六年级式与方程
- 格式:doc
- 大小:40.50 KB
- 文档页数:3
2022-2023学年小升初数学精讲精练专题汇编讲义第4讲式与方程知识点一:用字母表示数、数量关系、计算公式和运算定律1.用字母表示数(1)一班有男生a人,有女生b人,一共有(a+b)人;(2)每袋面粉重25千克,x袋面粉一共重25x干克2.用字母表示数量关系(1)路程=速度×时间,用字母表示为s=vt;(2)正比例关系:yx=k(一定),反比例关系:x×y=k(一定)等。
3.用字母表示计算公式(1)长方形的周长:C=2(a+b);(2)长方形的面积:S=ab;(3)长方体的体积:V=abh或V=Sh等。
4.用字母表示运算定律加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c-ac+bo重点提示:○1数与字母、字母与字母相乘时,乘号可以记作简写为一个点或省略不写,但要注意,省略乘号后,数字要写在字母的前面。
○2两个相同的字母相乘时,可以写成这个字母的平方,如a×a可以写作a2知识点二:等式与方程1.等式与方程的意义及关系意义关系等式表示相等关系的式子叫作等式所有的方程都是等式,但是等式不一定知识精讲方程含有未知数的等式叫作方程是方程2.等式的性质(1)性质1:等式两边同时加上或减去同一个数,所得结果仍然是等式。
(2)性质2:等式的两边同时乘或除以同一个不为0的数,所得结果仍然是等式。
3.解方程(1)方程的解的概念:使方程左右两边相等的未知数的值,叫作方程的解。
(2)解方程的概念:求方程的解的过程叫作解方程。
(3)解方程的依据:可以根据等式的性质和四则运算中各部分之间的关系解方程。
(4)检验方程的解是否正确,步骤如下:(01)把求出的未知数的值代入原方程中;(02)计算,看等式是否成立;(03)等式成立,说明这个未知数的值是方程的解,等式不成立,说明解方程错误,需要重新求解。
六年级数学下册教案《6.1.3 式与方程》10-人教版一、教学目标1.理解“式”和“方程”之间的关系;2.能够准确地理解并应用等式的概念;3.学会使用递归的方式解决含有一个未知数的一元一次方程;4.能够在实际问题中应用式与方程的解法。
二、教学重点1.理解式与方程的基本概念;2.熟练使用递归解一元一次方程的方法。
三、教学内容1.式的概念和性质;2.一元一次方程的解法;3.实际问题中的应用。
四、教学过程1. 授课导入通过一个简单的例子引入式与方程的概念,让学生了解式与方程的区别和联系。
2. 理解式的概念•定义式的概念:由数、字母和运算符号组成的符号集合;•式的性质:相等的式可以互相替代。
3. 一元一次方程•引入一元一次方程的概念,解释未知数的含义;•学习使用递归的方法解决一元一次方程;•练习一元一次方程的解题方法。
4. 实际问题中的应用•引入实际问题,让学生将其转化为方程并求解;•练习实际问题的解决方法;•总结实际问题应用式与方程的步骤。
五、教学方法1.案例分析法:通过案例引导学生理解概念;2.举一反三法:引导学生将学到的知识运用到其他问题中;3.练习训练法:通过反复练习来掌握解题方法。
六、教学反馈1.课堂练习:对学生进行课堂练习,检查其理解情况;2.作业布置:布置相关的作业,巩固学生的学习成果;3.分组讨论:让学生进行小组讨论,加深对式与方程的理解。
七、教学延伸1.拓展应用:引导学生将所学知识用于其他领域中,如几何、代数等;2.自主学习:鼓励学生自主查阅资料,深入了解式与方程的更多性质和应用。
八、教学总结通过本节课的学习,学生应当能够理解式与方程的基本概念,掌握一元一次方程的解法,并能够在实际问题中熟练应用所学知识。
希望学生能够在接下来的学习中不断提升自己的数学能力,勇敢面对挑战。
以上是本次教学计划的大致内容,希望学生们认真学习,积极配合教师的教学,共同进步。
六年级下册数学教案第六单元 6.1.3 式与方程一、教学目标1. 让学生理解式与方程的概念,并能正确区分式与方程。
2. 培养学生运用方程解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容1. 式与方程的概念。
2. 方程的解法。
3. 方程在实际问题中的应用。
三、教学重点与难点1. 教学重点:式与方程的概念,方程的解法。
