154一维定态问题
- 格式:ppt
- 大小:2.46 MB
- 文档页数:48
第三章 一维定态问题§3.1 一维定态的一般性质性质1、当)(x V 为实函数时,一维定态波函数可取为实函数。
证明:分能级无简并和有简并两种情况(1) 能级无简并对应能级E ,只有一个独立的本征波函数。
设 )(x ψ为与E 对应的本征波函数)()(ˆx E x Hψψ= 取复共轭,因)()(*x V x V =,则)()(ˆ**x E x Hψψ= )(*x ψ也是与E 对应的本征波函数。
因无简并,则 αψψψψψi e C x C x C x x C x ====)()()()()(2***可取0=α,即)(x ψ可取为实函数。
(2)能级有简并对应某一能级E ,有两个或两个以上独立的本征波函数。
例如氢原子能级:eV 16.132nE n -=,波函数: )(r sl m nlm ψ, 简并度:22n f =.设集合 )}({x i ψ为与E 对应的本征波函数 f i x E x H ii ,,2,1),()(ˆ ==ψψ 取共轭得f i x E x H ii ,,2,1),()(ˆ** ==ψψ 集合 )}({*x i ψ 也是与E 对应的本征波函数。
只要)}({x i ψ中有一个波函数,例如j ψ不是实函数,那么就可用实函数 )(*j j ψψ+或 )]([*j j i ψψ--来取代j ψ,最后总能组合成一组实函数。
所以,当)(x V 为实函数时,一维定态波函数可取为实函数。
下面一条性质涉及空间反射变换和宇称。
空间反射变换:用算符P ˆ代表空间反射变换 )()(ˆx x P-=ψψ 本征方程: )()(ˆx x Pψπψ=可以证明 π为实数。
只有当 π为实数时上述方程才是本征方程。
因为按照基本假定,本征值与测量值相对应,而测量值总是实数。
宇称(parity ):空间反射变换算符的本征值 π.宇称的可能取值:)()(ˆ)(ˆˆ)(ˆ2x x P x P P x Pψψψψ=-== )()(ˆ)(ˆˆ)(ˆ22x x P x P P x Pψπψπψψ=== )()(2x x ψπψ=211ππ=⇒=±即 ⎩⎨⎧-=负宇称正宇称,)(),()(ˆx x x P ψψψ空间反射不变的波函数具有正宇称。
第一章薛定谔方程,一维定态问题
薛定谔方程是描述量子力学中微观粒子运动的基本方程,也是研究原子、分子、固体等微观粒子体系行为的重要工具。
在一维定态问题中,我们假设粒子在一个长度为L的有限区域内运动,边界处满足一定的边界条件。
这种假设简化了问题的复杂性,使得我们能够更加深入地研究粒子在有限区域内的定态行为。
一维定态问题的薛定谔方程可以写成如下的形式:
$$-
\frac{\hbar^{2}}{2m}\frac{d^{2}\Psi(x)}{dx^{2}}+V(x)\Psi(x)=E \Psi(x)$$
其中,$\hbar$为约化普朗克常数,m为粒子的质量,V(x)为粒子在x位置处的势能,E为粒子的总能量,$\Psi(x)$为描述粒子波函数的解析函数。
一维定态问题中,由于波函数只与一个坐标x有关,因此我们可以采用分离变量的方法将波函数表示为如下形式:
$$\Psi(x)=\psi(x)e^{ikx}$$
其中,$\psi(x)$为关于x的解析函数,k为波矢。
将上式代入薛定谔方程,可将其简化为如下形式:
$$-\frac{\hbar^{2}}{2m}\psi''(x)+(V(x)-E)\psi(x)=0$$
这个简化后的方程可以通过求解得到波函数的解析表达式及对应的能量。
对于有限区域内的粒子,我们需要根据边界条件来限定波函数的形状,在定态问题中,我们通常采用周期性边界条件或硬壳边界条件。
通过分析一维定态问题的波函数和能谱,我们可以深入理解原子、分子、固体等复杂体系中微观粒子的行为规律,同时也可以为设计新的材料、光电子器件等提供理论基础和指导。
第二章 一维定态问题一 内容提要1 几个重要的一维定态问题[1] 一维无限深势阱 {0,00)(≤≥<<∞=x a x a x x V ,3,2,122222=μπ=n a n E n∞≥≤<<π⎩⎨⎧=ψx x a x a x n a x n ,000s i n 2)( [2] 一维线性谐振子2221)(x x V μω= ,3,2,1)21(=ω+=n n E n)()(2221x H e N x n x n n α-=ψ [其中 !2n N n n πα=μω=α ] [3] 定轴转动子IL H2ˆˆ2ϕ=Im E n 222 =),3,2,1,0(21 =π=ψϕm e im n2 一维定态问题的性质 设)()(*x V x V =[1] 如果)(x ψ是定态S.eq 的解,那么)(x *ψ也是定态S.eq 的解。
[2] 如果)()(x V x V -= 则)(x -ψ也是定态S.eq 的解。
[3] 如果)(x V 是x 的连续函数,那么)(x ψ和)('x ψ也是连续的;如果)(x V 为阶梯形方势⎩⎨⎧><=a x V a x V x V 21)(且12V V -有限,那么)(x ψ和)('x ψ也是连续的; 如果∞→-12V V 时,那么)(x ψ连续而)('x ψ不连续;二 例题讲解 1 设粒子处于一维无限深势阱中,{0,00)(≤≥<<∞=x a x a x x V , 证明处于能量本征态)(x n ψ的粒子,)61(12)(2/2222π-=-=n a x x a x讨论∞→n 的情况,并与经典力学计算结果比较。
证明:2sin2)(0202a dx a x n x a dx x x x aan =π=ψ=⎰⎰ )61(124)()(2220222222π-=-ψ=-=-⎰n a a dx x x x x x x an 经典情况下,在区域),0(a 中粒子处于dx 范围中的几率为adx则 20a a dx x x a==⎰ 32022a a dx x x a==⎰ 1243)(222222a a a x x x x =-=-=- 2 设粒子处于一维无限深势阱中,粒子的波函数为)()(x a Ax x -=ψ,A 为归一化常数。
一维定态的简并问题
一维定态的简并问题是一个涉及到量子力学和量子统计力学的概念。
在这个问题中,我们考虑一个粒子在一维无限深势阱中的定态,也就是粒子在一维空间中被限制在了一个特定的区域内。
根据量子力学的原理,粒子的能量是由其动能和势能共同决定的。
在一维无限深势阱中,粒子的势能是无限大的,因此其能量是由动能决定的。
当粒子处于定态时,其能量是确定的,而动能也是确定的,因此粒子的波函数在一维空间中是有规律的。
然而,当粒子处于不同的量子态时,其波函数可能会表现出不同的规律性。
在某些情况下,不同的量子态可能会有相同的能量,这就是所谓的能级简并。
在一维无限深势阱中,能级简并通常出现在高激发态,因为高激发态的粒子具有更多的动量和能量,因此其波函数在一维空间中的规律性更加复杂。
简并问题在一维定态中是存在的,但并不是所有的一维定态都会有简并现象。
有些一维定态是没有简并的,也就是说它们的能量是唯一的,不会出现能级简并的情况。
这种现象被称为非简并性定理。
这个定理在一维无限深势阱中成立,但在其他情况下可能不成立。
总之,一维定态的简并问题是一个涉及到量子力学和量子统计力学的概念。
在这个问题中,我们需要考虑粒子在一维空间中的运动和能量分布,以及不同量子态之间的相互作用和简并现象。