第三章一维定态问题
- 格式:ppt
- 大小:985.50 KB
- 文档页数:51
§2.6 一维定态问题一.一维定态波函数的一般性质对一维定态问题,薛定谔方程为定理一:设是方程的一个解,对应能量为E,则也是方程的一个解,对应能量也为E。
证明:,对方程两边取复共轭,利用满足相同的方程,对应的能量都是E。
定理二:设具有空间反射不变性,即,如为方程的一个解,对应能量为E;则也为方程的一个解,对应能量也是E。
定理三:当时,如无简并,方程的解有确定的宇称。
即偶宇称:,或奇宇称:。
证明:因为和都是能量E的解,二者应表示同样的状态。
因此应只差一常数。
,则所以,,,。
二.一维无限深势阱,,,,令,方程的解为:,利用边界条件:得:,即:,,(时,,无物理意义), 对应的波函数为:。
利用归一化条件: , 得:,归一化后的波函数为:。
束缚态:无穷远处为零的波函数所描述的状态。
基态:体系能量最低的态。
三.一维线性谐振子一维线性谐振子的势能为,体系的薛定谔方程为,进行如下变量代换:,,薛定谔方程变为:,变系数二级常微分方程。
,方程变为,解为,时,有限,将写成如下形式:,带入原方程将H按展成幂级数,时,有限,要求幂级数只有有限项。
级数只有有限项的条件是:,线性谐振子的能级为:,线性谐振子的能量为分离值,相邻能级的间距为。
零点能:,。
厄密多项式:递推公式: (1)(2)(3)(4)对应的波函数为:,归一化常数:四.势垒贯穿;薛定谔方程为,,(a)时令,方程变为:,,在区域,波函数:在区域,波函数:在区域,波函数:对投射波,不应有向左传播的波,即:。
利用波函数及微商在和的连续条件,我们有:::,解方程组:利用几率流密度公式:得出入射波、透射波、反射波的几率流密度入射波几率流密度:透射波几率流密度:反射波几率流密度:投射系数:反射系数:(b) 时令,方程变为:,方程的解形式为:利用边界条件得:其中双曲正弦函数,双曲余弦函数投射系数:隧道效应:粒子在能量E小于势垒高度时仍能贯穿势垒的现象。
按经典力学:,如,则动能为负。
第三章: 一维定态问题[1]对于无限深势阱中运动的粒子(见图3-1)证明2a x = )()(22226112πn a x x -=-并证明当∞→n 时上述结果与经典结论一致。
[解]写出归一化波函数:()axn a x n πsin2=ψ (1) 先计算坐标平均值:xdx axn a xdx a x n a xdx x a aa)(⎰⎰⎰-==ψ=02022cos 11sin 2ππ利用公式:2sin cos sin ppxp px x pxdx x +-=⎰ (2) 得2cos sin cos ppxp px x pxdx x +-=⎰ (3) 22cos 22sin 221022aa x n n a a x n x n a x a x a=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππ 计算均方根值用()x x x x x ,)(222-=-以知,可计算2xdx ax n x a dx a x n x a dx x x a a)(⎰⎰⎰-==ψ=022222022cos 11sin 2ππ利用公式px ppx x p px x p pxdx x sin 1cos 2sin 1cos 3222-+=⎰ (5) aa x n x n a a x n n a x n a x a x 0222222cos222sin 22311πππππ⋅⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=222223πn a a -= ()22222222223⎪⎭⎫ ⎝⎛--=-=-a n a a x x x x π)(2222212πn a a -=(6) 在经典力学的一维无限深势阱问题中,因粒子局限在(0,a )范围中运动,各点的几率密度看作相同,由于总几率是1,几率密度a1=ω。
210a xdx a xdx x aa ===⎰⎰ω 312202a dx x a x a==⎰()22222222223⎪⎭⎫⎝⎛--=-=-a n a a x x x x π)(故当∞→n 时二者相一致。
第三章一维定态问题3.1)设粒子处在二维无限深势阱中,⎩⎨⎧∞<<<<=其余区域,0,0 ,0),(by a x y x V 求粒子的能量本征值和本征波函数。
如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为m E y x n n 222π =)(2222bn an y x +,2,1, ,sinsin2==y x y x nn n n byn axn abyx ππψ若b a =,则 )(222222y x n nn n ma E yx +=πayn axn ay x nn yx ππψsinsin2=这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11''==y x n n )3.2)设粒子限制在矩形匣子中运动,即⎩⎨⎧∞<<<<<<=其余区域 ,0,0,0 ,0),,(cz b y a x z y x V 求粒子的能量本征值和本征波函数。
如c b a ==,讨论能级的简并度。
解:能量本征值和本征波函数为)(222222222cn bn an mnn n Ez y x zyx++=π ,,3,2,1,, ,sinsinsin8==z y x z y x n n n czn byn axn abcn n n zy x πππψ当c b a ==时,)(2222222z y x n n n mann n Ezyx++=πayn ayn axn a n n n z y x zy x πππψsinsinsin223⎪⎭⎫⎝⎛=z y x n n n ==时,能级不简并;z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。
z y x n n n ,,三者皆不相等时,能级一般为6度简并的。
如 ⎩⎨⎧→++=++→++=++)9,6,3()10,5,1(2086161210)11,3,1()9,7,1(10438652222222222223.3)设粒子处在一维无限深方势阱中,⎩⎨⎧><∞<<=ax 0, ,0 ,0),(x ax y x V 证明处于定态)(x n ψ的粒子)61(12)x -(x ,22222πn aa x -==讨论∞→ n 的情况,并于经典力学计算结果相比较。
一维定态的简并问题
一维定态的简并问题是一个涉及到量子力学和量子统计力学的概念。
在这个问题中,我们考虑一个粒子在一维无限深势阱中的定态,也就是粒子在一维空间中被限制在了一个特定的区域内。
根据量子力学的原理,粒子的能量是由其动能和势能共同决定的。
在一维无限深势阱中,粒子的势能是无限大的,因此其能量是由动能决定的。
当粒子处于定态时,其能量是确定的,而动能也是确定的,因此粒子的波函数在一维空间中是有规律的。
然而,当粒子处于不同的量子态时,其波函数可能会表现出不同的规律性。
在某些情况下,不同的量子态可能会有相同的能量,这就是所谓的能级简并。
在一维无限深势阱中,能级简并通常出现在高激发态,因为高激发态的粒子具有更多的动量和能量,因此其波函数在一维空间中的规律性更加复杂。
简并问题在一维定态中是存在的,但并不是所有的一维定态都会有简并现象。
有些一维定态是没有简并的,也就是说它们的能量是唯一的,不会出现能级简并的情况。
这种现象被称为非简并性定理。
这个定理在一维无限深势阱中成立,但在其他情况下可能不成立。
总之,一维定态的简并问题是一个涉及到量子力学和量子统计力学的概念。
在这个问题中,我们需要考虑粒子在一维空间中的运动和能量分布,以及不同量子态之间的相互作用和简并现象。