即FD=AC
在△EDF 与△BAC 中.
⎪⎩
⎪⎨⎧===AC FD AB ED BC EF
∴△EDF ≌△BAC.(SSS )
②∵△EDF ≌△BAC
∴∠F=∠C (全等三角形对应角相等) ∴EF ∥BC.(内错角相等,两直线平行) ③∵△EDF ≌△BAC
∴∠EDF=∠BAC (全等三角形对应角相等) ∴ED ∥BA.
(内错角相等,两直线平行)
5. 在△ABD 与△ACD 中,
因为:⎪⎩
⎪⎨⎧===AD AD CD BD AC AB ,
所以△ABD ≌△ACD.(SSS )
∠BAD=∠CAD (全等三角形对应角相等)
6.①△ABD ≌△ACE.
②△ABE ≌△ACD。
《12.2 三角形全等的判定》课时练一、选择题(本大题共12道小题)1.如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD2.如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3.如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A.①B.②C.③D.①和②5.如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°9.如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC=ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE =BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2 B. 3 C.2 D.611.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题共6道小题)13.如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.14.如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =AD ,∠BAC =65°,则∠ACD 的度数为________.16.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E .若△DBE 的周长为20,则AB =________.17.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=︒,则BCDABDS S =△△__________.18.如图,∠C =90°,AC =10,BC =5,AX ⊥AC ,点P 和点Q 是线段AC 与射线AX 上的两个动点,且AB =PQ ,当AP =________时,△ABC 与△APQ 全等.三、解答题(本大题共3道小题)19.如图,BD ,CE 是△ABC 的高,且BE =CD .求证:Rt △BEC ≌Rt △CDB .20. 如图,AD ∥BC ,AB ⊥BC 于点B ,连接AC ,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F .(1)若∠ABF =63°,求∠ADE 的度数; (2)若AB =AD ,求证:DE =BF +EF .21.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.参考答案一、选择题1.C 2.A 3.B 4.C 5.C 6.C 7.C 8.C 9.A 10.B11.A12.D二、填空题 13.AB =AC14.答案不唯一,如CE =CB 15.25° 16.20 17.1218.5或10 三、解答题19.证明:∵BD ,CE 是△ABC 的高, ∴∠BEC =∠CDB =90°. 在Rt △BEC 和Rt △CDB 中,⎩⎪⎨⎪⎧BC =CB ,BE =CD ,∴Rt △BEC ≌Rt △CDB(HL).20.解:(1)∵AD ∥BC ,AB ⊥BC , ∴∠ABC =∠BAD =90°. ∵DE ⊥AC ,BF ⊥AC , ∴∠BFA =∠AED =90°.∴∠ABF +∠BAF =∠BAF +∠DAE =90°. ∴∠DAE =∠ABF =63°.∴∠ADE =27°.(2)证明:由(1)得∠DAE =∠ABF ,∠AED =∠BFA =90°. 在△DAE 和△ABF 中,⎩⎪⎨⎪⎧∠DAE =∠ABF ,∠AED =∠BFA ,AD =BA ,∴△DAE ≌△ABF(AAS). ∴AE =BF ,DE =AF .∴DE =AF =AE +EF =BF +EF .21.(1)∵CAF BAE ∠=∠, ∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.。
人教版数学八年级上册12.1《全等三角形》课时练习一、选择题1.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同。
B.图形全等,只与形状、大小有关,而与它们的位置无关。
C.全等图形的面积相等,面积相等的两个图形是全等形。
D.全等三角形的对应边相等,对应角相等。
2.如图,若△ABC≌△DEF,则∠E等于()A.30°B. 50°C.60°D.100°3.边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则 DF的取值为()A.3B.4C.5D.3或4或54.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°5.如下图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=20°,则∠EAC=( )A.20°B.64°C.30°D.65°6.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18 cm2,则EF边上的高的长是( ).A.3cmB.4cmC.5cmD.6cm7.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A.80°B.70°C.60°D.50°8.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对 B.4对 C.3对 D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为( )A.90°B.108°C.110°D.126°二、填空题11.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=________13.如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.14.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC 全等,那么点D的坐标是.三、作图题15.如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.四、解答题16.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.17.△ACF≌△DBE,∠E=∠F,若AD=11,BC=7,求线段AB的长.18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.参考答案1.C2.D3.B4.D5.B6.D7.A8.B9.B10.B11.答案为:∠OBA,OA=OC、OB=OD、AB=CD12.答案为:2013.答案为:70° 45° 4cm 2cm14.答案为:(4,﹣1)或(﹣1,3)或(﹣1,﹣1)15.解:如图所示:16.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.17.解:∵△ACF≌△DBE,∴AC=BD,∴AC-BC=BO-BC,即AB=CD,∴2AB+BC=AO,∴2AB+7=11,∴AB=218.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=. ∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.。
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
12.1 全等三角形
1. 判断题:
①全等三角形的对应边相等,对应角相等。
()
②全等三角形的周长相等,面积也相等。
()
③面积相等的三角形是全等三角形。
()
④周长相等的三角形是全等三角形。
()
1.请指出下列全等三角形的对应边和对应角:
①△ ABE ≌△ ACF
对应角是:
对应边是:
②△ BCE ≌△ CBF
对应角是:
对应边是:
③△ BOF ≌△ COE
对应角是:
对应边是:
D
C A B
O
3.如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.
4.如图,已知△ABC ≌△ADE,∠C=∠E,BC=DE,
其它的对应边有:
对应角有:
想一想: ∠BAD=∠CAE 吗?为什么?
5.如图,△ABC ≌△DEF ,AC 与DF 是对应边,∠A 与∠D 是对应角,则AC//FD 成立吗?请说明理由.