2. 教学难点:方程在实际问题中的应用。
四、教学过程1. 导入在上课之初,教师可以通过一个简单的实际问题引入式与方程的概念,例如:“小明有10元钱,他买了一本书花了3元,他还剩下多少钱?”通过这个问题,让学生理解式与方程的概念。
2. 基本概念讲解在导入的基础上,教师可以通过讲解式与方程的定义,让学生理解式与方程的概念。
式是由数字、字母和运算符号组成的表达式,而方程是含有未知数的等式。
3. 方程的解法在学生理解了式与方程的概念后,教师可以通过一些简单的例子,讲解方程的解法。
例如,教师可以给出一个简单的方程:“2x 3 = 7”,然后引导学生通过移项和化简来求解这个方程。
4. 实际应用在学生掌握了方程的解法后,教师可以通过一些实际问题,让学生运用方程来解决问题。
例如,教师可以给出一个问题:“小明有10元钱,他买了一本书花了3元,他还剩下多少钱?”然后引导学生通过建立方程来解决这个问题。
5. 总结与作业布置在课程的最后,教师可以对本节课的内容进行总结,并布置一些相关的作业,以巩固学生对式与方程的理解和应用。
五、教学反思1. 在教学过程中,教师应注重学生的参与,鼓励学生积极思考和提问。
2. 在讲解方程的解法时,教师应注重方法的引导,让学生理解解题的思路。
3. 在实际应用环节,教师应注重培养学生的实际操作能力,让学生能够将所学知识应用到实际问题中。
通过本节课的学习,我们希望学生能够掌握式与方程的概念,能够正确区分式与方程,能够运用方程解决实际问题,培养学生的逻辑思维能力和团队合作能力。
人教版数学六年级下册式与方程教学设计3篇〖人教版数学六年级下册式与方程教学设计第【1】篇〗课前准备教师准备多媒体课件教学过程⊙谈话揭题1.谈话导入。
我们学过了关于方程的哪些知识?(结合学生的回答板书)预设生1:方程的意义。
生2:方程与等式的关系。
生3:解方程的方法。
生4:用方程知识解决实际问题。
……2.揭示课题。
同学们说得很全面,这节课我们就来系统地复习有关方程的知识。
(板书课题:方程)⊙回顾与整理1.方程。
(1)什么是方程?它与算术式有什么不同?明确:①含有未知数的等式叫作方程。
②算术式是一个式子,由运算符号和已知数组成。
方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。
(2)什么是方程的解?使方程左右两边相等的未知数的值,叫作方程的解。
(3)什么是解方程?求方程的解的过程叫作解方程。
(4)解方程的依据是什么?①等式的性质。
②加减法和乘除法各部分之间的互逆关系。
(5)课件出示教材80页“回顾与交流”3题。
①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。
②指名到黑板前进行板演。
③全班交流并说一说自己是怎么解的。
2.列方程解决实际问题。
(1)列方程解应用题的步骤。
学生小组交流并集体汇报,然后教师明确:①弄清题意,确定未知数并用x表示;②找出题中数量间的相等关系;③列方程,解方程;④检验并写出答语。
(2)列方程解应用题的关键及找等量关系的方法。
①列方程解应用题的关键是什么?列方程解应用题的关键是找出题中的等量关系,根据等量关系列方程解答。
②你知道哪些找等量关系的方法?预设生1:根据关键性词语找等量关系。
生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。
生3:根据常见的数量关系找等量关系。
生4:根据计算公式找等量关系。
(3)课件出示教材80页“回顾与交流”4题。
教师引导学生先找出各题的等量关系,再列方程自主解决问题。
〖人教版数学六年级下册式与方程教学设计第【2】篇〗复习内容:第12册P92—93“练习与实践”7—9题。
第7课时式与方程(1)教学内容教科书P80第1题,完成教科书P81“练习十六”中第1、2、4、5、6、7题。
教学目标1.进一步理解用字母表示数的意义及作用,会用字母表示数量及常见的数量关系、运算定律及计算公式等。
2.加深对方程意义的理解,会熟练运用等式的性质解方程。
3.体会用字母表示数的作用及方法,进一步建立符号意识,体会代数思想。
教学重点比较系统地掌握式与方程的知识。
教学难点用字母的表达式表示数量的方法以及简写方法。
教学准备课件。
