3.1一维定态的一般性质
- 格式:ppt
- 大小:1012.50 KB
- 文档页数:26
第三章 一维定态问题§3.1 一维定态的一般性质性质1、当)(x V 为实函数时,一维定态波函数可取为实函数。
证明:分能级无简并和有简并两种情况(1) 能级无简并对应能级E ,只有一个独立的本征波函数。
设 )(x ψ为与E 对应的本征波函数)()(ˆx E x Hψψ= 取复共轭,因)()(*x V x V =,则)()(ˆ**x E x Hψψ= )(*x ψ也是与E 对应的本征波函数。
因无简并,则 αψψψψψi e C x C x C x x C x ====)()()()()(2***可取0=α,即)(x ψ可取为实函数。
(2)能级有简并对应某一能级E ,有两个或两个以上独立的本征波函数。
例如氢原子能级:eV 16.132nE n -=,波函数: )(r sl m nlm ψ, 简并度:22n f =.设集合 )}({x i ψ为与E 对应的本征波函数 f i x E x H ii ,,2,1),()(ˆ ==ψψ 取共轭得f i x E x H ii ,,2,1),()(ˆ** ==ψψ 集合 )}({*x i ψ 也是与E 对应的本征波函数。
只要)}({x i ψ中有一个波函数,例如j ψ不是实函数,那么就可用实函数 )(*j j ψψ+或 )]([*j j i ψψ--来取代j ψ,最后总能组合成一组实函数。
所以,当)(x V 为实函数时,一维定态波函数可取为实函数。
下面一条性质涉及空间反射变换和宇称。
空间反射变换:用算符P ˆ代表空间反射变换 )()(ˆx x P-=ψψ 本征方程: )()(ˆx x Pψπψ=可以证明 π为实数。
只有当 π为实数时上述方程才是本征方程。
因为按照基本假定,本征值与测量值相对应,而测量值总是实数。
宇称(parity ):空间反射变换算符的本征值 π.宇称的可能取值:)()(ˆ)(ˆˆ)(ˆ2x x P x P P x Pψψψψ=-== )()(ˆ)(ˆˆ)(ˆ22x x P x P P x Pψπψπψψ=== )()(2x x ψπψ=211ππ=⇒=±即 ⎩⎨⎧-=负宇称正宇称,)(),()(ˆx x x P ψψψ空间反射不变的波函数具有正宇称。
第一章薛定谔方程,一维定态问题
薛定谔方程是描述量子力学中微观粒子运动的基本方程,也是研究原子、分子、固体等微观粒子体系行为的重要工具。
在一维定态问题中,我们假设粒子在一个长度为L的有限区域内运动,边界处满足一定的边界条件。
这种假设简化了问题的复杂性,使得我们能够更加深入地研究粒子在有限区域内的定态行为。
一维定态问题的薛定谔方程可以写成如下的形式:
$$-
\frac{\hbar^{2}}{2m}\frac{d^{2}\Psi(x)}{dx^{2}}+V(x)\Psi(x)=E \Psi(x)$$
其中,$\hbar$为约化普朗克常数,m为粒子的质量,V(x)为粒子在x位置处的势能,E为粒子的总能量,$\Psi(x)$为描述粒子波函数的解析函数。
一维定态问题中,由于波函数只与一个坐标x有关,因此我们可以采用分离变量的方法将波函数表示为如下形式:
$$\Psi(x)=\psi(x)e^{ikx}$$
其中,$\psi(x)$为关于x的解析函数,k为波矢。
将上式代入薛定谔方程,可将其简化为如下形式:
$$-\frac{\hbar^{2}}{2m}\psi''(x)+(V(x)-E)\psi(x)=0$$
这个简化后的方程可以通过求解得到波函数的解析表达式及对应的能量。
对于有限区域内的粒子,我们需要根据边界条件来限定波函数的形状,在定态问题中,我们通常采用周期性边界条件或硬壳边界条件。
通过分析一维定态问题的波函数和能谱,我们可以深入理解原子、分子、固体等复杂体系中微观粒子的行为规律,同时也可以为设计新的材料、光电子器件等提供理论基础和指导。