参考答案
1.对对错错
2.略
3.略
4.答:相等.理由如下:
∵△ABC≌△ADE(已知)
∴∠BAC=∠DAE
(全等三角形对应角相等)
∴∠BAC-∠DAC=∠DAE-∠DAC
(等式性质)
即∠BAC=∠DAE
5.平行,内错角相等,两直线平行.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《12.2三角形全等的判定》课时练一、选择题(本大题共12道小题)1.如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD2.如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3.如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A.①B.②C.③D.①和②5.如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°9.如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC=ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE =BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A.2B.3C.2D.611.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题共6道小题)13.如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.14.如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =AD ,∠BAC =65°,则∠ACD 的度数为________.16.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E .若△DBE 的周长为20,则AB =________.17.如图,在Rt ABC △中,90C Ð=°,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A Ð=°,则BCD ABDS S =△△__________.18.如图,∠C =90°,AC =10,BC =5,AX ⊥AC ,点P 和点Q 是线段AC 与射线AX 上的两个动点,且AB =PQ ,当AP =________时,△ABC 与△APQ全等.三、解答题(本大题共3道小题)19.如图,BD ,CE 是△ABC 的高,且BE =CD .求证:Rt △BEC ≌Rt △CDB .20.如图,AD ∥BC ,AB ⊥BC 于点B ,连接AC ,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F .(1)若∠ABF =63°,求∠ADE 的度数;(2)若AB =AD ,求证:DE =BF +EF .21.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC Ð=°,28ACB Ð=°,求FGC Ð的度数.参考答案一、选择题1.C2.A3.B4.C5.C6.C7.C8.C9.A10.B 11.A12.D二、填空题13.AB=AC14.答案不唯一,如CE=CB15.25°16.2017.1 218.5或10三、解答题19.证明:∵BD,CE是△ABC的高,∴∠BEC=∠CDB=90°.在Rt△BEC和Rt△CDB中,=CB,=CD,∴Rt△BEC≌Rt△CDB(HL).20.解:(1)∵AD∥BC,AB⊥BC,∴∠ABC=∠BAD=90°.∵DE⊥AC,BF⊥AC,∴∠BFA=∠AED=90°.∴∠ABF+∠BAF=∠BAF+∠DAE=90°.∴∠DAE=∠ABF=63°.∴∠ADE=27°.(2)证明:由(1)得∠DAE=∠ABF,∠AED=∠BFA=90°.在△DAE和△ABF DAE=∠ABF,AED=∠BFA,=BA,∴△DAE≌△ABF(AAS).∴AE=BF,DE=AF.∴DE=AF=AE+EF=BF+EF.21.(1)∵CAF BAE Ð=Ð,∴BAC EAF Ð=Ð,∵AE AB AC AF ==,,∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =Ð=°,,∴18065250BAE Ð=°-°´=°,∴50FAG Ð=°,∵BAC EAF △≌△,∴28F C Ð=Ð=°,∴502878FGC Ð=°+°=°.。
《12.1 全等三角形》课时练一、选择题1.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等2.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A.50°B.60°C.55°D.65°3.已知:△ABC≌△DCB,若BC=10cm,AB=5cm,AC=7cm,则CD为()A.10cm B.7cm C.5cm D.5cm或7cm 4.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC ⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④5.已知图中的两个三角形全等,则∠α的度数为()A.105°B.75°C.60°D.45°6.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形7.如图,△ABC≌△DEF,BE=2,AE=1,则BD的长是()A.5B.4C.3D.28.已知:如图,△ABC≌△ADE,AB与AD是对应边,AC与AE是对应边,若∠B=31°,∠C=95°,∠EAB=20°,则∠BAD等于()A.77°B.74°C.47°D.44°9.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cm B.4cm C.6cm D.无法确定10.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°二.填空题11.如图,△ABC≌△DEF,∠A=35°,∠B=50°,则∠DFE=.12.已知:如图,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.则∠F的度数;DH的长.13.已知△ABC≌△DEF,AB=DE=8cm,△DEF的面积为20cm2,则△ABC的边AB上的高为cm.14.如图,已知△ABC≌△DEF,AD=1cm,则BE的长为cm.15.如图,已知△ABC≌△DBE,如果∠CBD=96°,∠CBE=28°,那么∠ABC=.三.解答题16.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)求证:BD=DE+CE;(2)请你猜想△ABD满足什么条件时,BD∥CE.17.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.18.如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.19.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.参考答案一、选择题1.A 2.A 3.C 4.D 5.B 6.D 7.A 8.B 9.C 10.A 二、填空题11.95°12.35° 6 13.5 14.1 15.68°三、解答题16.(1)证明:∵△BAD≌△ACE,∴AD=CE,BD=AE,∵A,D,E三点在同一直线上,∴AE=AD+DE,∴BD=CE+DE;(2)解:假如BD∥CE,则∠BDE=∠E,∵△BAD≌△ACE,∴∠ADB=∠E,∴∠ADB=∠BDE,又∵∠ADB+∠BDE=180°,∴∠ADB=∠BDE=90°,∴当∠ADB=∠E=90°时,BD∥CE.17.(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.18.解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.19.方法一:证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.方法二:∵△ABC≌△DEF。