教学过程一、问题导入,揭示课题课件出示教科书P80第1题的表格。
师:看到这些信息,你想到了什么?【学情预设】学生可能会说(a+b)表示男生、女生一共有多少人;路程=速度×时间;圆柱的体积=底面积×高;用字母表示加法交换律;同分母分数加法的计算法则。
师:这些信息中有数量、数量关系、计算公式、运算定律和计算法则,它们都是用什么来表示的呢?(字母)用字母表示数在生活中有广泛的应用,它是代数的开始,从算术到代数是数学发展的重教学笔记【教学提示】通过学生自由发言,及时了解学生掌握式与方程的程度,以此作为调整课堂教学思路的主要依据。
要转变。
今天我们就来复习有关式与方程的知识。
[板书课题:式与方程(1)]二、复习回顾,构建知识体系1.复习用字母表示数。
(1)师:我们知道,用字母表示数在生活中应用广泛,为研究和解决问题带来很多方便。
你会用字母表示什么?请在教科书P80的表格中写出来。
【学情预设】学生可能会回答可以表示数量、数量关系、计算公式和运算定律等。
根据学生的回答板书:学生独立填表,教师巡视指导。
集体交流,根据学生的汇报出示课件。
用字母表示数量关系时,可以借助整理帮助学生复习基本的数教学笔记【教学提示】学生汇报时,教师有意识地引导学生完整汇报用字母表示的四种数量(加、减、乘、除)和五个定律。
其他部分只需要体会用字母表示比用文字表述更简明易记就可以了。
量关系:路程=速度×时间,用字母表示为s =vt ;工作总量=工作效率×工作时间,用字母表示为c =at ; 总价=单价×数量,用字母表示为c =ax 。
人教版数学六年级下册式与方程导学案3篇〖人教版数学六年级下册式与方程导学案第【1】篇〗教学内容:教材第81页1--2题、做一做,练习十六第1---4题教学目标:1、理解用字母表示数的意义和方法,能用字母表示常见的数量关系。
2、能根据字母所取的数值,算出含有字母的式子的值。
3、能通过列方程和解方程解决一些实际问题。
教学重点:能用字母表示常见的数量关系,理解方程的含义。
教学难点:较熟练地解简易方程,并能解决一些实际问题。
教具准备:多媒体课件教学过程:一、用字母表示数1、用字母表示数的作用和意义?用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来许多方便。
2、说一说你会用字母表示什么?3、说一说,在含有字母的式子里,书写数与字母、字母与字母相乘时,应注意什么?【如】①a乘4.5应该写作4.5a;②s乘h应该写作sh;③路程、速度、时间的数量关系是s=vt.4、你还知道哪些用字母表示的数量关系或计算公式?如:【用字母表示运算定律】加法交换律:加法结合律:乘法交换律:乘法结合律:乘法分配律:【用字母表示公式】长方形面积公式:正方形面积公式:长方体体积公式:正方体体积公式:圆的周长:圆的面积:〖人教版数学六年级下册式与方程导学案第【2】篇〗《式与方程》教案教学内容:冀教版《数学》六年级下册第71、72页。
教学目标:1.经历回顾和整理式与方程有关知识的过程。
2.会用方程表示简单的等量关系,会列方程解决简单问题。
3.感受式与方程在解决问题中的价值,培养初步的代数思想。
教学重、难点:经历回顾和整理式与方程有关知识的过程,感受式与方程在解决问题中的价值,培养初步的代数思想。
教具准备:教学课件教学时间:40分钟具体教学过程:一、激情导入:师:同学们,今天老师给大家带来了一只动物朋友,想认识它吗?(生:想)一起喊出它的名字(青蛙)师:小青蛙给大家带来了它的歌谣,我们一起来读一读,现在呀!屏幕上跳出了一群青蛙,能很快数出青蛙的只数吗?(注意给学生思考的时间)这时青蛙的只数该怎么表示呢?生:可以用字母n表示青蛙的只数可以用字母a表示青蛙的只数……师:谁能够选一个你喜欢的字母编一句歌谣送给他们。
人教版六年级下册数学《式与方程(2)》教案(5篇)第一篇:人教版六年级下册数学《式与方程(2)》教案人教版六年级下册数学《式与方程(2)》教案式与方程(2)教学目标:1、知识与技能:进一步认识用字母表示数的意义及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式等。
掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。