12.1全等三角形一、选择题(本大题共8小题,在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是全等图形的是( )A. 形状相同的两个五角星B. 腰长相等的两个等腰三角形C. 周长相等的两个长方形D. 面积相等的两个正方形2.下列说法正确的是( )A. 两个面积相等的图形一定是全等图形B. 两个全等图形形状一定相同C. 两个周长相等的图形一定是全等图形D. 两个正三角形一定是全等图形3.如图所示的各组图形中,不是全等形的是( )A. B.C. D.4.下列各组图形中,属于全等图形的是( )A.B.C.D.5.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )A. 15°B. 20°C. 25°D. 30°6.若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为( )A. 30B. 27C. 35D. 407.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是( )A. 15°B. 20°C. 25°D. 30°8.如图,△ABC≌△ADE,∠B=25°,∠E=105°,∠EAB=10°,则∠BAD为( )A. 50°B. 60°C. 80°D. 120°二、填空题(本大题共4小题)9.如图,在由6个相同的小正方形拼成的网格中,∠2―∠1=______°.10.________的两个图形叫做全等形.11.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=°.12.已知△ABC≌△DEF,△DEF的周长为32cm,DE=9cm,EF=12cm,则AC=______.三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤)13.说出图(2)、图(3)中两个全等三角形的对应边、对应角.14.如图,△ABC≌△CDA,AB和CD,BC和DA是对应边.写出其他对应边及对应角.15.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形.16.如图,△OCA≌△OBD,点C和点B,点A和点D是对应顶点.说出这两个三角形中相等的边和角.17.如图,△ABC≌△DEC,CA和CD,CB和CE是对应边.∠ACD和∠BCE相等吗?为什么?18.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小;(2)若AD=9cm,BC=5cm,求AB的长.参考答案1.【答案】D2.【答案】B3.【答案】B4.【答案】C5.【答案】D6.【答案】A7.【答案】D8.【答案】B9.【答案】9010.【答案】能够完全重合11.【答案】9012.【答案】11cm13.【答案】解:在图(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C和∠E,∠BAC和∠DAE是对应角.14.【答案】解:其他对应边是AC和CA;对应角是∠B和∠D,∠ACB和∠CAD,∠CAB和∠ACD.15.【答案】解:如图所示:.16.【答案】解:相等的边有AC=DB,OC=OB,OA=OD;相等的角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.17.【答案】解:相等.理由:∵△ABC≌△DEC,∴∠ACB=∠DCE(全等三角形的对应角相等).∴∠ACB―∠ACE=∠DCE―∠ACE(等式的基本性质),即∠BCE=∠ACD.18.【答案】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∵∠F=62°,∴∠A=90°―∠F=28°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA―CB=BD―BC,即AB=CD,∵AD=9cm,BC=5cm,∴AB+CD=9―5=4(cm),∴AB=2cm.。
12.2三角形全等的判定同步练习题附答案第1课时用“SSS”判定三角形全等基础题知识点1用“SSS”判定三角形全等1.如图,如果AB=A′B′,BC=B′C′,AC=A′C′,那么下列结论正确的是()A.△ABC≌△A′B′C′B.△ABC≌△C′A′B′C.△ABC≌△B′C′A′D.这两个三角形不全等2.如图,下列三角形中,与△ABC全等的是③.第2题第4题3.如图所示,AD=BC,AC=BD,用三角形全等的判定“SSS”可证明△ADC≌或△ABD≌.4.如图,OA=OB,AC=BC.求证:△AOC≌△BOC.5.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,求证:△ABD≌△ACD.知识点2三角形全等的判定与性质的综合6.如图,AB=A1B1,BC=B1C1,AC=A1C1,且∠A=110°,∠B=40°,则∠C1=()A.110°B.40°C.30°D.20°第6题第7题7.如图所示,在△ABC和△DBC中,已知AB=DB,AC=DC,则下列结论中错误的是()A.△ABC≌△DBC B.∠A=∠DC.BC是∠ACD的平分线D.∠A=∠BCD8.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.知识点3尺规作一个角等于已知角9.已知∠AOB,点C是OB边上的一点.用尺规作图画出经过点C与OA平行的直线.中档题10.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°第10题第11题11.(长春中考)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为.12.如图,AB=AC,DB=DC,EB=EC.(1)图中有几对全等三角形?请一一写出来;(2)选择(1)中的一对全等三角形加以证明.13.(河北中考)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得A B=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.14.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.综合题15.(佛山中考)如图,已知AB=DC,DB=AC.(1)求证:∠B=∠C;(注:证明过程要求给出每一步结论成立的依据)(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?第2课时用“SAS”判定三角形全等基础题知识点1利用“SAS”判定三角形全等1.下图中全等的三角形有()图1图2图3图4A.图1和图2 B.图2和图3C.图2和图4 D.图1和图32.如图,在△ABD和△ACE中,AB=AC,AD=AE,要证△ABD≌△ACE,需补充的条件是()A.∠B=∠C B.∠D=∠EC.∠DAE=∠BAC D.∠CAD=∠DAC3.已知:如图,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.知识点2全等三角形的判定与性质的综合4.(泸州中考)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.5.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.知识点3利用“SAS”判定三角形全等解决实际问题6.如图,将两根钢条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点O自由转动,就做成了一个测量工件,则AB的长等于内槽宽A′B′,那么判定△AOB≌△A′OB′的理由是()A.边角边B.角边角C.边边边D.角角边第6题第7题7.如图所示,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一面镜子.为了方便起见,需带上1块,其理由是.易错点 误用“SSA”判定三角形全等8.如图,AD 平分∠BAC ,BD =CD ,则∠B 与∠C 相等吗?为什么?解:相等.理由:∵AD 平分∠BAC ,∴∠BAD =∠CAD. 在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,BD =CD ,∴△ABD ≌△ACD(SAS). ∴∠B =∠C.以上解答是否正确?若不正确,请说明理由.中档题9.如图,已知AB =AC ,AD =AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不成立的是( )A .BD =CEB .∠ABD =∠ACEC .∠BAD =∠CAE D .∠BAC =∠DAE第9题 第10题 第11题 第12题10.(陕西中考)如图,在四边形ABCD 中,AB =AD ,CB =CD.若连接AC ,BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 11.如图,点A 在BE 上,AD =AE ,AB =AC ,∠1=∠2=30°,则∠3的度数为 .12.如图,A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,BD =1km ,DC =1km ,村庄AC ,AD 间也有公路相连,且公路AD 是南北走向,AC =3km ,只有AB 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE =1.2km ,BF =0.7km , 则建造的斜拉桥长至少有 km.13.如图,点B ,C ,E ,F 在同一直线上,BC =EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC =DF.求证:(1)△ABC ≌△DEF ; (2)AB ∥DE.14.如图所示,A,F,C,D四点同在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.综合题15.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到点E,使DE=AB.求证:(1)∠ABC=∠EDC;(2)△ABC≌△EDC.第3课时用“ASA”或“AAS”判定三角形全等基础题知识点1利用“ASA”判定三角形全等1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的图形是()A.甲B.乙C.甲和乙都是D.都不是2.(宜宾中考)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.3.(孝感中考)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.知识点2利用“AAS”判定三角形全等4.如图所示,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是()A.SSS B.SAS C.ASA D.AAS5.(玉林中考)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.6.(广西中考)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C.求证:AB=DC.知识点3三角形全等判定方法的选用7.(南州中考)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC第7题第8题第9题第10题8.(济宁中考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.中档题9.如图所示,∠CAB=∠DBA,∠C=∠D,AC,BD相交于点E,下列结论不正确的是()A.∠DAE=∠CBE B.△DEA与△CEB不全等C.CE=DE D.EA=EB10.如图所示,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB.若BD=2,CF =5,则AB的长为()A.1 B.3 C.5 D.711.(宜昌中考)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20 m,请根据上述信息求标语CD的长度.12.(邵阳中考)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.综合题13.如图1所示,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),则(1)中的结论是否仍然成立?说明理由.第4课时用“HL”判定直角三角形全等基础题知识点1利用“HL”判定三角形全等1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS2.下列判定两个直角三角形全等的方法中,不正确的是()A.两条直角边分别对应相等B.斜边和一锐角分别对应相等C.斜边和一条直角边分别对应相等D.两个三角形的面积相等3.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件,便可得Rt△ABC≌Rt△DEF.4.如图,小明和小芳以相同的速度分别同时从A,B出发,小明沿AC行走,小芳沿BD行走,并同时到达C,D.若CB⊥AB,DA⊥AB,则CB与DA相等吗?为什么?5.如图,AD⊥BE,垂足C是BE的中点,AB=DE,求证:AB∥DE.6.如图,∠ACB =∠CFE =90°,AB =DE ,BC =EF ,求证:AD =CF.知识点2 直角三角形全等判定方法的选用7.如图,在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,那么下列各条件中,不能使Rt △ABC ≌Rt △A′B′C′的是( )A .AB =A′B′=5,BC =B′C′=3 B .AB =B′C′=5,∠A =∠B′=40° C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°第7题 第8题8.如图所示,BE ⊥AC ,CF ⊥AB ,垂足分别是E ,F.若BE =CF ,则图中全等三角形有( )A .1对B .2对C .3对D .4对 易错点 错用了“HL”判定三角形全等9.如图,AB ⊥CF 于点B ,AD ⊥CE 于点D ,且AB =AD ,DE =BF.求证:AF =AE.证明:在Rt △ABF 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,BF =DE , ∴Rt △ABF ≌Rt △ADE(HL). ∴AF =AE.上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正确的推理过程.中档题10.如图,在Rt△ABC中,∠BAC=90°,DE⊥BC,AC=6,EC=6,∠ACB=60°,则∠ACD的度数为()A.45°B.30°C.20°D.15°第10题第11题11.如图,MN∥PQ,AB⊥PQ,点A,D在直线MN上,点B,C在直线PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=.12.(镇江中考)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=.13.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC =BE.综合题14.如图,已知AB=AE,∠B=∠E,BC=ED,AF⊥CD.求证:F是CD的中点.12.2 三角形全等的判定 同步练习题参考答案第1课时 用“SSS”判定三角形全等基础题知识点1 用“SSS”判定三角形全等1.如图,如果AB =A′B′,BC =B′C′,AC =A′C′,那么下列结论正确的是(A)A .△ABC ≌△A′B′C′B .△ABC ≌△C′A′B′ C .△ABC ≌△B′C′A′D .这两个三角形不全等 2.如图,下列三角形中,与△ABC 全等的是③.第2题 第4题3.如图所示,AD =BC ,AC =BD ,用三角形全等的判定“SSS”可证明△ADC ≌△BCD 或△ABD ≌△BAC .4.如图,OA =OB ,AC =BC.求证:△AOC ≌△BOC.证明:在△AOC 和△BOC 中, ⎩⎪⎨⎪⎧OA =OB ,AC =BC ,OC =OC ,∴△AOC ≌△BOC(SSS).5.已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,求证:△ABD ≌△ACD.证明:∵AD 是BC 边上的中线, ∴BD =CD.在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD(SSS).知识点2 三角形全等的判定与性质的综合6.如图,AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,且∠A =110°,∠B =40°,则∠C 1=(C)A .110°B .40°C .30°D .20°第6题 第7题7.如图所示,在△ABC 和△DBC 中,已知AB =DB ,AC =DC ,则下列结论中错误的是(D)A .△ABC ≌△DBCB .∠A =∠DC .BC 是∠ACD 的平分线 D .∠A =∠BCD8.(福建中考)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF.求证:∠A =∠D .证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS). ∴∠A =∠D.知识点3 尺规作一个角等于已知角9.已知∠AOB ,点C 是OB 边上的一点.用尺规作图画出经过点C 与OA 平行的直线.解:①以点O 为圆心,任意长为半径,弧交OA 于点E ,交OB 于点D ; ②以点C 为圆心,OD 的长为半径画弧交OB 于点G ;③以点G 为圆心,DE 的长为半径,交前弧于点H ,连接CH ,则CH ∥OA.中档题10.如图,AB =AC ,AD =AE ,BE =CD ,∠2=110°,∠BAE =60°,下列结论错误的是(C)A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠C =30°D .∠1=70°第10题 第11题11.(长春中考)如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD ,CD.若∠B =65°,则∠ADC 的大小为65°. 12.如图,AB =AC ,DB =DC ,EB =EC.(1)图中有几对全等三角形?请一一写出来; (2)选择(1)中的一对全等三角形加以证明.解:(1)有3对全等三角形:△ABD ≌△ACD ,△ABE ≌△ACE ,△DBE ≌△DCE. (2)以△ABD ≌△ACD 为例. 证明:在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,DB =DC ,AD =AD ,∴△ABD ≌△ACD(SSS).13.(河北中考)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得A B =DE ,AC =DF ,BF =EC.(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.