2、过程与方法:能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。
3、情感态度与价值观:提高整体认识知识的能力,找到知识间的内在联系。
教学重点:熟练找出等量关系,能根据题意正确地列方程解决问题。
教学难点:提高学生的解决问题的能力,整理知识的能力。
教学准备:电脑课件;学生:与式与方程有关的相关知识教学过程:一、创设情境,引出知识出示:学校组织远足活动。
原计划每小时走3.8km,3小时到达目的地。
实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)解题过程解:设现在平均每小时走了x千米。
2.5x=3.83 2.5x2.5=11.42.5 x=4.56答:平均每小时走了4.56千米?二、提出问题1、这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。
请你以小组为单位,合作自主梳理有关代数的知识。
2、小组进行讨论(设计意图:从学生已有知识经验基础出发,将这道具体的例题作为一个点,四散出各个基础知识,边回顾边整理,成为一个具体的体系,使学生明白基础的重要。
)三、分析知识建立联系(一)学生汇报各类知识小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。
(设计意图:小组合作后需要集体进行知识的再加工与再整理,使知识更加完善。
)(二)解方程与方程的解1、具体知识4.56是方程的解,而求这个解的过程就是解方程。
方程是含有字母的等式补充提问:能举几个是方程的式子吗?第二篇:人教版六年级下册数学《式与方程(1)》教案人教版六年级下册数学《式与方程(1)》教案式与方程(1)教学目标:1、知识与技能:理解用字母表示数的意义和方法,能用字母表示常见的数量关系。
式与方程-人教版六年级数学下册教案一、教学目标1.能够理解算术式的概念;2.能够根据问题的要求,列出算术式;3.能够初步掌握解一元一次方程。
二、教学重点1.算术式的概念及其用法;2.解一元一次方程的方法。
三、教学难点1.解一元一次方程的方法。
四、教学过程1. 导入通过一些简单的口算练习以及小学生已经掌握的基础知识,引导学生了解“式”与“方程”的概念。
2. 讲解2.1 算术式的概念及其用法询问学生:“你们知道什么是算术式吗?”让学生自己尝试回答。
然后通过更详细的讲解,帮助学生理解算术式是由数字和算符组成的表达式。
为了更好地理解算术式,老师可以列一些例子,例如:5+3、8×2、4-2等等,然后通过一些练习,提高学生的运算能力。
2.2 解一元一次方程的方法让学生从自身的生活实际出发,提出一些常见的方程问题,例如:“班里有一部分同学去游泳,还有5个人没有去,请问这个班有多少人?”,然后通过引导学生列出方程的形式,并通过解题的方式,帮助学生掌握解方程的方法。
3. 练习为学生提供一些相关的练习题目,让学生巩固自己的知识,提高自己的能力。
可以适当组织学生的小组讨论,培养学生的合作精神和团队意识。
4. 总结通过本节课的学习,学生能够初步掌握算术式和方程的相关知识,并掌握解一元一次方程的方法。
在上课的过程中,尽量让学生进行亲自操作,提高学生的实践能力和动手能力。
五、教学反思由于六年级学生的数学基础比较好,因此本节课的难度相对较低。
在讲解算术式和方程的过程中,还可以适当加入一些拓展知识,例如多项式、二次方程等等。
此外,在练习环节中可以设计一些类型不同、难度适中的问题,提高学生的练习能力。
(3)式与方程
一、填空:
1、一种贺卡的单价是a 元,小英买了5张这样的贺卡,用去( )元;小明买n 张这样
的贺卡,付出10元,应找回( )元。
2、比m 的8倍少n 的一半是( );温度由10℃上升t ℃是( )
3、三个连续偶数,中间一个是m ,另外两个分别是( )和( )。
4、四年级同学订《中国少年报》120份,比五年级多订x 份,120-x 表
示 ( ),每份《中国少年报》a 元,120a 表示( ),
(120 -x )a 表( )。
5、某校排练团体操,有108男生和84名女生参加,如果男生和女生都排成每行a 人,男生
比女生多排几行用含有字母的式子表示是( 或 )
二、下面的式子,哪些是方程?哪些不是方程,为什么?