解:(1)证明:∵BF =EC , ∴BF +FC =EC +CF , 即BC =EF.又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF(SSS). (2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE. ∴AB ∥DE ,AC ∥DF.14.如图,已知AB =AC ,AD =AE ,BD =CE ,求证:∠3=∠1+∠2.证明:在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS). ∴∠BAD =∠1,∠ABD =∠2. ∵∠3=∠BAD +∠ABD , ∴∠3=∠1+∠2.综合题15.(佛山中考)如图,已知AB =DC ,DB =AC.(1)求证:∠B =∠C ;(注:证明过程要求给出每一步结论成立的依据) (2)在(1)的证明过程中,需要作辅助线,它的意图是什么?解:(1)证明:连接AD , 在△BAD 和△CDA 中, ⎩⎪⎨⎪⎧AB =DC (已知),DB =AC (已知),AD =DA (公共边),∴△BAD ≌△CDA(SSS).∴∠B =∠C(全等三角形的对应角相等). (2)作辅助线的意图是构造全等的三角形.第2课时 用“SAS”判定三角形全等基础题知识点1 利用“SAS”判定三角形全等 1.下图中全等的三角形有(D)图1 图2 图3 图4 A .图1和图2 B .图2和图3 C .图2和图4 D .图1和图32.如图,在△ABD 和△ACE 中,AB =AC ,AD =AE ,要证△ABD ≌△ACE ,需补充的条件是(C)A .∠B =∠C B .∠D =∠EC .∠DAE =∠BACD .∠CAD =∠DAC 3.已知:如图,OA =OB ,OC 平分∠AOB ,求证:△AOC ≌△BOC.证明:∵OC 平分∠AOB , ∴∠AOC =∠BOC. 在△AOC 和△BOC 中, ⎩⎪⎨⎪⎧OA =OB ,∠AOC =∠BOC ,OC =OC ,∴△AOC ≌△BOC(SAS).知识点2 全等三角形的判定与性质的综合4.(泸州中考)如图,C 是线段AB 的中点,CD =BE ,CD ∥BE.求证:∠D =∠E.证明:∵C 是线段AB 的中点, ∴AC =CB.∵CD ∥BE ,∴∠ACD =∠CBE. 在△ACD 和△CBE 中, ⎩⎪⎨⎪⎧AC =CB ,∠ACD =∠CBE ,CD =BE ,∴△ACD ≌△CBE(SAS). ∴∠D =∠E.5.如图,已知△ABC 和△DAE ,D 是AC 上一点,AD =AB ,DE ∥AB ,DE =AC.求证:AE =BC.证明:∵DE ∥AB , ∴∠ADE =∠BAC.在△ADE 和△BAC 中,⎩⎪⎨⎪⎧AD =BA ,∠ADE =∠BAC ,DE =AC ,∴△ADE ≌△BAC(SAS).∴AE =BC.知识点3 利用“SAS”判定三角形全等解决实际问题6.如图,将两根钢条AA′,BB′的中点O 连在一起,使AA′,BB′可以绕着点O 自由转动,就做成了一个测量工件,则AB 的长等于内槽宽A′B′,那么判定△AOB ≌△A′OB′的理由是(A)A .边角边B .角边角C .边边边D .角角边第6题 第7题7.如图所示,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一面镜子.为了方便起见,需带上1块,其理由是两边及其夹角分别相等的两个三角形全等. 易错点 误用“SSA”判定三角形全等8.如图,AD 平分∠BAC ,BD =CD ,则∠B 与∠C 相等吗?为什么?解:相等.理由:∵AD 平分∠BAC , ∴∠BAD =∠CAD. 在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,BD =CD ,∴△ABD ≌△ACD(SAS).∴∠B=∠C.以上解答是否正确?若不正确,请说明理由.解:不正确.使用“SAS”的前提条件:已知的对应元素(边或角)必须都是两个三角形中元素(边或角),且其中一个三角形的两边及其夹角必须对应相等.本题错误的原因是列的条件和使用方法不对应,错用“SSA”来证明两个三角形全等.中档题9.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不成立的是(B)A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE第9题第10题第11题10.(陕西中考)如图,在四边形ABCD中,AB=AD,CB=CD.若连接AC,BD相交于点O,则图中全等三角形共有(C)A.1对B.2对C.3对D.4对11.如图,点A在BE上,AD=AE,AB=AC,∠1=∠2=30°,则∠3的度数为30°.12.如图,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1km,DC=1 km,村庄AC,AD间也有公路相连,且公路AD是南北走向,AC=3km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2km,BF=0.7km,则建造的斜拉桥长至少有1.1km.13.如图,点B,C,E,F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧BC =EF ,∠ACB =∠DFE ,AC =DF ,∴△ABC ≌△DEF(SAS).(2)∵△ABC ≌△DEF , ∴∠B =∠DEF. ∴AB ∥DE.14.如图所示,A ,F ,C ,D 四点同在一直线上,AF =CD ,AB ∥DE ,且AB =DE.求证:(1)△ABC ≌△DEF ; (2)∠CBF =∠FEC.证明:(1)∵AB ∥DE , ∴∠A =∠D. 又∵AF =CD ,∴AF +FC =CD +FC. ∴AC =DF. ∵AB =DE ,∴△ABC ≌△DEF(SAS). (2)∵△ABC ≌△DEF ,∴BC =EF ,∠ACB =∠DFE. ∵FC =CF ,∴△FBC ≌△CEF(SAS). ∴∠CBF =∠FEC.综合题15.如图,在四边形ABCD 中,∠A =∠BCD =90°,BC =DC.延长AD 到点E ,使DE =AB.求证:(1)∠ABC =∠EDC ; (2)△ABC ≌△EDC.证明:(1)在四边形ABCD 中, ∵∠BAD =∠BCD =90°, ∴∠B +∠ADC =180°.又∵∠CDE +∠ADC =180°. ∴∠ABC =∠EDC. (2)连接AC.在△ABC 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,∠ABC =∠EDC ,CB =CD ,∴△ABC ≌△EDC(SAS).第3课时 用“ASA”或“AAS”判定三角形全等基础题知识点1 利用“ASA”判定三角形全等1.如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中和△ABC 全等的图形是(B)A .甲B .乙C .甲和乙都是D .都不是2.(宜宾中考)如图,已知∠CAB =∠DBA ,∠CBD =∠DAC.求证:BC =AD.证明:∵∠CAB =∠DBA ,∠CBD =∠DAC , ∴∠DAB =∠CBA.在△ADB 与△BCA 中,⎩⎪⎨⎪⎧∠CAB =∠DBA ,AB =BA ,∠DAB =∠CBA ,∴△ADB ≌△BCA(ASA).∴BC =AD.3.(孝感中考)如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,AD =AE.求证:BE =CD.证明:∵BD ⊥AC ,CE ⊥AB , ∴∠ADB =∠AEC =90°. 在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA). ∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD. 知识点2 利用“AAS”判定三角形全等4.如图所示,在△ABC 中,∠B =∠C ,D 为BC 的中点,过点D 分别向AB ,AC 作垂线段,则能够说明△BDE ≌△CDF 的理由是(D)A .SSSB .SASC .ASAD .AAS 5.(玉林中考)如图,AB =AE ,∠1=∠2,∠C =∠D.求证:△ABC ≌△AED.证明:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC , 即∠BAC =∠EAD.又∵∠C =∠D ,AB =AE , ∴△ABC ≌△AED(AAS).6.(广西中考)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C.求证:AB =DC.证明:∵BE =CF , ∴BF =CE.在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE(AAS). ∴AB =DC.知识点3 三角形全等判定方法的选用7.(南州中考)如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是(C)A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC第7题 第8题 第9题 第10题8.