45 -x <15 x +12 =4 2x -5.6 76
+1.2x =48
三、判断题:
1、含有未知数的式子叫方程……………………………………( )
2、n 表示自然数,2n 就可以表示偶数…………………………( )
3、因为22=2×2,所以a2=a ×2…………………………………( )
4、56-X <0.7不是方程……………………………………… ( )
5、c +c=2c ,a ×a=2a 。
………………………………………… ( )
四、选择题:
1、x=25是( )方程的解。
(1)100÷x=4 (2)x ÷12.5=3 (3)25+3x=90
2、一辆摩托车t 小时行s 千米,a 小时行( )千米。
(1)as t (2)s at (3)at s
3、7+x 15
是以15为分母的最简真分数,则x 可取的自然数有( )个。
(1)5 (2)4 (3)3 (4)2
4、△代表一个不为0的自然数。
那么,得数最大的是( )
(1)△× 45 (2) △÷45 (3)45
÷△ 五、填表。
服装公司用公式C =10+12n 计算成本费。
C 表示成本费,n 表示做一件服装所
7.8×3X =3.6 X ÷1.98=0.4 (4.5-X )×0.375=0.75
12 X +23 X =14 X -0.52 X =3.2×0.15 12
X +25%=10
七、列方程不计算:
一个数乘以2,加上3,减5得 一个数的8倍加上30的23
的16,这个数是多少? 和是52,这个数是多少?
54减去某数的4倍等于6, 一个数的35
加上16的和是28,求某数。
求这个数。
一个数的15 比它的16 多60, 125减去一个数的23
,差是5, 这个数是多少? 这个数是多少?
根据下面的条件,找出数量间的相等关系。
某班男生人数比女生人数多7人。
2、小明买来4副乒乓球拍和12个乒乓球,共付128元。
3、参加美术活动小组的女生比男生的2倍还多7人。
4、两根同样长的铁丝,一根围成正方形,一根围成圆。
九、列方程解下面各题。
用一辆汽车运一堆货物,运了3次后还剩9.2吨没有运。
已知这堆货物共有20吨,汽车每
次运多少吨?
2、甲乙两地相距480千米。
两辆汽车同时从两地相对开出,经过5小时相遇。
其中,一辆
汽车每小时行56千米,另一辆汽车每小时行多少千米?
3、飞机的速度比火车的7倍快30千米,如果飞机每小时行450千米,那么火车每小时行多
少千米?
4、修一条路,原计划15天完成,实际每天修300米,结果提前3天完成,原计划每天修多
少米?
5、今年“3.15”期间,某城市因商品质量问题投诉的消费者有408人,比去年同期投诉人的3倍少6人,去年同期投诉的有多少人?
十、下面两道题,哪道题用算术方法较简便,哪道题适宜列方程解,选择适当的方法解答。
1、小龙的身高比小丽高 19。
小丽身高135厘米,小龙身高多少厘米?
2、小丽的身高比小华矮
116。
小丽身高135厘米,小华身高多少厘米?
3、学校长跑队有42人,田径队的人数比长跑队人数的12
还多2人,田径队有多少人?
4、学校长跑队有42人,长跑队比田径队人数的12
还多2人,田径队有多少人?。