(济宁中考)如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,请你添加一个适当的条件:答案不唯一,如AH =CB ,使△AEH ≌△CEB.中档题9.如图所示,∠CAB =∠DBA ,∠C =∠D ,AC ,BD 相交于点E ,下列结论不正确的是(B)A .∠DAE =∠CBEB .△DEA 与△CEB 不全等C .CE =DED .EA =EB10.如图所示,已知D 是△ABC 的边AB 上一点,DF 交AC 于点E ,DE =EF ,FC ∥AB.若BD =2,CF =5,则AB 的长为(D)A .1B .3C .5D .711.(宜昌中考)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等,AC ,BD 相交于O ,OD ⊥CD ,垂足为D ,已知AB =20 m ,请根据上述信息求标语CD 的长度.解:∵AB ∥CD ,∴∠ABO =∠CDO. ∵OD ⊥CD ,∴∠CDO =90°. ∴∠ABO =90°,即OB ⊥AB. ∵相邻两平行线间的距离相等, ∴OD =OB.在△ABO 和△CDO 中,⎩⎪⎨⎪⎧∠ABO =∠CDO ,OB =OD ,∠AOB =∠COD ,∴△ABO ≌△CDO(ASA). ∴CD =AB =20 m.12.(邵阳中考)如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE.(1)从图中任找两组全等三角形; (2)从(1)中任选一组进行证明.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB(答案不唯一).(2)选△ABE ≌△CDF , 证明:∵AB ∥CD , ∴∠BAE =∠DCF. ∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF. 在△ABE 和△CDF 中, ⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS).综合题13.如图1所示,在△ABC 中, ∠ACB =90°,AC =BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于点M ,BN ⊥MN 于点N.(1)求证:MN =AM +BN ;(2)如图2,若过点C 作直线MN 与线段AB 相交,AM ⊥MN 于点M ,BN ⊥MN 于点N(AM >BN),(1)中的结论是否仍然成立?说明理由.解:(1)证明:∵∠ACB =90°, ∴∠ACM +∠BCN =90°. 又∵AM ⊥MN ,BN ⊥MN , ∴∠AMC =∠CNB =90°. ∴∠BCN +∠CBN =90°. ∴∠ACM =∠CBN. 在△ACM 和△CBN 中, ⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS). ∴MC =NB ,MA =NC. ∵MN =MC +CN , ∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由:同(1)中证明可得△ACM ≌△CBN , ∴CM =BN ,AM =CN. ∵MN =CN -CM , ∴MN =AM -BN.第4课时 用“HL”判定直角三角形全等基础题知识点1 利用“HL”判定三角形全等 1.如图,∠BAD =∠BCD =90°,AB =CB ,可以证明△BAD ≌△BCD 的理由是(A)A .HLB .ASAC .SASD .AAS 2.下列判定两个直角三角形全等的方法中,不正确的是(D)A .两条直角边分别对应相等B .斜边和一锐角分别对应相等C .斜边和一条直角边分别对应相等D .两个三角形的面积相等 3.在Rt △ABC 和Rt △DEF 中,AB =DE ,∠A =∠D =90°,再补充一个条件答案不唯一,如BC =EF ,便可得Rt △ABC ≌Rt △DEF.4.如图,小明和小芳以相同的速度分别同时从A ,B 出发,小明沿AC 行走,小芳沿BD 行走,并同时到达C ,D.若CB ⊥AB ,DA ⊥AB ,则CB 与DA 相等吗?为什么?解:CB =DA.理由:由题意易知AC =BD. ∵CB ⊥AB ,DA ⊥AB , ∴∠DAB =∠CBA =90°. 在Rt △DAB 和Rt △CBA 中,⎩⎪⎨⎪⎧BD =AC ,AB =BA , ∴Rt △DAB ≌Rt △CBA(HL). ∴DA =CB.5.如图,AD ⊥BE ,垂足C 是BE 的中点,AB =DE ,求证:AB ∥DE.证明:∵C 是BE 的中点, ∴BC =CE. ∵AD ⊥BE ,∴∠ACB =∠DCE =90°. 在Rt △ACB 和Rt △DCE 中,⎩⎪⎨⎪⎧AB =DE ,BC =EC ,∴∠B =∠E. ∴AB ∥DE.6.如图,∠ACB =∠CFE =90°,AB =DE ,BC =EF ,求证:AD =CF.证明:∵∠ACB =∠CFE =90°,∴∠ACB =∠DFE =90°. 在Rt △ACB 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF , ∴Rt △ACB ≌Rt △DFE(HL). ∴AC =DF.∴AC -AF =DF -AF ,即AD =CF. 知识点2 直角三角形全等判定方法的选用7.如图,在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,那么下列各条件中,不能使Rt △ABC ≌Rt △A′B′C′的是(B)A .AB =A′B′=5,BC =B′C′=3 B .AB =B′C′=5,∠A =∠B′=40° C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°第7题 第8题8.如图所示,BE ⊥AC ,CF ⊥AB ,垂足分别是E ,F.若BE =CF ,则图中全等三角形有(C)A .1对B .2对C .3对D .4对 易错点 错用了“HL”判定三角形全等9.如图,AB ⊥CF 于点B ,AD ⊥CE 于点D ,且AB =AD ,DE =BF.求证:AF =AE.证明:在Rt △ABF 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,BF =DE ,∴AF =AE.上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正确的推理过程. 解:不正确,错用了“HL”. 证明:∵AB ⊥CF ,AD ⊥CE , ∴∠ABF =∠ADE =90°. 在△ABF 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠ABF =∠ADE ,BF =DE ,∴△ABF ≌△ADE(SAS).∴AF =AE.中档题10.如图,在Rt △ABC 中,∠BAC =90°,DE ⊥BC ,AC =6,EC =6,∠ACB =60°,则∠ACD 的度数为(B)A .45°B .30°C .20°D .15°第10题 第11题11.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D 在直线MN 上,点B ,C 在直线PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =7.12.(镇江中考)如图,AD ,BC 相交于点O ,AD =BC ,∠C =∠D =90°.(1)求证:△ACB ≌△BDA ; (2)若∠ABC =35°,则∠CAO =20°.证明:∵∠C =∠D =90°,∴△ACB 和△BDA 是直角三角形. 在Rt △ACB 和Rt △BDA 中,⎩⎪⎨⎪⎧BC =AD ,AB =BA , ∴Rt △ACB ≌Rt △BDA(HL).13.如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE.求证:BC =BE.证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高, ∴∠ADB =∠AFB =90°. 在Rt △ABD 和Rt △ABF 中,⎩⎪⎨⎪⎧AB =AB ,AD =AF ,∴Rt △ABD ≌Rt △ABF(HL). ∴DB =FB.在Rt △ADC 和Rt △AFE 中,⎩⎪⎨⎪⎧AC =AE ,AD =AF , ∴Rt △ADC ≌Rt △AFE(HL). ∴DC =FE.∴DB -DC =FB -FE ,即BC =BE.综合题14.如图,已知AB =AE ,∠B =∠E ,BC =ED ,AF ⊥CD.求证:F 是CD 的中点.证明:连接AC ,AD. 在△ABC 和△AED 中, ⎩⎪⎨⎪⎧AB =AE ,∠B =∠E ,BC =ED ,∴△ABC ≌△AED(SAS). ∴AC =AD.在Rt △ACF 和Rt △ADF 中,⎩⎪⎨⎪⎧AC =AD ,AF =AF , ∴Rt △ACF ≌Rt △ADF(HL). ∴CF =DF ,即F 为CD 的中点.。
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。
人教版八年级数学上册全等三角形(篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)∥,1.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.∥,若ABC的周长为12cm,则PD PE PFPF AC【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.2.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=36;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.3.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.4.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,12),且△ABP和△ABC的面积相等,则a=_____.【答案】-83.【解析】【分析】先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=132,故可得出a的值.【详解】∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,∴223+213AB==,∵△ABC是等腰直角三角形,∠BAC=90°,∴1113•1313222 ABCS AB AC⨯⨯===,作PE⊥x轴于E,连接OP,此时BE=2﹣a,∵△ABP的面积与△ABC的面积相等,∴111•••222ABP POA AOB BOP S S S S OA OE OB OA OB PE ++=﹣=﹣, 111113332222222a ⨯⨯+⨯⨯⨯⨯=(﹣)﹣=,解得a =﹣83. 故答案为﹣83. 【点睛】 本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S △ABP =S △POA +S △AOB -S △BOP 列出关于a 的方程.5.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01 2122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.6.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。
一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3D解析:D【分析】 设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒A解析:A【分析】 由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠A .【详解】解:∵点O 到ABC 三边的距离相等,∴BO 平分ABC ∠,CO 平分ACB ∠,∴ ()180A ABC ACB ∠=︒-∠+∠()1802OBC OCB =︒-∠+∠()1802180BOC =︒-⨯︒-∠()1802180110︒=︒-⨯-︒40=︒.故选A .【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键.3.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD B解析:B【分析】 根据角平分线上的点到角的两边的距离相等可得DE =DC ,然后利用AAS 证明△ACD ≌△AED ,再对各选项分析判断后利用排除法.【详解】解:∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE =DC ,A 、BD +ED =BD +DC =BC ,故本选项正确;在△ACD 与△AED 中,90DAC DAE ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴∠ADC =∠ADE ,∴AD 平分∠EDC ,故C 选项正确;但∠ADE 与∠BDE 不一定相等,故B 选项错误;D 、∵△ACD ≌△AED ,∴AE =AC ,∴ED +AC =ED +AE >AD (三角形任意两边之和大于第三边),故本选项正确.故选:B .【点睛】本题考查了角平分线的性质,角平分线上的点到角的两边的距离相等,证明ACD AED △≌△是解题的关键.4.到ABC 的三条边距离相等的点是ABC 的( )A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点D 解析:D【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到ABC 的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【详解】解:∵到ABC 的三条边距离相等,角平分线上的点到角的两边的距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点,故选:D.【点睛】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.5.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL D解析:D【分析】直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =,∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.6.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是()A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C 解析:C【分析】利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.8.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .3A 解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD222∴⨯=⨯+⨯,AC BF AD BD CD AD∴⨯=⨯+⨯,即10BF8886112=⨯+⨯=,BF11.2∴=,EF BF BE11.210 1.2∴=-=-=,故选:A.【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.9.在尺规作图作一个角的平分线时的两个三角形全等的依据是()A.SAS B.AAS C.SSS D.HL C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.10.已知,如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB,下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有()A .1个B .2个C .3个D .4个D解析:D【分析】 根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP=⎧⎨=⎩ , ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;二、填空题11.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.【分析】过点D 作DE ⊥AB 利用角平分线的性质可得CD =DE 再利用线段的比求得线段DC 的长度进而即可求解【详解】过点D 作DE ⊥AB ∵AD 平分∠BACDE ⊥ABDC ⊥AC ∴CD =DE 又∵且BD :DC =5 解析:103 【分析】过点D 作DE ⊥AB ,利用角平分线的性质可得CD =DE ,再利用线段的比求得线段DC 的长度,进而即可求解.【详解】过点D 作DE ⊥AB ,∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC∴CD =DE又∵3BC =,且BD :DC =5:4,∴DE =DC =3÷(5+4)×4=43. ∵5AB =,∴ABD △的面积=43×5÷2=103 故答案是:103【点睛】本题考查了角平分线的性质,添加辅助线,是解题的关键.12.如图,△ABC ≌△DEF ,由图中提供的信息,可得∠D =__________°. 【分析】先根据三角形的内角和定理求出∠A 的度数再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=∴∠A=-∠B-∠C=∵△ABC ≌△DEF ∴∠D=∠A=故答案为:【点睛】此题考查全等三角 解析:70︒【分析】先根据三角形的内角和定理求出∠A 的度数,再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=180︒,∴∠A=180︒-∠B-∠C=180506070︒-︒-︒=︒,∵△ABC ≌△DEF ,∴∠D=∠A=70︒,故答案为:70︒【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,对应边相等,以及三角形的内角和定理.13.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中, A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.14.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.5或10【分析】分两种情况:当AQ=5时当AQ=10时利用全等三角形的判定及性质定理得到结论【详解】分两种情况:当AQ=5时∵∴AQ=BC ∵AD ⊥AC ∴∠QAP=∠ACB=∵AB=PQ ∴≌△PQA (解析:5或10【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论.【详解】分两种情况:当AQ=5时,∵5BC =,∴AQ=BC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴ABC ≌△PQA (HL );当AQ=10时,∵10AC =,∴AQ=AC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴△ABC ≌△QPA ,故答案为:5或10.【点睛】此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键.15.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF ≌△CDE (SSS ),∴∠DCE=∠BAF .∴AB//CD .故答案为:AB//CD .【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF 成为解答本题的关键.16.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;17.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB ⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.18.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得出DE=DC 即可求出答案【详解】解:过D 作DE ⊥AB 于E ∵∠C=90°AD 平分∠BACDC=2∴DE=DC=2即点D 到线段AB 的距离等于2故答案为:2 解析:【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得出DE=DC ,即可求出答案.【详解】解:过D 作DE ⊥AB 于E ,∵∠C=90°,AD 平分∠BAC ,DC=2,∴DE=DC=2,即点D 到线段AB 的距离等于2,故答案为:2.【点睛】本题考查了考查了角平分线的性质,能根据角平分线的性质得出DE=DC 是解此题的关键. 19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.AD=BD【分析】要判定△BCD≌△ACD已知∠1=∠2CD是公共边具备了一边一角对应相等注意SAS的条件;两边及夹角对相等只能选AD=BD【详解】解:由图可知只能是AD=BD才能组成SAS故答案为解析:AD=BD【分析】要判定△BCD≌△ACD,已知∠1=∠2,CD是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.20.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为F,AB=DE.若BD=8cm,则AC的长为_________.4cm【分析】由DE⊥AB可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm.【分析】由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC,AC=BE,由E是BC的中点,得到BE=12BC=12BD=4.【详解】解:∵DE⊥AB,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =.求证:(1)CBA FED ∠=∠;(2)AM DM =.解析:(1)见解析;(2)见解析【分析】(1)根据HL 定理可得Rt △ABC ≌ Rt △DEF ,从而得到∠CBA=∠FED ;(2)由(1)所得结论和已知条件可以证得△AEM ≌△DBM ,从而可得AM=DM .【详解】证明:(1)在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒AC DF AB DE =⎧⎨=⎩∴()Rt Rt HL ABC DEF ≌△△∴CBA FED ∠=∠.(2)∵CBA FED ∠=∠∴ME MB =,且AEMDBM ∠=∠ 又∵AB DE =∴AB EB DE EB -=-即AE DB =在AEM △和DBM △中AE DB AEM DBM ME MB =⎧⎪∠=∠⎨⎪=⎩∴()AEM DBM SAS △≌△∴AM DM =.【点睛】本题考查三角形全等的判定和性质,熟练掌握三角形全等的判定定理HL 、SAS 及三角形全等的性质是解题关键.22.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.解析:(1)详见解析;(2)52︒【分析】(1)先证明∠BAC=∠DAE ,即可根据SAS 证得结论;(2)根据三角形内角和定理求出∠BAC 的度数,再根据全等三角形的性质得到答案.【详解】(1)∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE .在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴ABC ADE △≌△;(2)∵42,86B C ∠=︒∠=︒,∴18052BAC B C ∠=︒-∠-∠=︒.∵ABC ADE △≌△,∴52DAE BAC ∠=∠=︒.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理,熟记三角形全等的判定定理是解题的关键.23.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.解析:(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.24.如图,已知ABC 是等边三角形,点D 、E 分别在AC ,BC 上,且CD BE =.(1)从图中找出一对全等三角形,并说明理由;(2)求AFD ∠的度数.解析:(1)ABE BCD △≌△或,理由见解析;(2)60°.【分析】(1)根据等边三角形的性质得出AB=BC ,∠BAC=∠C=∠ABE=60︒,根据SAS 推出△ABE ≌△BCD ;(2)根据△ABE ≌△BCD ,推出∠BAE=∠CBD ,根据三角形的外角性质求出∠AFD 即可.【详解】解:(1)()BC ABE A D S S ≌,理由如下:∵△ABC 是等边三角形,∴AB=BC ,∠C=∠ABE=60︒在△ABE 和△BCD 中,AB BC ABE C BE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△BCD(SAS);(2)∵△ABE ≌△BCD ,∴∠BAE=∠CBD ,∵∠AFD=∠ABF+∠BAE ,∴AFD ABF CBD ABC=60∠=∠+∠=∠︒.【点睛】本题考查全等三角形的性质和判定、三角形的外角性质,解题的关键是求出△ABE ≌△BCD .25.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度解析:(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.26.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.解析:(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.27.如图,已知Rt ABC △中,90ACB ︒∠=,CA CB =,D 是AC 上一点,E 在BC 的延长线上,且CE CD =,BD 的延长线与AE 交于点F .求证:BF AE ⊥.解析:证明见解析【分析】根据题意可以得到△ACE ≌△BCD ,然后根据全等三角形的性质和垂直的定义可以证明结论成立.【详解】证明:∵90ACB ︒∠=∴90ACE BCD ︒∠=∠=在ACE △和BCD △中,CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴()ACE BCD SAS =∴CAE CBD ∠=∠∵Rt ACE △中,90CAE E ︒∠+∠=,∴90CBD E ︒∠+∠=,∴90BFE ︒∠=∴BF AE ⊥【点睛】本题考查了全等三角形的判定与性质、垂直的定义,解题的关键是明确题意,利用全等三角形的判定和性质、数形结合的思想作答.28.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=, ∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=. ∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键.。